

1

Extensions for Financial Services (XFS)
XFS4IoT Specification

Release 2023-02

This CEN Workshop Agreement has been drafted and approved by a Workshop of representatives of interested parties, the
constitution of which is indicated in the foreword of this Workshop Agreement.

The formal process followed by the Workshop in the development of this Workshop Agreement has been endorsed by the National
Members of CEN but neither the National Members of CEN nor the CEN-CENELEC Management Centre can be held accountable
for the technical content of this CEN Workshop Agreement or possible conflicts with standards or legislation.

This CEN Workshop Agreement can in no way be held as being an official standard developed by CEN and its Members.

This CEN Workshop Agreement is publicly available as a reference document from the CEN Members National Standard Bodies.

CEN members are the national standards bodies of Austria, Belgium, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark,
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands,
Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland,
Turkey and United Kingdom.

 Warning
 This document is not a CEN Workshop Agreement. It is distributed for review and comment. It is

subject to change without notice and may not be referred to as a CEN Workshop Agreement.
 Recipients should notify the committee of any relevant patent rights of which they are aware and

to provide supporting documentation.

EUROPEAN COMMITTEE FOR STANDARDIZATION
COMITÉ EUROPÉEN DE NORMALISATION
EUROPÄISCHES KOMITEE FÜR NORMUNG

Management Centre: rue de Stassart, 36 B-1050 Brussels

© 2023 CEN All rights of exploitation in any form and by any means reserved worldwide for CEN national Members.

2

Table of Contents

1. Foreword ... 13

2. API ... 14

2.1 References ... 14

2.2 WebSockets Connections .. 14

2.2.1 Overview ... 14
2.2.2 Uniform Resource Identifier (URI) .. 15

2.2.3 Service Publishing .. 16

2.2.4 Service Discovery ... 17

2.3 Messages .. 19

2.3.1 Message Definition ... 19

2.3.2 Header Definition .. 19
2.3.3 Payload Definition ... 21

2.4 Message Types .. 22

2.4.1 Command Messages .. 22

2.4.2 Acknowledge Messages ... 22

2.4.3 Event Messages ... 22

2.4.4 Completion Messages .. 23
2.4.5 Unsolicited Event Messages .. 23

2.5 Command Processing ... 23

2.5.1 Standard Sequence .. 24

2.5.2 Command Queuing .. 24

2.5.3 Cancelation ... 25
2.5.4 Example Command Request Message Sequence... 26

2.6 Message Versions ... 26

2.6.1 Version Numbers .. 27

2.6.2 Version Number Selection .. 27

2.6.3 Version Evolution Example ... 28

2.6.4 Extending Enumeration Values .. 29
2.7 End to End Security .. 29

3. Service Publisher Interface ... 31

3.1 Command Messages ... 32

3.1.1 ServicePublisher.GetServices .. 32

3.2 Event Messages ... 33

3.2.1 ServicePublisher.ServiceDetailEvent ... 33

4. Common Interface.. 34

4.1 Command Messages ... 35
4.1.1 Common.Status .. 35

4.1.2 Common.Capabilities ... 70

4.1.3 Common.SetVersions ... 162

3

4.1.4 Common.Cancel ... 164

4.1.5 Common.PowerSaveControl .. 165

4.1.6 Common.SetTransactionState ... 166
4.1.7 Common.GetTransactionState ... 167

4.1.8 Common.GetCommandNonce ... 168

4.1.9 Common.ClearCommandNonce .. 169

4.2 Unsolicited Messages ... 170

4.2.1 Common.StatusChangedEvent .. 170

4.2.2 Common.ErrorEvent ... 205
4.2.3 Common.NonceClearedEvent .. 206

5. Card Reader Interface .. 207

5.1 General Information .. 208

5.1.1 References ... 208

5.1.2 Intelligent Contactless Card Reader ... 208

5.1.3 Intelligent Contactless Card Reader Sequence Diagrams ... 209

5.2 Command Messages ... 213
5.2.1 CardReader.QueryIFMIdentifier ... 213

5.2.2 CardReader.EMVClessQueryApplications ... 214

5.2.3 CardReader.ReadRawData .. 215

5.2.4 CardReader.WriteRawData .. 221

5.2.5 CardReader.Move .. 223
5.2.6 CardReader.SetKey ... 225

5.2.7 CardReader.ChipIO .. 226

5.2.8 CardReader.Reset .. 228

5.2.9 CardReader.ChipPower ... 230

5.2.10 CardReader.EMVClessConfigure ... 231

5.2.11 CardReader.EMVClessPerformTransaction .. 234
5.2.12 CardReader.EMVClessIssuerUpdate ... 240

5.3 Event Messages ... 245

5.3.1 CardReader.InsertCardEvent ... 245

5.3.2 CardReader.MediaInsertedEvent ... 246

5.3.3 CardReader.InvalidMediaEvent.. 247

5.3.4 CardReader.TrackDetectedEvent .. 248
5.3.5 CardReader.EMVClessReadStatusEvent .. 249

5.4 Unsolicited Messages ... 251

5.4.1 CardReader.MediaRemovedEvent ... 251

5.4.2 CardReader.CardActionEvent .. 252

5.4.3 CardReader.MediaDetectedEvent .. 253

6. Cash Management Interface ... 254

6.1 General Information .. 254
6.1.1 References ... 254

4

6.1.2 Note Classification .. 254

6.2 Command Messages ... 256

6.2.1 CashManagement.GetBankNoteTypes .. 256
6.2.2 CashManagement.GetTellerInfo .. 258

6.2.3 CashManagement.SetTellerInfo ... 261

6.2.4 CashManagement.GetItemInfo .. 264

6.2.5 CashManagement.GetClassificationList .. 268

6.2.6 CashManagement.SetClassificationList ... 270

6.2.7 CashManagement.CloseShutter .. 272
6.2.8 CashManagement.OpenShutter ... 274

6.2.9 CashManagement.Retract .. 276

6.2.10 CashManagement.Reset .. 281

6.2.11 CashManagement.CalibrateCashUnit .. 287

6.3 Event Messages ... 291

6.3.1 CashManagement.NoteErrorEvent .. 291
6.3.2 CashManagement.InfoAvailableEvent ... 292

6.3.3 CashManagement.IncompleteRetractEvent ... 293

6.4 Unsolicited Messages ... 296

6.4.1 CashManagement.TellerInfoChangedEvent .. 296

6.4.2 CashManagement.ItemsTakenEvent ... 297

6.4.3 CashManagement.ItemsInsertedEvent .. 298
6.4.4 CashManagement.ItemsPresentedEvent ... 299

6.4.5 CashManagement.MediaDetectedEvent .. 300

6.4.6 CashManagement.ShutterStatusChangedEvent ... 301

7. Cash Dispenser Interface .. 302

7.1 General Information .. 302

7.1.1 References ... 302
7.2 Command Messages ... 303

7.2.1 CashDispenser.GetMixTypes ... 303

7.2.2 CashDispenser.GetMixTable .. 305

7.2.3 CashDispenser.GetPresentStatus .. 307

7.2.4 CashDispenser.Denominate ... 310

7.2.5 CashDispenser.Dispense ... 315
7.2.6 CashDispenser.Present .. 326

7.2.7 CashDispenser.Reject .. 328

7.2.8 CashDispenser.SetMixTable .. 329

7.2.9 CashDispenser.TestCashUnits .. 331

7.2.10 CashDispenser.Count .. 334

7.2.11 CashDispenser.PrepareDispense .. 337
7.3 Event Messages ... 338

7.3.1 CashDispenser.DelayedDispenseEvent .. 338

5

7.3.2 CashDispenser.StartDispenseEvent .. 339

7.3.3 CashDispenser.IncompleteDispenseEvent .. 340

8. Cash Acceptor Interface .. 342

8.1 Command Messages ... 343
8.1.1 CashAcceptor.GetCashInStatus... 343

8.1.2 CashAcceptor.GetReplenishTarget .. 346

8.1.3 CashAcceptor.GetDeviceLockStatus ... 347

8.1.4 CashAcceptor.GetDepleteSource .. 349

8.1.5 CashAcceptor.GetPresentStatus .. 350

8.1.6 CashAcceptor.CashInStart ... 353
8.1.7 CashAcceptor.CashIn ... 356

8.1.8 CashAcceptor.CashInEnd .. 359

8.1.9 CashAcceptor.CashInRollback ... 363

8.1.10 CashAcceptor.ConfigureNoteTypes ... 367

8.1.11 CashAcceptor.CreateSignature .. 368

8.1.12 CashAcceptor.ConfigureNoteReader ... 370
8.1.13 CashAcceptor.CompareSignature .. 371

8.1.14 CashAcceptor.Replenish .. 374

8.1.15 CashAcceptor.CashUnitCount .. 377

8.1.16 CashAcceptor.DeviceLockControl .. 379

8.1.17 CashAcceptor.PresentMedia .. 381
8.1.18 CashAcceptor.Deplete .. 383

8.1.19 CashAcceptor.PreparePresent ... 386

8.2 Event Messages ... 388

8.2.1 CashAcceptor.InputRefuseEvent ... 388

8.2.2 CashAcceptor.SubCashInEvent ... 389

8.2.3 CashAcceptor.InsertItemsEvent ... 391
8.2.4 CashAcceptor.IncompleteReplenishEvent ... 392

8.2.5 CashAcceptor.IncompleteDepleteEvent ... 394

9. Check Interface .. 396

9.1 General Information .. 396

9.1.1 References ... 396

9.1.2 Code Line Characters ... 396

9.2 Command Messages ... 398
9.2.1 Check.GetTransactionStatus .. 398

9.2.2 Check.MediaIn .. 404

9.2.3 Check.MediaInEnd ... 408

9.2.4 Check.MediaInRollback .. 427

9.2.5 Check.ReadImage .. 446

9.2.6 Check.PresentMedia .. 451
9.2.7 Check.RetractMedia ... 453

6

9.2.8 Check.Reset ... 455

9.2.9 Check.GetNextItem .. 456

9.2.10 Check.ActionItem.. 457
9.2.11 Check.ExpelMedia .. 458

9.2.12 Check.AcceptItem... 459

9.2.13 Check.SupplyReplenish ... 460

9.2.14 Check.SetMediaParameters ... 461

9.3 Event Messages ... 464

9.3.1 Check.NoMediaEvent ... 464
9.3.2 Check.MediaInsertedEvent .. 465

9.3.3 Check.MediaRefusedEvent .. 466

9.3.4 Check.MediaDataEvent .. 468

9.3.5 Check.MediaRejectedEvent ... 471

9.3.6 Check.MediaPresentedEvent ... 472

9.4 Unsolicited Messages ... 473
9.4.1 Check.MediaTakenEvent ... 473

9.4.2 Check.MediaDetectedEvent ... 474

9.4.3 Check.ShutterStatusChangedEvent ... 475

10. Mixed Media .. 476

10.1 General Information .. 476

10.1.1 Introduction ... 476
10.1.2 Example Transaction flows ... 476

10.2 Command Messages ... 485

10.2.1 MixedMedia.SetMode ... 485

11. Key Management Interface .. 487

11.1 General Information .. 487

11.1.1 References ... 487

11.1.2 RKL Terminology .. 488
11.1.3 Remote Key Loading Using Signatures ... 489

11.1.4 Remote Key Loading Using Certificates ... 496

11.1.5 Remote Key Loading Using TR34 .. 499

11.1.6 EMV Support .. 502

11.1.7 KeyManagement.ImportKey command Input-Output Parameters 504

11.1.8 DUKPT .. 507
11.1.9 Restricted Encryption Key Command Usage ... 508

11.1.10 Secure Key Entry Command Usage... 509

11.2 Command Messages ... 511

11.2.1 KeyManagement.GetKeyDetail .. 511

11.2.2 KeyManagement.Initialization ... 518

11.2.3 KeyManagement.DeriveKey ... 521
11.2.4 KeyManagement.Reset .. 523

7

11.2.5 KeyManagement.ImportKey ... 524

11.2.6 KeyManagement.DeleteKey ... 533

11.2.7 KeyManagement.ExportRSAIssuerSignedItem ... 535
11.2.8 KeyManagement.GenerateRSAKeyPair .. 537

11.2.9 KeyManagement.ExportRSADeviceSignedItem .. 539

11.2.10 KeyManagement.GetCertificate ... 541

11.2.11 KeyManagement.ReplaceCertificate .. 543

11.2.12 KeyManagement.StartKeyExchange ... 544

11.2.13 KeyManagement.GenerateKCV ... 545
11.2.14 KeyManagement.LoadCertificate ... 546

11.2.15 KeyManagement.StartAuthenticate .. 548

11.2.16 KeyManagement.ImportKeyToken ... 551

11.2.17 KeyManagement.ImportEmvPublicKey .. 555

11.3 Event Messages ... 558

11.3.1 KeyManagement.DUKPTKSNEvent... 558
11.4 Unsolicited Messages ... 559

11.4.1 KeyManagement.InitializedEvent ... 559

11.4.2 KeyManagement.IllegalKeyAccessEvent ... 560

11.4.3 KeyManagement.CertificateChangeEvent ... 561

12. Crypto Interface ... 562

12.1 General Information .. 562
12.1.1 References ... 562

12.2 Command Messages ... 563

12.2.1 Crypto.GenerateRandom ... 563

12.2.2 Crypto.CryptoData .. 564

12.2.3 Crypto.GenerateAuthentication .. 567

12.2.4 Crypto.VerifyAuthentication .. 570
12.2.5 Crypto.Digest .. 573

13. Keyboard Interface... 574

13.1 General Information .. 574

13.1.1 Encrypting Touch Screen (ETS) ... 574

13.1.2 Layout ... 576

13.2 Command Messages ... 578

13.2.1 Keyboard.GetLayout ... 578
13.2.2 Keyboard.PinEntry .. 583

13.2.3 Keyboard.DataEntry ... 587

13.2.4 Keyboard.Reset .. 591

13.2.5 Keyboard.SecureKeyEntry ... 592

13.2.6 Keyboard.KeypressBeep .. 596

13.2.7 Keyboard.DefineLayout .. 597
13.3 Event Messages ... 602

8

13.3.1 Keyboard.KeyEvent .. 602

13.3.2 Keyboard.EnterDataEvent .. 604

13.3.3 Keyboard.LayoutEvent ... 605

14. PinPad Interface ... 609

14.1 General Information .. 609

14.1.1 References ... 609

14.2 Command Messages ... 610

14.2.1 PinPad.GetQueryPCIPTSDeviceId .. 610

14.2.2 PinPad.LocalDES ... 611

14.2.3 PinPad.LocalVisa.. 614
14.2.4 PinPad.PresentIDC .. 616

14.2.5 PinPad.Reset .. 618

14.2.6 PinPad.MaintainPin .. 619

14.2.7 PinPad.SetPinBlockData .. 620

14.2.8 PinPad.GetPinBlock ... 623

15. Printer Interface ... 626

15.1 General Information .. 626
15.1.1 Banking Printer Types .. 626

15.1.2 Forms Model ... 626

15.1.3 Command Overview ... 627

15.1.4 Form, Sub-Form, Field, Frame, Table and Media Definitions .. 628

15.1.5 Command and Event Flows during Single and Multi-Page / Wad Printing 647
15.2 Command Messages ... 651

15.2.1 Printer.GetFormList .. 651

15.2.2 Printer.GetMediaList ... 652

15.2.3 Printer.GetQueryForm .. 653

15.2.4 Printer.GetQueryMedia ... 656

15.2.5 Printer.GetQueryField ... 661
15.2.6 Printer.ControlMedia ... 664

15.2.7 Printer.PrintForm .. 667

15.2.8 Printer.PrintRaw.. 672

15.2.9 Printer.PrintNative... 674

15.2.10 Printer.ReadForm ... 678

15.2.11 Printer.ReadImage.. 682
15.2.12 Printer.MediaExtents .. 685

15.2.13 Printer.ResetCount ... 687

15.2.14 Printer.Reset ... 688

15.2.15 Printer.RetractMedia ... 689

15.2.16 Printer.DispensePaper ... 691

15.2.17 Printer.LoadDefinition ... 692
15.2.18 Printer.SupplyReplenish ... 693

9

15.2.19 Printer.ControlPassbook ... 695

15.2.20 Printer.SetBlackMarkMode ... 697

15.3 Event Messages ... 698
15.3.1 Printer.MediaPresentedEvent ... 698

15.3.2 Printer.NoMediaEvent .. 699

15.3.3 Printer.MediaInsertedEvent .. 700

15.3.4 Printer.FieldErrorEvent ... 701

15.3.5 Printer.FieldWarningEvent .. 702

15.3.6 Printer.MediaRejectedEvent ... 703
15.4 Unsolicited Messages ... 704

15.4.1 Printer.MediaTakenEvent ... 704

15.4.2 Printer.MediaInsertedUnsolicitedEvent .. 705

15.4.3 Printer.MediaPresentedUnsolicitedEvent ... 706

15.4.4 Printer.MediaDetectedEvent ... 707

15.4.5 Printer.RetractBinStatusEvent .. 708
15.4.6 Printer.DefinitionLoadedEvent .. 709

15.4.7 Printer.MediaAutoRetractedEvent .. 710

15.4.8 Printer.RetractBinThresholdEvent .. 711

15.4.9 Printer.PaperThresholdEvent ... 712

15.4.10 Printer.TonerThresholdEvent ... 713

15.4.11 Printer.LampThresholdEvent .. 714
15.4.12 Printer.InkThresholdEvent .. 715

16. Text Terminal Interface .. 716

16.1 General Information .. 716

16.1.1 References ... 716

16.1.2 Form and Field Definitions .. 716

16.2 Command Messages ... 719
16.2.1 TextTerminal.GetFormList .. 719

16.2.2 TextTerminal.GetQueryForm .. 720

16.2.3 TextTerminal.GetQueryField .. 722

16.2.4 TextTerminal.GetKeyDetail .. 724

16.2.5 TextTerminal.Beep ... 726

16.2.6 TextTerminal.ClearScreen .. 727
16.2.7 TextTerminal.SetResolution ... 728

16.2.8 TextTerminal.WriteForm ... 729

16.2.9 TextTerminal.ReadForm ... 731

16.2.10 TextTerminal.Write ... 733

16.2.11 TextTerminal.Read ... 735

16.2.12 TextTerminal.Reset .. 739
16.2.13 TextTerminal.DefineKeys ... 740

16.2.14 TextTerminal.LoadForm ... 742

10

16.3 Event Messages ... 743

16.3.1 TextTerminal.FieldErrorEvent ... 743

16.3.2 TextTerminal.FieldWarningEvent ... 744
16.3.3 TextTerminal.KeyEvent .. 745

16.3.4 TextTerminal.FormLoadedEvent .. 746

17. Barcode Reader Interface .. 747

17.1 Command Messages ... 748

17.1.1 BarcodeReader.Read ... 748

17.1.2 BarcodeReader.Reset .. 757

18. Biometric Interface... 758

18.1 General Information .. 758
18.1.1 References ... 758

18.1.2 Enrollment ... 758

18.1.3 Biometric Matching ... 758

18.1.4 Biometric Device Types .. 759

18.1.5 Biometric Data Security .. 759

18.1.6 Biometric Device Command Flows ... 760
18.2 Command Messages ... 765

18.2.1 Biometric.GetStorageInfo ... 765

18.2.2 Biometric.Read ... 767

18.2.3 Biometric.Import.. 771

18.2.4 Biometric.Match .. 774
18.2.5 Biometric.SetMatch .. 777

18.2.6 Biometric.Clear ... 779

18.2.7 Biometric.Reset .. 780

18.2.8 Biometric.SetDataPersistence .. 781

18.3 Event Messages ... 782

18.3.1 Biometric.PresentSubjectEvent .. 782
18.3.2 Biometric.SubjectDetectedEvent .. 783

18.3.3 Biometric.RemoveSubjectEvent ... 784

18.4 Unsolicited Messages ... 785

18.4.1 Biometric.SubjectRemovedEvent ... 785

18.4.2 Biometric.DataClearedEvent .. 786

18.4.3 Biometric.OrientationEvent ... 787

19. Camera Interface .. 788

19.1 Command Messages ... 789

19.1.1 Camera.TakePicture ... 789

19.1.2 Camera.Reset ... 791

19.2 Event Messages ... 792

19.2.1 Camera.InvalidDataEvent ... 792

11

19.3 Unsolicited Messages ... 793

19.3.1 Camera.MediaThresholdEvent ... 793

20. Lights Interface .. 794

20.1 Command Messages ... 795
20.1.1 Lights.SetLight .. 795

21. Auxiliaries Interface ... 799

21.1 Command Messages ... 800

21.1.1 Auxiliaries.GetAutoStartupTime ... 800

21.1.2 Auxiliaries.ClearAutoStartupTime... 802

21.1.3 Auxiliaries.Register ... 803

21.1.4 Auxiliaries.SetAuxiliaries .. 808
21.1.5 Auxiliaries.SetAutoStartupTime .. 813

22. Storage Interface .. 815

22.1 General Information .. 815

22.1.1 Transaction Flows... 815

22.2 Command Messages ... 818

22.2.1 Storage.GetStorage .. 818

22.2.2 Storage.SetStorage .. 834
22.2.3 Storage.StartExchange .. 843

22.2.4 Storage.EndExchange .. 844

22.3 Event Messages ... 845

22.3.1 Storage.StorageErrorEvent .. 845

22.4 Unsolicited Messages ... 861
22.4.1 Storage.StorageChangedEvent.. 861

22.4.2 Storage.StorageThresholdEvent .. 877

23. Vendor Mode Interface .. 893

23.1 General Information .. 893

23.1.1 Vendor Mode .. 893

23.2 Command Messages ... 895

23.2.1 VendorMode.Register ... 895
23.2.2 VendorMode.EnterModeRequest ... 896

23.2.3 VendorMode.EnterModeAcknowledge ... 897

23.2.4 VendorMode.ExitModeRequest.. 898

23.2.5 VendorMode.ExitModeAcknowledge ... 899

23.3 Unsolicited Messages ... 900

23.3.1 VendorMode.EnterModeRequestEvent .. 900
23.3.2 VendorMode.ExitModeRequestEvent .. 901

23.3.3 VendorMode.ModeEnteredEvent ... 902

23.3.4 VendorMode.ModeExitedEvent .. 903

24. Vendor Application Interface .. 904

12

24.1 General Information .. 904

24.1.1 Vendor Application ... 904

24.2 Command Messages ... 905
24.2.1 VendorApplication.StartLocalApplication ... 905

24.2.2 VendorApplication.GetActiveInterface .. 906

24.2.3 VendorApplication.SetActiveInterface .. 907

24.3 Unsolicited Messages ... 908

24.3.1 VendorApplication.VendorAppExitedEvent .. 908

24.3.2 VendorApplication.InterfaceChangedEvent ... 909

25. 3.x Migration ... 910

25.1 CDM (Cash Dispense Module).. 910

25.1.1 WFS_INF_CDM_CASH_UNIT_INFO... 910

25.2 CIM (Cash-In Module) .. 912

25.2.1 WFS_INF_CIM_CASH_UNIT_INFO .. 912

25.2.2 WFS_SRVE_CIM_COUNTACCURACYCHANGED .. 914

13

1. Foreword
XFS4IoT has been identified as a successor to XFS 3.x to meet the following requirements:

1. Replace the XFS and J/XFS standards in the marketplace.
2. Target industries – Retail Banking.
3. Operating System Agnostic and Technology and Language Adaptable.
4. Multi-Vendor – Able to run common core high level functionality on multiple vendors hardware, while

providing access to finer level device API granularity.
5. Flexibility – enabling new hardware topologies, device types and functionality to be rapidly adapted.
6. Support end to end application level security.
7. Should not prevent the use of a low resource computing environment.
8. Provide a good developer experience by providing a well-documented API that is easy to learn, is quick to

market and reduces risk by exposing an unambiguous interface.
9. Leverage existing standards.

Within the overall requirements specified in the Charter, the opportunity has been taken to solve some of the issues
with the 3.x interface while retaining all the same functionality:

1. Binary data structures makes adding new functionality difficult due to compatibility issues, leading to
multiple redundant versions of the same command appearing in many of the existing device classes. To
resolve this, a flexible text based approach has been adopted including the wide use of default parameters.

2. Compound devices have been difficult for applications to implement, particularly cash recycling. Addition
of other shared functionality such as end to end security would make the use of compound devices more
prevalent. Compound devices are removed in XFS4IoT, a single Service can support as many interfaces as
required to support its requirements.

Migration from and to 3.x is a major consideration to support adoption of XFS4IoT. While a lot of duplication has
been removed (for example the Card Reader interface has fewer commands and events defined than the equivalent
3.x IDC specification), all the same IDC commands and events can be implemented. In some cases, this is achieved
by having shared common commands such as Common.Status which replaces all the 3.x
WFS_INF_XXX_STATUS commands.

14

2. API
This chapter defines the API functionality and messages. It defines the XFS4IoT API including but not limited to:

• System Architecture
• Message Definition
• End to End Security

XFS4IoT defines a system consisting of Services provided by one or more vendors. Each Service can support one
or more interfaces as required to meet the requirements of the device or function it supports, so for example a Cash
Recycling device will need the following interfaces to supply all the device's functionality:

• Common, which defines functionality common to all devices
• CashManagement, which defines functionality common to all cash handling devices
• CashAcceptor, which defines functionality common to all cash accepting devices
• CashDispenser, which defines functionality common to all cash dispensing devices
• Storage, which defines functionality common to devices which store items

Additional interfaces can be added as required for example KeyManagement to support encryption key
management.

The following sections describe how clients and services create connections and send messages to each other.

2.1 References

ID Description

api-1 JSON (https://www.json.org/)

api-2 XFS Interface Specification, End to End (E2E) for XFS/XFS4IoT Programmer's Reference

api-3 WebSockets - IETF RFC 6455

api-4 JSON Schema 2020-12 (https://json-schema.org)

2.2 WebSockets Connections
Multiple services can be supplied by multiple vendors. This standard doesn't require coordination between these
different vendors, or between the service publishers and the service client. It is possible to operate a system with
components from multiple hardware vendors, and with third party applications, without the prior knowledge of any
party.

This specification covers an environment using WebSockets (ref. api-3) to communicate between services and
applications, either on a single machine or across a network.

This section covers both the process for publishing a service such that it can be discovered, and the discovery
process used by the service client.

There is also a clear definition of responsibility for each component in the system, including when there are
dependencies between components. There are no shared components required to coordinate the system.

The underlying network can use any protocol that supports WebSockets such as IPv4 or IPv6. Nothing in this
document requires any particular underlying protocol.

2.2.1 Overview
In this standard there are two types of "endpoint"; publisher and service. Each endpoint, of either type, is published
by a single software/hardware vendor. A publisher endpoint is used for service discovery, to discover service
endpoints. A single service endpoint can expose multiple "services", where each service typically represents a
single piece of hardware. A single machine (or a single IP address) may expose multiple publisher and service
endpoints from different vendors. A "client" application may consume multiple services from multiple service
endpoints on the same machine, or across multiple machines.

On startup of the machine, any software services attempt to claim access to individual network ports using the
underlying operating system mechanism. Ports are claimed sequentially from a known sequence. Each port
becomes an endpoint that can publish multiple services from a single vendor.

https://www.json.org/
https://json-schema.org/

15

A client application will attempt to connect to each port on a machine in the known sequence to get a list of all
active publisher endpoints. For each publisher endpoint it then exchanges JSON messages across WebSockets with
URIs using a known format to recover a list of services published by that endpoint. Once it has a full list of services
it can use WebSocket connections to communicate with each service to perform whichever actions are required.

2.2.2 Uniform Resource Identifier (URI)
This section describes the Uniform Resource Identifiers used in XFS4IoT.

URI Format
Communication with service publishers and services will be through distinct URIs which will use the following
format:
wss://machinename:portnumber/xfs4iot/v1.0/servicename

This URI consists of the following components:

URI
Component

Description

wss:// or ws:// The protocol id for secure WebSockets. See Network Protocol.

machinename The identification of the machine publishing endpoints. See Machine Identification.

portnumber The port number discovered through the initial service discovery process - see Port Sequence.

xfs4iot A literal string. The inclusion of this part identifies standard XFS4IoT services published on
this URI. It allows the possibility of a single vendor publishing standard and non-standard
proprietary services on the same port. Any standard service URI will start with this string. Any
non-standard service's URI must not start with this string.

v1.0 The version of the protocol being used by this service. This may be updated to support services
with different protocol versions in future versions of the specification and allows support for
multiple versions of the specification on the same machine and endpoint.

Note that most future changes to the XFS4IoT specification will be done in a non-breaking,
backwards and forwards compatible way. For example, optional fields will be added to JSON
messages when required and will have no impact on the protocol. This means that changes to
the version field of the URI will be very rare. It will only be changed if there is a breaking,
incompatible change or a fundamental change to the API. Because of this there won't be any
need for complex version negotiation between the client and the service. The client will simply
attempt to open the version of the API that it supports.

servicename This will be included in the URI to allow different services to be identified on the same port.
Services will normally match individual devices. The exact service name is discovered during
service discovery and is vendor dependent. The format of the service name shouldn't be
assumed. The only URI that doesn't include a service name is the service discovery URI.

For example, a service discovery URI might be:

• wss://terminal321.atmnetwork.corporatenet:443/xfs4iot/v1.0
• wss://192.168.21.43:5848/xfs4iot/v1.0

Service URI might be:

• wss://terminal321.atmnetwork.corporatenet:443/xfs4iot/v1.0/maincashdispenser
• wss://192.168.21.43:5848/xfs4iot/v1.0/cardreader1

The URI will be case sensitive and lower case.

Network Protocol
The WebSocket protocol defines two URI schemes, wss and ws that are used for encrypted and unencrypted
connections. All connections in XFS4IoT should use the wss scheme using TLS encryption to secure network
connections. The only exception will be when the network connection between the client and service can be
physically secured, for example inside an ATM enclosure. In that case it will be possible to use clear

16

communication without TLS encryption and it is the responsibility of the hardware vendor to ensure that this is
sufficient.

• Encrypted connections are identified by the wss:// protocol specifier.
• Unencrypted connections are identified by the ws:// protocol specifier.

Where TLS is used, the service will be protected by a mutually trusted server side certificate as part of the TLS
protocol. This complete certificate chain must be mutually trusted by the client and service.

Establishing and managing the certificates between the service and the client is outside of the scope of this
specification but trust must be in place. This might be achieved using a public third party certificate authority that
issues TLS certificates. Alternatively it might be achieved using a bank's own internal CA. It shouldn't depend on a
private Certificate Authority or certificates issued by a vendor, which might limit access to the service.

A wss connection with invalid certificates will be invalid and will be rejected by both the client and the service.

Machine Identification
Machines publishing services are identified by URIs. Machines exposing endpoints can be identified by an IP
address or by a DNS name.

Either the IP address or DNS name for a machine must be known by the client for the client to connect. This would
probably be a configuration setting for the application and would need to be known by the organization setting up
the application, but this configuration is outside the scope of this document.

Port Sequence
Services will be published on a sequence of IP ports consisting of port 80 or 443 followed by the ports 5846 to
5856 inclusive. Hence the full sequence of ports will be 12 ports as,
80 or 443, 5846, 5847, 5848, ... 5855, 5856

Port 80 will only be used with HTTP/WS. Port 443 will only be used with HTTPS/WSS. All other ports may be
used with either or both HTTP/WS and HTTPS/WSS.

Port 80 and 443 are the standard ports for HTTP and HTTPS and have the advantage that they are likely to be open
on firewalls. The correct port will be used to match the protocol - 80 for HTTP/WS and 443 for HTTPS/WSS.
Other ports are flexible and can be used for either protocol by the Service Publisher.

The port range 5846-5856 is semi-randomly selected in the 'user' range of the port space as defined by
ICANN/IANA. This range is currently unassigned by IANA.

2.2.3 Service Publishing
Service publishers will negotiate access to resources and publish services using the following process.

Free Endpoint Port Discovery
On startup each service publisher must attempt to connect to the first port in the port sequence. It will use the
underlying OS and network stack to attempt to bind to this port.

All network access must go through the normal underlying OS mechanism. One service publisher must not block
another publisher from accessing the network.

If the underlying OS reports that the port is already in use the service publisher will repeat the same process with
the next port in the port sequence. This will be repeated until a port is successfully bound to, or all ports in the
sequence have been tried.

If no available port can be found the service publisher will have failed to start. How this failure is handled by the
service publisher is undefined.

It's important that a single hardware vendor doesn't use up multiple ports, since this could lead to all the ports being
blocked so that other publishers can't get a free port. Therefore any single hardware vendor must publish all
services on a single port, determined dynamically as above.

Note: A service publisher will only fail to find a free port if more than 12 different hardware vendors are
attempting to publish services from the same machine. This should be unusual.

17

Handling Incoming Connections
Once a service publisher has successfully bound to a port it must handle connection attempts. It will accept all
connections from any clients without filtering attempts. Security around connections will be handled after a
connection has been established.

Note: This document does not cover restrictions on connections to services or managing permissions for
connections, such as limiting connections to certain machines or sub-nets. This would normally be under the
control of the machine deployer and can be controlled through normal firewall settings and network configuration.

Incoming connection attempts will specify a specific URI using the normal WebSocket process. The service
publisher will allow connections to valid URIs as defined in this spec and track which URI each connection was
made to.

The initial connection will be to the URI wss://machinename:port/xfs4iot/v1.0. This connection will then
be used to list/discover individual services using the process outlined in Service Endpoint Discovery.

2.2.4 Service Discovery
A client application must be able to discover and open a connection to each service that it will use. It does this in
two steps; firstly, through publisher endpoint discovery, then through service discovery for each service endpoint. It
will do this through the following process.

Publisher Endpoint Discovery
The client will enumerate endpoints by attempting to open a WebSocket connection to the following URL on each
port in the Port sequence.
wss://machinename:portnumber/xfs4iot/v1.0

The client will continue to enumerate publisher endpoints by repeating for each port number in the port sequence
until all ports have been tried.

The client will also start service endpoint discovery on the open connection. There is no requirement for the order
of opening ports and discovering services. All ports connections may be created first followed by service discovery,
or port enumeration and service discovery may continue in parallel.

If the connection attempt to any port fails then the application will attempt error handling for network issues,
machine powered off, etc. The details of error handling are left up to the client.

Service Endpoint Discovery
Once a connection has been established between the client and each publisher endpoint, the client will discover the
services published by sending a service discovery command and receiving messages in the usual way as described
in Message Types.

The only command sent to the publisher endpoint will be ServicePublisher.GetServices.

18

The publisher will acknowledge the command.

The command will be followed by zero or more ServicePublisher.ServiceDetailEvent messages, then complete with
a completion message. Each event and the completion message will contain the following payload:

{
 "payload": {
 "vendorName": "<Name of hardware/software vendor>",
 "services": [
 {
 "serviceURI": "wss://machinename:port/xfs4iot/v1.0/<servicename1>"
 },
 {
 "serviceURI": "wss://machinename:port/xfs4iot/v1.0/<servicename2>"
 }
]
 }
}

The service endpoint URI will be returned as a serviceURI property.

A publisher service may be designed to send one URI per message, or it may group URI together into a smaller
number of messages. The publisher should try and send messages to report on each URI as soon as each URI is
known. It's possible a publisher will know the complete set of URI when they're requested and can send them all at
once in one or more messages. Alternatively, the URI may not be known straight away, for example if an IP
address or port is being dynamically allocated. In that case the publisher service would delay sending events for
unknown URI until the full URI is known.

Having each URI reported only once means that a client can connect to each URI reported in events without having
to track which URI have already been connected to. This simplifies the client. Alternatively, a client may wait for
the completion message and a full set of URI before attempting to connect. This would be simpler to implement but
might be slower to start up.

The completion message will contain every URI that the publisher service is aware of.

The publisher service will follow the above process to publish all URI that it's aware of. It will not suppress URI
based on device status or service status.

For example, a device might be powered off, in the process of powering on, or powered on but have a hardware
fault that makes it impossible to use. In all cases the publisher service will publish the URI anyway. The client can't
assume anything about the device based on the URI. It will always need to query the service at the URI for its status
to know more.

Events should be sent as soon as a URI is known by the publisher - the event doesn't mean or imply that the URI is
currently available or can be connected to - that error handling must be performed by the client.

Note: Even if the publisher service could know that a URI was valid at the time that it sends the event, the client
can't know that the URI is still valid when it attempts to use the URI. It could have failed between querying and
connecting. So the client has to handle errors, timeouts and retrying when connecting to the URI.

The client may then attempt to open a WebSocket connection to each of the returned URI. The client will handle
connection failures and timeouts by repeating the attempts to connect such that the service has a reasonable amount
of time to start up.

Each service will endeavor to accept connections as quickly as possible during startup and restarts. Some devices
are physically slow to start up, but software should be able to start relatively quickly. So, for example, a cash
recycler device might be able to accept a connection within a few seconds of power being applied, but the physical
hardware can take several minutes to reset. Once a connection has been accepted a service may continue to report
device as starting until the device is physically started and ready. While starting, any command on the connection
other than Common.Status will fail with sequenceError.

Each connection will be used to communicate with a single service. The service will then be queried for details
about that service, such as the type of service or device that it represents and the messages and interfaces that it
supports.

The connection to the service will be kept open for as long as the service is in use. Details of the service lifetime are
covered elsewhere.

19

The returned URI is a full URI including the machine name and port. It is possible that these values will be
different to the service discovery URI - each service may be on a different machine, a different IP address, and a
different port. The port is also independent of the discovery port range. It can be any port number.

The service URI values will have the same version number as the service discovery URI version number. Different
versions of the API will not be mixed.

If a client wants to open multiple different API version numbers then it should perform service discovery against
each of the possible version URI strings.

The client may close the publisher connection once it has completed service discovery, or it may keep the
connection open. This will have no effect on the behavior of services.

2.3 Messages
XFS4IoT Services are accessed using messages passed over a WebSocket Interface. The messages are JSON
formatted data Ref. api-1 defined using JSON Schema 2020-12 Ref. api-4.

2.3.1 Message Definition
All messages follow the same JSON structure consisting of the following properties:

Property Property Type Required

header object ✓

payload object, null

As illustrated in the example below.

{
 "header": {
 },
 "payload": {
 }
}

2.3.2 Header Definition
The headers contains properties common to all messages as well as properties specific to a message type.

Additional properties are not allowed.

Property Property Type Required

type string ✓

name string ✓

version string ✓

requestId integer

timeout integer

status string, null

completionCode string, null

errorDescription string, null

The following example illustrates the header for a Common.Status command message.

20

{
 "header": {
 "type": "command",
 "name": "Common.Status",
 "version": "1.0",
 "requestId": 12345,
 "timeout": 1000
 }
}

type Property
The message type.

name Property
The message name, for example Common.Status.

version Property
The message version, for example 1.0.

requestId Property
Unique request identifier supplied by the client used to correlate the command message with acknowledge, event
and completion messages. The client will supply values that are positive, incremental and greater than or equal to 0.
The service will check that the requestId does not conflict with a currently executing or queued command request
from the same client and return status invalidRequestID if it does.

Unsolicited messages do not have a requestId.

timeout Property
This property is only applicable to command messages.

Timeout in milliseconds for the command to complete. If set to 0, the command will not timeout but can be
canceled.

Default: 0

status Property
This property is only applicable to acknowledge messages.

If null the command has been accepted for execution and will complete with a completion message. Otherwise this
property can be one of the following values:

• invalidMessage - The JSON in the message is invalid and can't be parsed.
• invalidRequestID - The request ID on the command is invalid. This could be because the value is not

an integer, has a zero value, or because a command with the same request ID from the same client is
already queued or is executing.

• tooManyRequests - The service has currently received and queued more requests than it can process.

Default: null

completionCode Property
This property is only applicable to completion messages.

If null the command completed successfully. Otherwise, the property will contain one of the following values:

• commandErrorCode - Check the errorCode property for the command specific error code.
• canceled - Canceled using the Common.Cancel command.
• timeOut - Timed out after the client specified timeout.
• deviceNotReady - The device is not ready or timed out.

21

• hardwareError - An error occurred on the device.
• internalError - An internal inconsistency or other unexpected error occurred.
• invalidCommand - The command is not supported by the service.
• invalidRequestID - The requestId is invalid.
• unsupportedCommand - The command is valid for the interface, but is not supported by the service or

device.
• invalidData - The command message contains invalid data.
• userError - The user is preventing proper operation of the device.
• unsupportedData - The command message contains data that is valid for the interface command, but is

not supported by the service or device.
• fraudAttempt - The user is attempting a fraudulent act on the device.
• sequenceError - The command request is not valid at this time or in the device's current state.
• authorizationRequired - The command request cannot be performed because it requires

authorization.
• noCommandNonce - The value of the nonce stored in the hardware was cleared, for example by a power

failure.
• invalidToken - The security token is invalid.
• invalidTokenNonce - The value of the nonce in the security token does not match the stored value.
• invalidTokenHMAC - The value of the HMAC in the security token is incorrect.
• invalidTokenFormat - The token format version value is not recognized, or the token format is

somehow invalid.
• invalidTokenKeyNoValue - The key used for the HMAC for a token has not been loaded and the token

cannot be validated.
• notEnoughSpace - There is not enough space on the storage.

If the value is commandErrorCode, the payload errorCode property contains the command specific completion
error code.

Default: null

errorDescription Property
This property is only applicable to completion messages for which the completionCode value is neither canceled or
timeOut.

If not null, this contains additional vendor dependent information to assist with problem resolution. The format of
this string should not be relied on.

Default: null

2.3.3 Payload Definition
The XFS4IoT interface specifications detail the payload content for the command, event, completion and
unsolicited messages.

If not null, the payload cannot be empty. It must contain at least one property.

Additional Properties
It is possible to include additional properties not defined by the specification. This can be useful in some cases and
is allowed as long as those additional properties do not impact the proper functioning of the service or client.

For example, it may be useful to include properties with extra debugging information such as human readable error
messages or hardware specific error codes.

Any additional property not defined by this specification and not recognized by the Service or the Client will be
ignored.

Ignoring an unknown property will have no effect on the standard behavior of the service or client. There will be no
requirement to use undefined additional properties.

The service or client may use undefined additional properties for whatever purpose they require. Dependance on
undefined additional properties will mean the client or service is non-standard and may impact interoperability.

22

When non-standard properties are used there is a risk that the same name could be used by different
implementations, causing unexpected behaviors. Implementors should reduce the risk of this name clash by using a
company name or code as a prefix for the property name. For example, a company called "Acme" might add the
"acmeHardwareError" and "acmeLogMessage" properties.

2.4 Message Types
XFS4IoT supports the following message types.

type Direction Description

command client to Service Message sent to the Service to perform a command.

acknowledge Service to client Message from the Service indicating if the command is valid and queued.

event Service to client Intermediate message from the Service indicating progress of the command.

completion Service to client Message from the Service indicating the command is complete.

unsolicited Service to client Message from the Service unrelated to a command.

2.4.1 Command Messages
The start of a command will be initiated by the client with a command message, requesting the service performs the
specified action. The message uses the standard header properties with type set to command.

The requestId is given by the client and allows the client to link messages sent in response to the command back to
the original command. For example, the completion message for this command will contain the same requestId.

The requestId must be greater than or equal to 1 and incremented between each command, 0 is reserved for
unsolicited events. The client is responsible for ensuring that each requestId is unique for a single connection. They
do not have to be unique across connections. The request is identified by a combination of the requestId and the
connection.

The Service will remember the last requestId and reject any requestId for a new command which is lower or equal
to the previous requestId. Other than that the service will not track the requestId.

Examples of commands with payloads are shown in the example sequence.

2.4.2 Acknowledge Messages
As soon as the service has received and parsed the command message it will send an acknowledge message to
indicate that the command message has been received and queued. This will normally include the requestId so that
the client can identify which command it relates to (unless an error occurs which prevents the requestId being
included). The message uses the standard header properties with type set to acknowledge.

Sending the acknowledge message immediately allows the client to handle network errors and lost messages more
quickly. It can set a short timeout and expect to receive the acknowledge within that timeout, and continue with
error handling if it does not.

Receiving the acknowledge message does not give any guarantees about what the service will do with the
command, or even that it can be executed. Any errors will be reported in the completion message for the command,
not in the acknowledge.

If for any reason the service does not accept and queue the command request, the acknowledge message header
status property will indicate the reason. When this occurs, the acknowledge message is the final message related to
the command request.

Examples of acknowledge messages are shown in the example sequence.

2.4.3 Event Messages
During the processing of the command the service can send multiple solicited events, as defined in the interface
chapters. This is used to inform the client when something significant happens that it may need to react to, like a
card being inserted or a key being pressed.

23

Each solicited event will contain the original requestId in the header, and will only be sent on the connection that
the original command was received on, so that individual solicited events can be linked to the original command by
the client.

For compatibility with future specification changes, and to permit custom extensions by service implementors, the
client should ignore any events that it does not recognize.

Examples of event messages are shown in the example sequence.

2.4.4 Completion Messages
If a command is accepted, there will be one completion message. If an acknowledge message with an error code is
returned to the command message then the command will not be executed, and no completion message will be sent.

The message uses the standard header properties with type set to completion. The completion message will contain
the requestId from the original command message, so that the client can link the message back to the command.
After the completion message for a command has been sent with a particular requestId, no more messages will be
sent with that requestId.

Each completion message will contain as much information as possible to avoid requiring extra events. For
example, when a command is used to fetch information from the Service then the information will be included in
the completion message. When a command results in particular information, like reading a card, then that
information is included in the completion message. The exact information included in each completion message is
defined in the interface document that defines that completion message.

Examples of completion messages are shown in the example sequence.

After a command message has been received and associated acknowledge sent, the completion code, either success
or an error code, will be included in the completion message for that command. The interface chapter may define
command specific error codes that are valid for each completion message. No other error codes will be returned by
the service for the completion message.

The completion message payload completionCode property contains one of the values defined in Completion
Codes.

When an error occurs, optional vendor specific information may be included in the errorDescription property.

2.4.5 Unsolicited Event Messages
The Service will also send unsolicited events to the client to signal events that can happen at any time, independent
of command handling. These can happen before, during, or after any command handling. The message uses the
standard header properties with type set to unsolicited.

To allow clients to react to events quickly, unsolicited messages should be sent as soon as possible. For example, it
should avoid queuing events until after the current command has been processed if it does not have to.

Since unsolicited events are not linked to command handling, they do not have a matching requestId. The event
header will contain a requestId of 0. Unsolicited events are also broadcast to all clients, on all open connections.

Each interface chapter defines the unsolicited events relevant to the interface.

For compatibility with future specification changes, and to permit custom extensions by service implementors, the
client should ignore any events that it does not recognize.

Examples of unsolicited messages are shown in the example sequence.

2.5 Command Processing
Once a service has been discovered (see Service Endpoint Discovery) and a connection created the client can send
command messages to the service. Commands may cause the service to perform actions that are entirely software
based, such as returning the current status, or they may cause actions to be performed by hardware, such as opening
a shutter.

The sequence of messages passed between the service and the client is the same for all commands, independent of
the command or interface being used.

Services may also send unsolicited events directly to the client. This can happen at any time that the service
connection is open. This could be during the processing of a command, or between commands.

24

The following sections provide information on various topics related to command processing:

• Standard command processing flow
• Command queuing
• Commands cancellation
• Example flow

2.5.1 Standard Sequence
The normal command message sequence will be as follows, note this example has multiple solicited and unsolicited
events:

All parts will be passed as standard messages as defined in the Messages section.

2.5.2 Command Queuing
Some commands can be executed in parallel. For example, a status command that returns the current status can
always be executed immediately even if another long running command is being executed. Other commands may
be blocked from parallel execution by mechanical or other restraints. For example, it's probably impossible to
accept a card and capture a card at the same time on most card readers.

As far as possible, services will attempt to execute commands in parallel. In particular, all commands that simply
return information should be executed immediately even if other commands are in progress. It is up to the client to
synchronize status information with ongoing actions.

When it's not possible to execute a command immediately then commands will be queued and executed as soon as
possible.

The acknowledge message is always sent before the command is queued.

25

Queued commands will normally be dequeued and executed in the order received. It is valid to execute queued
commands in a different order to that received.

If the condition that caused a command to be queued clears, the command nearest the front of the queue that is
blocked by that condition will be dequeued and executed ahead of any other commands nearer the front of the
queue.

For example, if while idle, an Encrypting Pin Pad service receives the following command requests in the order
listed:

1. Keyboard.DataEntry
2. Crypto.CryptoData
3. Keyboard.PinEntry
4. Crypto.Digest

The Service executes in parallel the Keyboard.DataEntry and Crypto.CryptoData commands as one uses the Pin
Pad and the other uses the encryptor. The Keyboard.PinEntry and Crypto.Digest commands are added to the queue
in that order. If the Crypto.CryptoData command completes before the Keyboard.DataEntry command, the service
will execute the Crypto.Digest command as the encryptor is available while keeping the Keyboard.PinEntry
command on the queue as the Pin Pad is still in use by the Keyboard.DataEntry command.

The order of execution would therefore be:

1. Keyboard.DataEntry
2. Crypto.CryptoData
3. Crypto.Digest
4. Keyboard.PinEntry

2.5.3 Cancelation
A client can use the Common.Cancel command to attempt cancelation of one, multiple or all queued or executing
commands at any time.

The Common.Cancel command adheres to the standard command message flow. That is, the Client must assign it a
unique requestId when sending the command message, and the service will send both acknowledge and completion
messages using that requestId. The Service will not send any event messages related to the Common.Cancel
command requestId.

The Common.Cancel command can only be used to cancel requests associated with the client connection on which
the command is sent. That is, one client cannot cancel another client's requests.

The Common.Cancel command itself cannot be canceled. Similarly, a requestId that does not match a queued or
executing command requestId will have no effect.

The Common.Cancel will complete immediately. It will not wait until the completion messages of the specified
request(s) have been sent.

Completion of the Common.Cancel command does not imply when the commands requested to cancel will
complete. Nor does it imply those commands will be canceled and complete with completionCode of canceled.

Clients should expect that, at some future point, commands may complete with a completionCode other than
canceled. For example, device state prevents the command canceling forcing it to complete as if no cancel request
had been received.

The Service will always cancel queued commands which have not started executing.

The Service must send completion messages, for any command requests being canceled, after the completion
message for the Common.Cancel command has been sent.

The Client should not attempt to cancel any one requestId more than once as it is the responsibility of the Service to
maintain the cancel requested state of a command until the command completes. Sending multiple requests to
cancel the same command will have no effect.

26

2.5.4 Example Command Request Message Sequence

2.6 Message Versions
All messages types are assigned version numbers to enable evolution of individual messages. The major version
number of a completion message will always be the same as the major version number of the command message it
is associated with, however, the minor version numbers can be different.

If a new version of a command message has a property which has an associated capability property, the service
must implement, at a minimum, the version of the Common.Capabilities command that includes the associated
capability property. This will allow the client to decide whether to use the command message property and the
value it should be set to.

Each release of the specification defines the message version numbers of the command, acknowledge, event,
completion and unsolicited messages included in that release of the specification. The specification number is
different from the message version numbers. If a message definition does not change from one release of the
specification to the next, the message version number will remain the same.

27

2.6.1 Version Numbers
Message version numbers have the form X.Y where X and Y are non-negative integers, and do not contain leading
zeroes. X is the major version and Y is the minor version. The major and minor version numbers are incremented
according to the scope of change described in the following sections.

The major version must be greater than 0. If a minor change is made, the minor version is incremented and the
major version remains the same. If a major change is made, the major version is incremented and the minor version
is reset to 0. For example, 1.1 -> 1.2 -> ... -> 1.10 -> 2.0.

Major Version Numbers
Major version X (X.y) numbers will be incremented in the specification if any backwards incompatible changes are
introduced to the command, event, unsolicited or completion messages. It may also include minor level changes.

Major version increments represent a new command, event or unsolicited message. While there will likely be
similarities with the previous major version, this is not guaranteed. It is anticipated that given the flexibility of
JSON, major version increments will rarely be required.

Major version increments allow:

• Removal of command message properties.
• Change of definition of command message properties.
• Change of definition of completion message properties.
• Change of definition of event message properties.
• New event messages which cannot be ignored by the client.

Minor Version Numbers
Minor version Y (x.Y) numbers will be incremented in the specification if new, backwards compatible functionality
is introduced to the command, event, completion or unsolicited message. It will also be incremented if any message
property is marked as deprecated. It may be incremented if substantial new functionality or improvements are
introduced where backwards compatibility is maintained.

Minor version increments allow:

• Additional command message properties.
• Additional completion, event and unsolicited message properties.
• New event messages which can be ignored by the client.

Additional command message properties must be optional. If omitted, the command behavior must be as defined in
minor version 0 of the major version of the command message. If included, additional properties may change the
behavior of the command. Clients that included additional command message properties that change behavior
should therefore handle these behavioral changes.

For additional completion, event and unsolicited message properties, clients should expect that new properties may
be added and if not required, ignored. That is, clients should not break because they do not recognize additional
properties.

2.6.2 Version Number Selection
Version number selection occurs after a client connection has been established with the service. By default, the
service will for each client connection, use the lowest available major version of each message it supports.

The client is responsible for determining version compatibility. If compatible, the client must inform the service of
its version requirements. If incompatible, the client must handle the incompatibilities, possibly by not using
incompatible commands. If the client cannot handle the incompatibilities then it should close the connection and
not use the service.

The following sequence demonstrates use of the Common.Capabilities command to identify the command and
event (both event and unsolicited) versions supported by the service, and the client use of the Common.SetVersions
command to inform the service of the versions that should be used for the connection on which the command is
sent.

28

2.6.3 Version Evolution Example
The following table depicts an example evolution of a command, an event and an unsolicited event.

29

Evolution command event completion unsolicited

Initial 1.0
propA

1.0
propA

1.0
propA

1.0
propA

Minor update
 - command property added
 - completion unchanged

1.1
propA
propB

1.0
propA

1.0
propA

1.0
propA

Minor update
 - event property added

1.1
propA
propB

1.1
propA
propB

1.0
propA

1.0
propA

Major update
 - completion property removed
- command unchanged
 - unsolicited property removed
 - unsolicited property added

2.0
propA
propB

1.1
propA
propB

2.0
propB

2.0
propB

2.6.4 Extending Enumeration Values
Extending an enumeration value is a breaking change as existing clients will not be coded to handle the new
enumeration value. A breaking change to a message requires the message major version number be incremented.

Where possible the specification will avoid breaking changes. To support this, if the additional enumeration value is
related to an existing enumeration value:

• An additional property with name originalNameX will be added to the message definition, where
originalName is the original name of the property and X is the next available index. Indices will be non-
negative integers and start at
1.

• The message minor version number will be incremented. This indicates the change is backwards
compatible.

• The original property definition will be set as deprecated indicating it may be removed in a subsequent
major revision of the message.

• Service implementations which implement the message version that defines the additional property will, if
the original property is required, always include both originalName and originalNameX properties.

Existing clients will be unaffected by the additional property as the original property will still be included in the
message. New or updated clients can be written to use any of the previous related properties. If a client does not
have a use for a new enumeration value, it can continue to use one of the previously defined related properties.

For example, if version 1.0 of a message defines a device property with enumeration values:

• online, offline, hardwareError, userError

And a new enumeration value:

• fraudAttempt

Is added which relates to the existing, less specific, userError value, the new enumeration value could be added to
the device2 property in minor increment version 1.1 of the message. In this case when reporting the new
enumeration value, version 1.1 of the message will include both:

{
 "device": "userError",
 "device2": "fraudAttempt"
}

2.7 End to End Security
 A key priority for XFS4IoT is to improve security of the entire environment where XFS is used. This means
securing not only the interface between the service and the device, or the interface between the client and the
service, but providing security all the way from one end of an operation to the other.

For example, during a cash dispense operation, the transaction will first be authorized by an authorizing host which
represents the owner of the cash in the device. That host will communicate through various other systems to the

30

client application, the client application will communicate with the XFS4IoT service and the service will finally
communicate with the device. Any part of that process is vulnerable to an attack which could lead to the wrong
amount of cash being dispensed. XFS4IoT has been designed to block attacks at any point between the authorizing
host and the dispenser hardware.

Details of end-to-end (E2E) security are covered in the generic E2E security specification [Ref. api-2] shared
between XFS3.x and XFS4IoT. Generic and specific E2E tokens are defined in that specification. The tokens are
passed to commands and returned in events which are documented in this specification, such as with
CashDispenser.Dispense

There are specific commands to support E2E security which are covered by this specification, including
Common.GetCommandNonce and Common.ClearCommandNonce

Not all commands that could require E2E security are currently covered. When E2E security is being enforced by a
device, sensitive commands with no token defined will be blocked from executing. This is required to avoid any
way of bypassing security. For example, the cash CashDispenser.Dispense command has a token format defined
but the CashDispenser.TestCashUnits command does not. For security, CashDispenser. TestCashUnits must be
blocked from dispensing cash, otherwise an attacker could simply replace the CashDispenser. Dispense with calls
to CashDispenser.TestCashUnits. Restrictions are documented for each affected command.

31

3. Service Publisher Interface
This chapter defines the Service Publisher interface functionality and messages.

32

3.1 Command Messages

3.1.1 ServicePublisher.GetServices
Command sent to the service discovery port to identify services exposed by this publisher.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "vendorName": "ACME ATM Hardware GmbH", string 🗸🗸
 "services": [{ array (object), null
 "serviceURI": "wss://ATM1:123/xfs4iot/v1.0/CardReader" string 🗸🗸
 }]
}

Properties

vendorName
Freeform string naming the hardware vendor.

services
Array of one or more services exposed by the publisher. This property is null if no services available.
default: null

services/serviceURI
The URI which can be used to contact this individual service.
Property value constraints:
format: URI

Event Messages

• ServicePublisher.ServiceDetailEvent

33

3.2 Event Messages

3.2.1 ServicePublisher.ServiceDetailEvent
Details of one or more services published by this endpoint.

Event Message

Payload (version 2.0) Type Required
{
 "vendorName": "ACME ATM Hardware GmbH", string 🗸🗸
 "services": [{ array (object), null
 "serviceURI": "wss://ATM1:123/xfs4iot/v1.0/CardReader" string 🗸🗸
 }]
}

Properties

vendorName
Freeform string naming the hardware vendor.

services
Array of one or more services exposed by the publisher. This property is null if no services available.
default: null

services/serviceURI
The URI which can be used to contact this individual service.
Property value constraints:
format: URI

34

4. Common Interface
This chapter defines the Common interface functionality and messages.

35

4.1 Command Messages

4.1.1 Common.Status
This command is used to obtain the overall status of the Service. The status includes common status information
and can include zero or more interface specific status objects, depending on the interfaces the Service supports. It
may also return vendor-specific status information.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Requir
ed

{
 "common": { object 🗸🗸
 "device": "online", string 🗸🗸
 "devicePosition": "notInPosition", string, null
 "powerSaveRecoveryTime": 10, integer, null
 "antiFraudModule": "ok", string, null
 "exchange": "active", string, null
 "endToEndSecurity": "enforced" string, null
 },
 "cardReader": { object, null
 "media": "unknown", string, null
 "security": "notReady", string, null
 "chipPower": "unknown", string, null
 "chipModule": "ok", string, null
 "magWriteModule": "ok", string, null
 "frontImageModule": "ok", string, null
 "backImageModule": "ok" string, null
 },
 "cashAcceptor": { object, null
 "intermediateStacker": "empty", string, null
 "stackerItems": "customerAccess", string, null
 "banknoteReader": "ok", string, null
 "dropBox": true, boolean, null
 "positions": [{ array (object),

null

 "position": "inLeft", string 🗸🗸
 "shutter": "closed", string, null
 "positionStatus": "empty", string, null

36

Payload (version 2.0) Type Requir
ed

 "transport": "ok", string, null
 "transportStatus": "empty" string, null
 }]
 },
 "cashDispenser": { object, null
 "intermediateStacker": "empty", string, null
 "positions": [{ array (object),

null

 "position": "outDefault", string
 "shutter": "closed", string, null
 "positionStatus": "empty", string, null
 "transport": "ok", string, null
 "transportStatus": "empty" string, null
 }]
 },
 "cashManagement": { object, null
 "dispenser": "ok", string, null
 "acceptor": "ok" string, null
 },
 "check": { object, null
 "acceptor": "ok", string, null
 "media": "present", string, null
 "toner": "full", string, null
 "ink": "full", string, null
 "frontImageScanner": "ok", string, null
 "backImageScanner": "ok", string, null
 "mICRReader": "ok", string, null
 "stacker": "empty", string, null
 "rebuncher": "empty", string, null
 "mediaFeeder": "notEmpty", string, null
 "positions": { object, null
 "input": { object, null
 "shutter": "closed", string, null 🗸🗸
 "positionStatus": "empty", string, null
 "transport": "ok", string, null
 "transportMediaStatus": "empty", string, null
 "jammedShutterPosition": "notJammed" string, null
 },
 "output": See check/positions/input properties object, null
 "refused": See check/positions/input properties object, null

37

Payload (version 2.0) Type Requir
ed

 }
 },
 "mixedMedia": { object, null
 "modes": { object 🗸🗸
 "cashAccept": true, boolean, null
 "checkAccept": true boolean, null
 }
 },
 "keyManagement": { object, null
 "encryptionState": "ready", string, null
 "certificateState": "unknown" string, null
 },
 "keyboard": { object, null
 "autoBeepMode": { object 🗸🗸
 "activeAvailable": false, boolean, null
 "inactiveAvailable": false boolean, null
 }
 },
 "textTerminal": { object, null
 "keyboard": "on", string, null
 "keyLock": "on", string, null
 "displaySizeX": 0, integer, null
 "displaySizeY": 0 integer, null
 },
 "printer": { object, null
 "media": "unknown", string, null
 "paper": { object, null
 "upper": "unknown", string, null
 "lower": "unknown", string, null
 "external": "unknown", string, null
 "aux": "unknown", string, null
 "aux2": "unknown", string, null
 "park": "unknown", string, null
 "vendorSpecificPaperSupply": "unknown" string, null
 },
 "toner": "unknown", string, null
 "ink": "unknown", string, null
 "lamp": "unknown", string, null
 "retractBins": [{ array (object),

null

38

Payload (version 2.0) Type Requir
ed

 "state": "unknown", string, null
 "count": 0 integer, null
 }],
 "mediaOnStacker": 7, integer, null
 "paperType": { object, null
 "upper": "unknown", string, null
 "lower": "unknown", string, null
 "external": "unknown", string, null
 "aux": "unknown", string, null
 "aux2": "unknown", string, null
 "park": "unknown", string, null
 "exampleProperty1": "unknown", string, null
 "exampleProperty2": See
printer/paperType/exampleProperty1

string, null

 },
 "blackMarkMode": "unknown" string, null
 },
 "barcodeReader": { object, null
 "scanner": "on" string 🗸🗸
 },
 "biometric": { object, null
 "subject": "present", string, null
 "capture": false, boolean, null
 "dataPersistence": "persist", string, null
 "remainingStorage": 0 integer, null
 },
 "camera": { object, null
 "media": { object, null
 "room": "ok", string, null
 "person": "ok", string, null
 "exitSlot": "ok", string, null
 "vendorSpecificCameraMedia": "ok" string, null
 },
 "cameras": { object, null
 "room": "ok", string, null
 "person": "ok", string, null
 "exitSlot": "ok", string, null
 "vendorSpecificCameraState": See
camera/media/vendorSpecificCameraMedia

string, null

 },
 "pictures": { object, null

39

Payload (version 2.0) Type Requir
ed

 "room": 0, integer, null
 "person": 0, integer, null
 "exitSlot": 0, integer, null
 "vendorSpecificCameraPictures": 0 integer, null
 }
 },
 "lights": { object, null
 "cardReader": { object, null
 "position": "left", string 🗸🗸
 "flashRate": "off", string, null
 "color": "red", string, null
 "direction": "entry" string, null
 },
 "pinPad": See lights/cardReader properties object, null
 "notesDispenser": See lights/cardReader properties object, null
 "coinDispenser": See lights/cardReader properties object, null
 "receiptPrinter": See lights/cardReader properties object, null
 "passbookPrinter": See lights/cardReader properties object, null
 "envelopeDepository": See lights/cardReader properties object, null
 "checkUnit": See lights/cardReader properties object, null
 "billAcceptor": See lights/cardReader properties object, null
 "envelopeDispenser": See lights/cardReader properties object, null
 "documentPrinter": See lights/cardReader properties object, null
 "coinAcceptor": See lights/cardReader properties object, null
 "scanner": See lights/cardReader properties object, null
 "contactless": See lights/cardReader properties object, null
 "cardReader2": See lights/cardReader properties object, null
 "notesDispenser2": See lights/cardReader properties object, null
 "billAcceptor2": See lights/cardReader properties object, null
 "statusGood": See lights/cardReader properties object, null
 "statusWarning": See lights/cardReader properties object, null
 "statusBad": See lights/cardReader properties object, null
 "statusSupervisor": See lights/cardReader properties object, null
 "statusInService": See lights/cardReader properties object, null
 "fasciaLight": See lights/cardReader properties object, null
 "vendorSpecificLight": See lights/cardReader properties object, null
 },
 "auxiliaries": { object, null
 "operatorSwitch": "run", string, null
 "tamperSensor": "on", string, null

40

Payload (version 2.0) Type Requir
ed

 "internalTamperSensor": "on", string, null
 "seismicSensor": "on", string, null
 "heatSensor": "on", string, null
 "proximitySensor": "present", string, null
 "ambientLightSensor": "veryDark", string, null
 "enhancedAudioSensor": "present", string, null
 "bootSwitchSensor": "off", string, null
 "consumerDisplaySensor": "off", string, null
 "operatorCallButtonSensor": "off", string, null
 "handsetSensor": "onTheHook", string, null
 "headsetMicrophoneSensor": "present", string, null
 "fasciaMicrophoneSensor": "off", string, null
 "safeDoor": "closed", string, null
 "vandalShield": "closed", string, null
 "cabinetFrontDoor": "closed", string, null
 "cabinetRearDoor": "closed", string, null
 "cabinetLeftDoor": "closed", string, null
 "cabinetRightDoor": "closed", string, null
 "openClosedIndicator": "closed", string, null
 "audio": { object, null
 "rate": "on", string, null
 "signal": "keypress" string, null
 },
 "heating": "off", string, null
 "consumerDisplayBacklight": "off", string, null
 "signageDisplay": "off", string, null
 "volume": 1, integer, null
 "UPS": { object, null
 "low": true, boolean, null
 "engaged": false, boolean, null
 "powering": false, boolean, null
 "recovered": false boolean, null
 },
 "audibleAlarm": "on", string, null
 "enhancedAudioControl": "publicAudioManual", string, null
 "enhancedMicrophoneControl": "publicAudioManual", string, null
 "microphoneVolume": 1 integer, null
 },
 "vendorMode": { object, null
 "device": "online", string, null

41

Payload (version 2.0) Type Requir
ed

 "service": "enterPending" string, null
 },
 "vendorApplication": { object, null
 "accessLevel": "notActive" string 🗸🗸
 }
}

Properties

common
Status information common to all XFS4IoT services.

common/device
Specifies the state of the device. This property is required in Common.Status, but may be null in
Common.StatusChangedEvent if it has not changed. Following values are possible:

• online - The device is online. This is returned when the device is present and operational.
• offline - The device is offline (e.g., the operator has taken the device offline by turning a switch or

breaking an interlock).
• powerOff - The device is powered off or physically not connected.
• noDevice - The device is not intended to be there, e.g. this type of self service machine does not

contain such a device or it is internally not configured.
• hardwareError - The device is inoperable due to a hardware error.
• userError - The device is present but a person is preventing proper device operation.
• deviceBusy - The device is busy and unable to process a command at this time.
• fraudAttempt - The device is present but is inoperable because it has detected a fraud attempt.
• potentialFraud - The device has detected a potential fraud attempt and is capable of remaining in

service. In this case the application should make the decision as to whether to take the device offline.
• starting - The device is starting and performing whatever initialization is necessary. This can be

reported after the connection is made but before the device is ready to accept commands. This must only be a
temporary state, the Service must report a different state as soon as possible. If an error causes initialization to
fail then the state should change to hardwareError.

common/devicePosition
Position of the device. This property is null in Common.Status if position status reporting is not supported,
otherwise the following values are possible:

• inPosition - The device is in its normal operating position, or is fixed in place and cannot be moved.
• notInPosition - The device has been removed from its normal operating position.
• unknown - Due to a hardware error or other condition, the position of the device cannot be determined.

default: null

common/powerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational state from the
current power saving mode. This value is 0 if the power saving mode has not been activated. This property is
null in Common.Status if power save control is not supported.
Property value constraints:
minimum: 0
default: null

42

Properties

common/antiFraudModule
Specifies the state of the anti-fraud module if available. This property is null in Common.Status if there is no
anti-fraud module, otherwise the following values are possible:

• ok - Anti-fraud module is in a good state and no foreign device is detected.
• inoperable - Anti-fraud module is inoperable.
• deviceDetected - Anti-fraud module detected the presence of a foreign device.
• unknown - The state of the anti-fraud module cannot be determined.

default: null

common/exchange
Specifies the exchange state of the service. Exchange can used to perform a manual replenishment of a device
and is entered by Storage.StartExchange and completed by Storage.EndExchange. This property is null in
Common.Status if not supported, otherwise the following values are possible:

• active - Exchange is active on this service. Commands which interact with the device may be rejected
with an error code as appropriate.

• inactive - Exchange is not active on this service.
default: null

common/endToEndSecurity
Specifies the status of end to end security support on this device. This property is null in Common.Status if E2E
security is not supported by this hardware and any command can be called without a token, otherwise the
following values are possible.
Also see Common.CapabilityProperties.endToEndSecurity.

• notEnforced - E2E security is supported by this hardware but it is not currently enforced, for
example because required keys aren't loaded. It's currently possible to perform E2E commands without a token.

• notConfigured - E2E security is supported but not correctly configured, for example because
required

keys aren't loaded. Any attempt to perform any command protected by E2E security will fail.
• enforced - E2E security is supported and correctly configured. E2E security will be enforced.

Calling E2E protected commands will only be possible if a valid token is given.
default: null

cardReader
Status information for XFS4IoT services implementing the CardReader interface. This will be null if the
CardReader interface is not supported.
default: null

cardReader/media
Specifies the transport/exit position media state. This property will be null if the capability to report media
position is not supported by the device (e.g., a typical swipe reader or contactless chip card reader), otherwise
one of the following values:

• unknown - The media state cannot be determined with the device in its current state (e.g. the value of
device is noDevice, powerOff, offline or hardwareError.

• present - Media is present in the device, not in the entering position and not jammed. On the latched
dip device, this indicates that the card is present in the device and the card is unlatched.

• notPresent - Media is not present in the device and not at the entering position.
• jammed - Media is jammed in the device; operator intervention is required.
• entering - Media is at the entry/exit slot of a motorized device.
• latched - Media is present and latched in a latched dip card unit. This means the card can be used for

chip card dialog.
default: null

43

Properties

cardReader/security
Specifies the state of the security module. This property will be null if no security module is available, otherwise
one of the following values:

• notReady - The security module is not ready to process cards or is inoperable.
• open - The security module is open and ready to process cards.

default: null

cardReader/chipPower
Specifies the state of the chip controlled by this service. Depending on the value of capabilities response, this can
either be the chip on the currently inserted user card or the chip on a permanently connected chip card. This
property will be null if the capability to report the state of the chip is not supported by the ID card unit device
and will apply to contactless chip card readers, otherwise one of the following values:

• unknown - The state of the chip cannot be determined with the device in its current state.
• online - The chip is present, powered on and online (i.e. operational, not busy processing a request

and not in an error state).
• busy - The chip is present, powered on, and busy (unable to process a command at this time).
• poweredOff - The chip is present, but powered off (i.e. not contacted).
• noDevice - A card is currently present in the device, but has no chip.
• hardwareError - The chip is present, but inoperable due to a hardware error that prevents it from

being used (e.g. MUTE, if there is an unresponsive card in the reader).
• noCard - There is no card in the device.

default: null

cardReader/chipModule
Specifies the state of the chip card module reader. This property will be null if reporting the chip card module
status is not supported, otherwise one of the following values:

• ok - The chip card module is in a good state.
• inoperable - The chip card module is inoperable.
• unknown - The state of the chip card module cannot be determined.

default: null

cardReader/magWriteModule
Specifies the state of the magnetic card writer. This property will be null if reporting the magnetic card writing
module status is not supported, otherwise one of the following values:

• ok - The magnetic card writing module is in a good state.
• inoperable - The magnetic card writing module is inoperable.
• unknown - The state of the magnetic card writing module cannot be determined.

default: null

cardReader/frontImageModule
Specifies the state of the front image reader. This property will be null if reporting the front image reading
module status is not supported, otherwise one of the following values:

• ok - The front image reading module is in a good state.
• inoperable - The front image reading module is inoperable.
• unknown - The state of the front image reading module cannot be determined.

default: null

cardReader/backImageModule
Specifies the state of the back image reader. This property will be null if reporting the back image reading
module status is not supported, otherwise one of the following values:

• ok - The back image reading module is in a good state.
• inoperable - The back image reading module is inoperable.
• unknown - The state of the back image reading module cannot be determined.

default: null

44

Properties

cashAcceptor
Status information for XFS4IoT services implementing the CashAcceptor interface. This will be null if the
CashAcceptor interface is not supported.
default: null

cashAcceptor/intermediateStacker
Supplies the state of the intermediate stacker. This property is null in Common.Status if the physical device has
no intermediate stacker, otherwise the following values are possible:

• empty - The intermediate stacker is empty.
• notEmpty - The intermediate stacker is not empty.
• full - The intermediate stacker is full. This may also be reported during a cash-in transaction

where a limit specified by CashAcceptor.CashInStart has been reached.
• unknown - Due to a hardware error or other condition, the state of the intermediate stacker

cannot be determined.
default: null

cashAcceptor/stackerItems
This property informs the application whether items on the intermediate stacker have been in customer access.
This property is null in Common.Status if the physical device has no intermediate stacker, otherwise the
following values are possible:

• customerAccess - Items on the intermediate stacker have been in customer access. If the device is a
cash recycler then the items on the intermediate stacker may be there as a result of a previous cash-out operation.

• noCustomerAccess - Items on the intermediate stacker have not been in customer access.
• accessUnknown - It is not known if the items on the intermediate stacker have been in customer

access.
• noItems - There are no items on the intermediate stacker.

default: null

cashAcceptor/banknoteReader
Supplies the state of the banknote reader. This property is null in Common.Status if the physical device has no
banknote reader, otherwise the following values are possible:

• ok - The banknote reader is in a good state.
• inoperable - The banknote reader is inoperable.
• unknown - Due to a hardware error or other condition, the state of the banknote reader cannot be

determined.
default: null

cashAcceptor/dropBox
The drop box is an area within the Cash Acceptor where items which have caused a problem during an operation
are stored. This property specifies the status of the drop box. If true, some items are stored in the drop box due to
a cash-in transaction which caused a problem. If false, the drop box is empty or there is no drop box. This
property may be null if there is no drop box or its state has not changed in Common.StatusChangedEvent.
default: null

cashAcceptor/positions
Array of structures reporting status for each position from which items can be accepted. This may be null in
Common.StatusChangedEvent if no position states have changed.
default: null

45

Properties

cashAcceptor/positions/position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

cashAcceptor/positions/shutter
Supplies the state of the shutter. This property is null in Common.Status if the physical position has no shutter,
otherwise the following values are possible:

• closed - The shutter is operational and is fully closed.
• open - The shutter is operational and is open.
• jammedOpen - The shutter is jammed, but fully open. It is not operational.
• jammedPartiallyOpen - The shutter is jammed, but partially open. It is not operational.
• jammedClosed - The shutter is jammed, but fully closed. It is not operational.
• jammedUnknown - The shutter is jammed, but its position is unknown. It is not operational.
• unknown - Due to a hardware error or other condition, the state of the shutter cannot be determined.

default: null

cashAcceptor/positions/positionStatus
The status of the input or output position. This property is null in Common.Status if the device is not capable of
reporting whether items are at the position, otherwise the following values are possible:

• empty - The position is empty.
• notEmpty - The position is not empty.
• unknown - Due to a hardware error or other condition, the state of the position cannot be determined.
• foreignItems - Foreign items have been detected in the position.

default: null

cashAcceptor/positions/transport
Supplies the state of the transport mechanism. The transport is defined as any area leading to or from the
position. This property is null in Common.Status if the device has no transport or transport state reporting is not
supported, otherwise the following values are possible:

• ok - The transport is in a good state.
• inoperative - The transport is inoperative due to a hardware failure or media jam.
• unknown - Due to a hardware error or other condition the state of the transport cannot be determined.

default: null

46

Properties

cashAcceptor/positions/transportStatus
Returns information regarding items which may be on the transport. If the device is a recycler device it is
possible that the transport will not be empty due to a previous dispense operation. This property is null in
Common.Status if the device has no transport or is not capable of reporting whether items are on the transport,
otherwise the following values are possible:

• empty - The transport is empty.
• notEmpty - The transport is not empty.
• notEmptyCustomer - Items which a customer has had access to are on the transport.
• unknown - Due to a hardware error or other condition it is not known whether there are items on the

transport.
default: null

cashDispenser
Status information for XFS4IoT services implementing the CashDispenser interface. This will be null if the
CashDispenser interface is not supported.
default: null

cashDispenser/intermediateStacker
Supplies the state of the intermediate stacker. These bills are typically present on the intermediate stacker as a
result of a retract operation or because a dispense has been performed without a subsequent present. This
property is null in Common.Status if the physical device has no intermediate stacker, otherwise the following
values are possible:

• empty - The intermediate stacker is empty.
• notEmpty - The intermediate stacker is not empty. The items have not been in customer access.
• notEmptyCustomer - The intermediate stacker is not empty. The items have been in customer access.

If the device is
a recycler then the items on the intermediate stacker may be there as a result of a previous cash-in operation.

• notEmptyUnknown - The intermediate stacker is not empty. It is not known if the items have been in
customer access.

• unknown - Due to a hardware error or other condition, the state of the intermediate stacker cannot be
determined.

default: null

cashDispenser/positions
Array of structures for each position to which items can be dispensed or presented. This may be null in
Common.StatusChangedEvent if no position states have changed.
default: null

cashDispenser/positions/position
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

47

Properties

cashDispenser/positions/shutter
Supplies the state of the shutter. This property is null in Common.Status if the physical position has no shutter,
otherwise the following values are possible:

• closed - The shutter is operational and is closed.
• open - The shutter is operational and is open.
• jammedOpen - The shutter is jammed, but fully open. It is not operational.
• jammedPartiallyOpen - The shutter is jammed, but partially open. It is not operational.
• jammedClosed - The shutter is jammed, but fully closed. It is not operational.
• jammedUnknown - The shutter is jammed, but its position is unknown. It is not operational.
• unknown - Due to a hardware error or other condition, the state of the shutter cannot be determined.

default: null

cashDispenser/positions/positionStatus
Returns information regarding items which may be at the output position. If the device is a recycler it is possible
that the output position will not be empty due to a previous cash-in operation. This property is null in
Common.Status if the device is not capable of reporting whether items are at the position, otherwise the
following values are possible:

• empty - The position is empty.
• notEmpty - The position is not empty.
• unknown - Due to a hardware error or other condition, the state of the position cannot be determined.

default: null

cashDispenser/positions/transport
Supplies the state of the transport mechanism. The transport is defined as any area leading to or from the
position. This property is null in Common.Status if the device has no transport or transport state reporting is not
supported, otherwise the following values are possible:

• ok - The transport is in a good state.
• inoperative - The transport is inoperative due to a hardware failure or media jam.
• unknown - Due to a hardware error or other condition the state of the transport cannot be determined.

default: null

cashDispenser/positions/transportStatus
Returns information regarding items which may be on the transport. If the device is a recycler device it is
possible that the transport will not be empty due to a previous cash-in operation. This property is null in
Common.Status if the device has no transport or is not capable of reporting whether items are on the transport,
otherwise the following values are possible:

• empty - The transport is empty.
• notEmpty - The transport is not empty.
• notEmptyCustomer - Items which a customer has had access to are on the transport.
• unknown - Due to a hardware error or other condition it is not known whether there are items on the

transport.
default: null

cashManagement
Status information for XFS4IoT services implementing the CashManagement interface. This will be null if the
CashManagement interface is not supported.
default: null

48

Properties

cashManagement/dispenser
Supplies the state of the storage units for dispensing cash. This may be null in Common.Status if the device is
not capable of dispensing cash, otherwise the following values are possible:

• ok - All storage units present are in a good state.
• attention - One or more of the storage units is in a low, empty, inoperative or manipulated condition.

Items can still be dispensed from at least one of the storage units.
• stop - Due to a storage unit failure dispensing is impossible. No items can be dispensed because

all of the storage units are empty, missing, inoperative or in a manipulated condition. This state may also occur
when a reject/retract storage unit is full or no reject/retract storage unit is present, or when an application lock is
set on every storage unit which can be locked.

• unknown - Due to a hardware error or other condition, the state of the storage units cannot be
determined.

default: null

cashManagement/acceptor
Supplies the state of the storage units for accepting cash. This may be null in Common.Status if the device is not
capable of accepting cash, otherwise the following values are possible:

• ok - All storage units present are in a good state.
• attention - One or more of the storage units is in a high, full, inoperative or manipulated condition.

Items can still be accepted into at least one of the storage units.
• stop - Due to a storage unit failure accepting is impossible. No items can be accepted because

all of the storage units are in a full, inoperative or manipulated condition. This state may also occur when a
retract storage unit is full or no retract storage unit is present, or when an application lock is set on every storage
unit, or when items are to be automatically retained within storage units (see retainAction), but all of the
designated storage units for storing them are full or inoperative.

• unknown - Due to a hardware error or other condition, the state of the storage units cannot be
determined.
default: null

check
Status information for XFS4IoT services implementing the Check interface. This will be null if the Check
interface is not supported.
default: null

check/acceptor
Supplies the state of the overall acceptor storage units. This may be null in Common.StatusChangedEvent if the
state has not changed. The following values are possible:

• ok - All storage units present are in a good state.
• state - One or more of the storage units is in a high, full or inoperative condition. Items can still

be accepted into at least one of the storage units. The status of the storage units can be obtained through the
Storage.GetStorage command.

• stop - Due to a storage unit problem accepting is impossible. No items can be accepted because all of
the storage units are in a full or in an inoperative condition.

• unknown - Due to a hardware error or other condition, the state of the storage units cannot be
determined.

default: null

49

Properties

check/media
Specifies the state of the media. This may be null in Common.Status if the capability to report the state of the
media is not supported by the device, otherwise the following values are possible:

• present - Media is present in the device.
• notPresent - Media is not present in the device.
• jammed - Media is jammed in the device.
• unknown - The state of the media cannot be determined with the device in its current state.
• position - Media is at one or more of the input, output and refused positions.

default: null

check/toner
Specifies the state of the toner or ink supply or the state of the ribbon of the endorser. This may be null in
Common.Status if the physical device does not support endorsing or the capability to report the status of the
toner/ink is not supported by the device, otherwise the following values are possible:

• full - The toner or ink supply is full or the ribbon is OK.
• low - The toner or ink supply is low or the print contrast with a ribbon is weak.
• out - The toner or ink supply is empty or the print contrast with a ribbon is not sufficient any more.
• unknown - Status of toner or ink supply or the ribbon cannot be determined with the device in its

current state.
default: null

check/ink
Specifies the status of the stamping ink in the device. This may be null in Common.Status if the physical device
does not support stamping or the capability to report the status of the stamp ink supply is not supported by the
device, otherwise the following values are possible:

• full - Ink supply in the device is full.
• low - Ink supply in the device is low.
• out - Ink supply in the device is empty.
• unknown - Status of the stamping ink supply cannot be determined with the device in its current state.

default: null

check/frontImageScanner
Specifies the status of the image scanner that captures images of the front of the media items. This may be null in
Common.Status if the physical device has no front scanner or the capability to report the status of the front
scanner is not supported by the device, otherwise the following values are possible:

• ok - The front scanner is OK.
• fading - The front scanner performance is degraded.
• inoperative - The front scanner is inoperative.
• unknown - Status of the front scanner cannot be determined with the device in its current state.

default: null

check/backImageScanner
Specifies the status of the image scanner that captures images of the back of the media items. This may be null in
Common.Status if the physical device has no back scanner or the capability to report the status of the back
scanner is not supported by the device, otherwise the following values are possible:

• ok - The back scanner is OK.
• fading - The back scanner performance is degraded.
• inoperative - The back scanner is inoperative.
• unknown - Status of the back scanner cannot be determined with the device in its current state.

default: null

50

Properties

check/mICRReader
Specifies the status of the MICR code line reader. This may be null in Common.Status if the physical device has
no MICR code line reader or the capability to report the status of the MICR code line reader is not supported by
the device, otherwise the following values are possible:

• ok - The MICR code line reader is OK.
• fading - The MICR code line reader performance is degraded.
• inoperative - The MICR code line reader is inoperative.
• unknown - Status of the MICR code line reader cannot be determined with the device in its current

state.
default: null

check/stacker
Supplies the state of the stacker (also known as an escrow). The stacker is where the media items are held while
the application decides what to do with them. This may be null in Common.Status if the physical device has no
stacker or the capability to report the status of the stacker is not supported by the device, otherwise the following
values are possible:

• empty - The stacker is empty.
• notEmpty - The stacker is not empty.
• full - The stacker is full. This state is set if the number of media items on the stacker has

reached maxMediaOnStacker or some physical limit has been reached.
• inoperative - The stacker is inoperative.
• unknown - Due to a hardware error or other condition, the state of the stacker cannot be determined.

default: null

check/rebuncher
Supplies the state of the re-buncher (return stacker). The re-buncher is where media items are re-bunched ready
for return to the customer. This may be null in Common.Status if the physical device has no re-buncher or the
capability to report the status of the re-buncher is not supported by the device, otherwise the following values are
possible:

• empty - The re-buncher is empty.
• notEmpty - The re-buncher is not empty.
• full - The re-buncher is full. This state is set if the number of media items on the re-buncher

has reached its physical limit.
• inoperative - The re-buncher is inoperative.
• unknown - Due to a hardware error or other condition, the state of the re-buncher cannot be determined.

default: null

check/mediaFeeder
Supplies the state of the media feeder. This value indicates if there are items on the media feeder waiting for
processing via the Check.GetNextItem command. If null, the device has no media feeder or the capability to
report the status of the media feeder is not supported by the device. This value can be one of the following
values:

• empty - The media feeder is empty.
• notEmpty - The media feeder is not empty.
• inoperative - The media feeder is inoperative.
• unknown - Due to a hardware error or other condition, the state of the media feeder cannot be

determined.
default: null

check/positions
Specifies the status of the input, output and refused positions. This may be null in Common.StatusChangedEvent
if no position states have changed.
Property value constraints:
minProperties: 1
default: null

51

Properties

check/positions/input
Specifies the status of the input position. This may be null in Common.StatusChangedEvent if no states have
changed for the position.
default: null

check/positions/input/shutter
Specifies the state of the shutter. This property is null in Common.Status if the physical device has no shutter or
shutter state reporting is not supported, otherwise the following values are possible:

• closed - The shutter is operational and is closed.
• open - The shutter is operational and is open.
• jammed - The shutter is jammed and is not operational.
• unknown - Due to a hardware error or other condition, the state of the shutter cannot be determined.

default: null

check/positions/input/positionStatus
The status of the position. This property is null in Common.Status if the physical device is not capable of
reporting whether or not items are at the position, otherwise the following values are possible:

• empty - The position is empty.
• notEmpty - The position is not empty.
• unknown - Due to a hardware error or other condition, the state of the position cannot be determined.

default: null

check/positions/input/transport
Specifies the state of the transport mechanism. The transport is defined as any area leading to or from the
position. This property is null in Common.Status if the physical device has no transport or transport state
reporting is not supported, otherwise the following values are possible:

• ok - The transport is in a good state.
• inoperative - The transport is inoperative due to a hardware failure or media jam.
• unknown - Due to a hardware error or other condition, the state of the transport cannot be determined.

default: null

check/positions/input/transportMediaStatus
Returns information regarding items which may be present on the transport. This property is null in
Common.Status if the physical device is not capable of reporting whether or not items are on the transport,
otherwise the following values are possible:

• empty - The transport is empty.
• notEmpty - The transport is not empty.
• unknown - Due to a hardware error or other condition it is not known whether there are items on the

transport.
default: null

check/positions/input/jammedShutterPosition
Returns information regarding the position of the jammed shutter. This property is null in Common.Status if the
physical device has no shutter or the reporting of the position of a jammed shutter is not supported, otherwise the
following values are possible:

• notJammed - The shutter is not jammed.
• open - The shutter is jammed, but fully open.
• partiallyOpen - The shutter is jammed, but partially open.
• closed - The shutter is jammed, but fully closed.
• unknown - The position of the shutter is unknown.

default: null

check/positions/output
Specifies the status of the output position. This may be null in Common.StatusChangedEvent if no states have
changed for the position.
default: null

52

Properties

check/positions/refused
Specifies the status of the refused position. This may be null in Common.StatusChangedEvent if no states have
changed for the position.
default: null

mixedMedia
Status information for XFS4IoT services implementing the MixedMedia interface. This will be null if the
MixedMedia interface is not supported.
default: null

mixedMedia/modes
Specifies the state of the transaction modes supported by the Service.
Property value constraints:
minProperties: 1

mixedMedia/modes/cashAccept
Specifies whether transactions can accept cash. This property may be null if no change required or its state has
not changed in Common.StatusChangedEvent.
default: null

mixedMedia/modes/checkAccept
Specifies whether transactions can accept checks. This property may be null if no change required or its state has
not changed in Common.StatusChangedEvent.
default: null

keyManagement
Status information for XFS4IoT services implementing the KeyManagement interface. This will be null if the
KeyManagement interface is not supported.
default: null

keyManagement/encryptionState
Specifies the state of the encryption module. This may be null in Common.StatusChangedEvent if unchanged.
default: null

keyManagement/certificateState
Specifies the state of the public verification or encryption key in the PIN certificate modules. This may be null in
Common.StatusChangedEvent if unchanged.
default: null

keyboard
Status information for XFS4IoT services implementing the Keyboard interface. This will be null if the Keyboard
interface is not supported.
default: null

keyboard/autoBeepMode
Specifies whether automatic beep tone on key press is active or not. Active and inactive key beeping is reported
independently.

keyboard/autoBeepMode/activeAvailable
Specifies whether an automatic tone will be generated for all active keys. This may be null in
Common.StatusChangedEvent if unchanged.
default: null

keyboard/autoBeepMode/inactiveAvailable
Specifies whether an automatic tone will be generated for all inactive keys. This may be null in
Common.StatusChangedEvent if unchanged.
default: null

53

Properties

textTerminal
Status information for XFS4IoT services implementing the TextTerminal interface. This will be null if the
TextTerminal interface is not supported.
default: null

textTerminal/keyboard
Specifies the state of the keyboard in the text terminal unit. This property will be null in Common.Status if the
keyboard is not available, otherwise one of the following values:

• on - The keyboard is activated.
• off - The keyboard is not activated.

default: null

textTerminal/keyLock
Specifies the state of the keyboard lock of the text terminal unit. This property will be null in Common.Status if
the keyboard lock switch is not available, otherwise one of the following values:

• on - The keyboard lock switch is activated.
• off - The keyboard lock switch is not activated.

default: null

textTerminal/displaySizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that can be
displayed). This property will be null in Common.StatusChangedEvent if unchanged.
Property value constraints:
minimum: 0
default: null

textTerminal/displaySizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be displayed). This
property will be null in Common.StatusChangedEvent if unchanged.
Property value constraints:
minimum: 0
default: null

printer
Status information for XFS4IoT services implementing the Printer interface. This will be null if the Printer
interface is not supported.
default: null

printer/media
Specifies the state of the print media (i.e. receipt, statement, passbook, etc.) as one of the following values. This
property will be null in Common.Status for journal printers or if the capability to report the state of the print
media is not supported by the device:

• unknown - The state of the print media cannot be determined with the device in its current state.
• present - Media is in the print position, on the stacker or on the transport (i.e. a passbook in the

parking station is not considered to be present). On devices with continuous paper supplies, this value is
set when paper is under the print head. On devices with no supply or individual sheet supplies, this
value is set when paper/media is successfully inserted/loaded.

• notPresent - Media is not in the print position or on the stacker.
• jammed - Media is jammed in the device.
• entering - Media is at the entry/exit slot of the device.
• retracted - Media was retracted during the last command which controlled media.

default: null

54

Properties

printer/paper
Specifies the state of paper supplies as one of the following values. Each individual supply state will be null in
Common.Status if not applicable:

• unknown - Status cannot be determined with device in its current state.
• full - The paper supply is full.
• low - The paper supply is low.
• out - The paper supply is empty.
• jammed - The paper supply is jammed.

default: null

printer/paper/upper
The state of the upper paper supply.
default: null

printer/paper/lower
The state of the lower paper supply.
default: null

printer/paper/external
The state of the external paper supply.
default: null

printer/paper/aux
The state of the auxiliary paper supply.
default: null

printer/paper/aux2
The state of the second auxiliary paper supply.
default: null

printer/paper/park
The state of the parking station paper supply.
default: null

printer/paper/vendorSpecificPaperSupply (example name)
The state of the additional vendor specific paper supplies.
default: null

printer/toner
Specifies the state of the toner or ink supply or the state of the ribbon. The property will be null in
Common.Status if the capability is not supported by device, otherwise one of the following:

• unknown - Status of toner or ink supply or the ribbon cannot be determined with device in its current
state.

• full - The toner or ink supply is full or the ribbon is OK.
• low - The toner or ink supply is low or the print contrast with a ribbon is weak.
• out - The toner or ink supply is empty or the print contrast with a ribbon is not sufficient any more.

default: null

printer/ink
Specifies the status of the stamping ink in the printer. The property will be null in Common.Status if the
capability is not supported by device, otherwise one of the following:

• unknown - Status of the stamping ink supply cannot be determined with device in its current state.
• full - Ink supply in device is full.
• low - Ink supply in device is low.
• out - Ink supply in device is empty.

default: null

55

Properties

printer/lamp
Specifies the status of the printer imaging lamp. The property will be null in Common.Status if the capability is
not supported by device, otherwise one of the following:

• unknown - Status of the imaging lamp cannot be determined with device in its current state.
• ok - The lamp is OK.
• fading - The lamp should be changed.
• inop - The lamp is inoperative.

default: null

printer/retractBins
An array of bin state objects. If no retain bins are supported, the property will be null.
default: null

printer/retractBins/state
Specifies the state of the printer retract bin as one of the following. This may be null in
Common.StatusChangedEvent if unchanged.

• ok - The retract bin of the printer is in a healthy state.
• full - The retract bin of the printer is full.
• unknown - Status cannot be determined with device in its current state.
• high - The retract bin of the printer is nearly full.
• missing - The retract bin is missing.

default: null

printer/retractBins/count
The number of media retracted to this bin. This value is persistent; it may be reset to 0 by the Printer.ResetCount
command. This may be null in Common.StatusChangedEvent if unchanged.
Property value constraints:
minimum: 0
default: null

printer/mediaOnStacker
The number of media on stacker; applicable only to printers with stacking capability therefore null if not
applicable.
Property value constraints:
minimum: 0
default: null

printer/paperType
Specifies the type of paper loaded as one of the following. Only applicable properties are reported. This may be
null in Common.StatusChangedEvent if unchanged.

• unknown - No paper is loaded, reporting of this paper type is not supported or the paper type cannot be
determined.

• single - The paper can be printed on only one side.
• dual - The paper can be printed on both sides.

default: null

printer/paperType/upper
The upper paper supply paper type.
default: null

printer/paperType/lower
The lower paper supply paper type.
default: null

printer/paperType/external
The external paper supply paper type.
default: null

56

Properties

printer/paperType/aux
The auxililliary paper supply paper type.
default: null

printer/paperType/aux2
The second auxililliary paper supply paper type.
default: null

printer/paperType/park
The parking station paper supply paper type.
default: null

printer/paperType/exampleProperty1 (example name)
The additional vendor specific paper types.
default: null

printer/blackMarkMode
Specifies the status of the black mark detection and associated functionality. The property is null if not
supported.

• unknown - The status of the black mark detection cannot be determined.
• on - Black mark detection and associated functionality is switched on.
• off - Black mark detection and associated functionality is switched off.

default: null

barcodeReader
Status information for XFS4IoT services implementing the Barcode Reader interface. This will be null if the
Barcode Reader interface is not supported.
default: null

barcodeReader/scanner
Specifies the scanner status (laser, camera or other technology) as one of the following:

• on - Scanner is enabled for reading.
• off - Scanner is disabled.
• inoperative - Scanner is inoperative due to a hardware error.
• unknown - Scanner status cannot be determined.

biometric
Status information for XFS4IoT services implementing the Biometrics interface. This will be null if the
Biometrics interface is not supported.
default: null

biometric/subject
Specifies the state of the subject to be scanned (e.g. finger, palm, retina, etc) as one of the following values:

• present - The subject to be scanned is on the scanning position.
• notPresent - The subject to be scanned is not on the scanning position.
• unknown - The subject to be scanned cannot be determined with the device in its current state (e.g. the

value of device is noDevice, powerOff, offline, or hwError).
This property is null if the physical device does not support the ability to report whether or not a subject is on the
scanning position.
default: null

biometric/capture
Indicates whether scanned biometric data has been captured using the Biometric.Read and is currently stored and
ready for comparison. This will be set to false when scanned data is cleared using the Biometric.Clear. This may
be null in Common.StatusChangedEvent if unchanged.
default: null

57

Properties

biometric/dataPersistence
Specifies the current data persistence mode. The data persistence mode controls how biometric data that has been
captured using the Biometric.Read will be handled. This property is null if the property persistenceModes is null
or both properties persist and clear are false. The following values are possible:

• persist - Biometric data captured using the Biometric.Read can persist until all sessions are closed,
the device is power failed or rebooted, or the Biometric.Readis requested again. This captured biometric
data can also be explicitly cleared using the Biometric.Clear or Biometric.Reset.

• clear - Captured biometric data will not persist. Once the data has been either returned in the
Biometric.Reador used by the Biometric.Match, then the data is cleared from the device.

default: null

biometric/remainingStorage
Specifies how much of the reserved storage specified by the capability templateStorage is remaining for the
storage of templates in bytes. if null, this property is not supported.
Property value constraints:
minimum: 0
default: null

camera
Status information for XFS4IoT services implementing the Camera interface. This will be null if the Camera
interface is not supported.
default: null

camera/media
Specifies the state of the recording media of the cameras as one of the following. For a device which stores
pictures on a hard disk drive or other general-purpose storage, the relevant property will be null. This property
may be null in Common.StatusChangedEvent if unchanged.

• ok - The media is in a good state.
• high - The media is almost full (threshold).
• full - The media is full.
• unknown - Due to a hardware error or other condition, the state of the media cannot be determined.

default: null

camera/media/room
Specifies the state of the recording media of the camera that monitors the whole self-service area.
default: null

camera/media/person
Specifies the state of the recording media of the camera that monitors the person standing in front of the self-
service machine.
default: null

camera/media/exitSlot
Specifies the state of the recording media of the camera that monitors the exit slot(s) of the self-service machine.
default: null

camera/media/vendorSpecificCameraMedia (example name)
Allows vendor specific cameras to be reported.
default: null

camera/cameras
Specifies the state of the cameras as one of the following. The relevant property will be null if not supported and
this property may be null in Common.StatusChangedEvent if unchanged.

• ok - The camera is in a good state.
• inoperative - The camera is inoperative.
• unknown - Due to a hardware error or other condition, the state of the camera cannot be determined.

default: null

58

Properties

camera/cameras/room
Specifies the state of the camera that monitors the whole self-service area.
default: null

camera/cameras/person
Specifies the state of the camera that monitors the person standing in front of the self-service machine.
default: null

camera/cameras/exitSlot
Specifies the state of the camera that monitors the exit slot(s) of the self-service machine.
default: null

camera/pictures
Specifies the number of pictures stored on the recording media of the cameras. For a device which stores pictures
on a hard disk drive or other general-purpose storage, the value of the relevant camera's property is 0. Properties
may be null in Common.StatusChangedEvent if unchanged.
default: null

camera/pictures/room
Specifies the number of pictures stored on the recording media of the room camera.
Property value constraints:
minimum: 0
default: null

camera/pictures/person
Specifies the number of pictures stored on the recording media of the person camera.
Property value constraints:
minimum: 0
default: null

camera/pictures/exitSlot
Specifies the number of pictures stored on the recording media of the exit slot camera.
Property value constraints:
minimum: 0
default: null

camera/pictures/vendorSpecificCameraPictures (example name)
Allows vendor specific cameras to be reported.
Property value constraints:
minimum: 0
default: null

lights
Status information for XFS4IoT services implementing the Lights interface. This will be null if the Lights
interface is not supported.
default: null

lights/cardReader
Card Reader Light. This property is null if not applicable.
default: null

59

Properties

lights/cardReader/position
The light position. Can be used for devices which have multiple input and output positions. This may be one of
the following values:

• left - The left position.
• right - The right position.
• center - The center position.
• top - The top position.
• bottom - The bottom position.
• front - The front position.
• rear - The rear position.
• default - The default position.

lights/cardReader/flashRate
The light flash rate. This may be null in Common.StatusChangedEvent if unchanged, otherwise one of the
following values:

• off - The light is turned off.
• slow - The light is flashing slowly.
• medium - The light is flashing medium frequency.
• quick - The light is flashing quickly.
• continuous - The light is continuous (steady).

default: null

lights/cardReader/color
The light color. This may be null in Common.StatusChangedEvent if unchanged, otherwise one of the following
values:

• red - The light is red.
• green - The light is green.
• yellow - The light is yellow.
• blue - The light is blue.
• cyan - The light is cyan.
• magenta - The light is magenta.
• white - The light is white.

default: null

lights/cardReader/direction
The light direction, The value can be null if not required. One of the following values:

• entry - The light is indicating entry.
• exit - The light is indicating exit.

default: null

lights/pinPad
Pin Pad Light. This property is null if not applicable.
default: null

lights/notesDispenser
Notes Dispenser Light. This property is null if not applicable.
default: null

lights/coinDispenser
Coin Dispenser Light. This property is null if not applicable.
default: null

lights/receiptPrinter
Receipt Printer Light. This property is null if not applicable.
default: null

60

Properties

lights/passbookPrinter
Passbook Printer Light. This property is null if not applicable.
default: null

lights/envelopeDepository
Envelope Depository Light. This property is null if not applicable.
default: null

lights/checkUnit
Check Unit Light. This property is null if not applicable.
default: null

lights/billAcceptor
Bill Acceptor Light. This property is null if not applicable.
default: null

lights/envelopeDispenser
Envelope Dispenser Light. This property is null if not applicable.
default: null

lights/documentPrinter
Document Printer Light. This property is null if not applicable.
default: null

lights/coinAcceptor
Coin Acceptor Light. This property is null if not applicable.
default: null

lights/scanner
Scanner Light. This property is null if not applicable.
default: null

lights/contactless
Contactless Reader Light. This property is null if not applicable.
default: null

lights/cardReader2
Card Reader 2 Light. This property is null if not applicable.
default: null

lights/notesDispenser2
Notes Dispenser 2 Light. This property is null if not applicable.
default: null

lights/billAcceptor2
Bill Acceptor 2 Light. This property is null if not applicable.
default: null

lights/statusGood
Status Indicator light - Good. This property is null if not applicable.
default: null

lights/statusWarning
Status Indicator light - Warning. This property is null if not applicable.
default: null

lights/statusBad
Status Indicator light - Bad. This property is null if not applicable.
default: null

61

Properties

lights/statusSupervisor
Status Indicator light - Supervisor. This property is null if not applicable.
default: null

lights/statusInService
Status Indicator light - In Service. This property is null if not applicable.
default: null

lights/fasciaLight
Fascia Light. This property is null if not applicable.
default: null

lights/vendorSpecificLight (example name)
Additional vendor specific lights.
default: null

auxiliaries
Status information for XFS4IoT services implementing the Auxiliaries interface. This will be null if the
Auxiliaries interface is not supported.
default: null

auxiliaries/operatorSwitch
Specifies the state of the Operator switch.

• run - The switch is in run mode.
• maintenance - The switch is in maintenance mode.
• supervisor - The switch is in supervisor mode.

This property is null if not applicable.
default: null

auxiliaries/tamperSensor
Specifies the state of the Tamper sensor.

• off - There is no indication of a tampering attempt.
• on - There has been a tampering attempt.

This property is null if not applicable.
default: null

auxiliaries/internalTamperSensor
Specifies the state of the Internal Tamper Sensor for the internal alarm. This sensor indicates whether the internal
alarm has been tampered with (such as a burglar attempt). Specified as one of the following:

• off - There is no indication of a tampering attempt.
• on - There has been a tampering attempt.

This property is null if not applicable.
default: null

auxiliaries/seismicSensor
Specifies the state of the Seismic Sensor. This sensor indicates whether the terminal has been shaken (e.g.
burglar attempt or seismic activity). Specified as one of the following:

• off - The seismic activity has not been high enough to trigger the sensor.
• on - The seismic or other activity has triggered the sensor.

This property is null if not applicable.
default: null

62

Properties

auxiliaries/heatSensor
Specifies the state of the Heat Sensor. This sensor is triggered by excessive heat (fire) near the terminal.
Specified as one of the following:

• off - The heat has not been high enough to trigger the sensor.
• on - The heat has been high enough to trigger the sensor.

This property is null if not applicable.
default: null

auxiliaries/proximitySensor
Specifies the state of the Proximity Sensor. This sensor is triggered by movements around the terminal. Specified
as one of the following:

• present - The sensor is showing that there is someone present at the terminal.
• notPresent - The sensor can not sense any people around the terminal.

This property is null if not applicable.
default: null

auxiliaries/ambientLightSensor
Specifies the state of the Ambient Light Sensor. This sensor indicates the level of ambient light around the
terminal. Interpretation of this value is vendor-specific and therefore it is not guaranteed to report a consistent
actual ambient light level across different vendor hardware. Specified as one of the following:

• veryDark - The level of light is very dark.
• dark - The level of light is dark.
• mediumLight - The level of light is medium light.
• light - The level of light is light.
• veryLight - The level of light is very light.

This property is null if not applicable.
default: null

auxiliaries/enhancedAudioSensor
Specifies the presence or absence of a consumer’s headphone connected to the Audio Jack. Specified as one of
the following:

• present - There is a headset connected.
• notPresent - There is no headset connected.

This property is null if not applicable.
default: null

auxiliaries/bootSwitchSensor
Specifies the state of the Boot Switch Sensor. This sensor is triggered whenever the terminal is about to be
rebooted or shutdown due to a delayed effect switch. Specified as one of the following:

• off - The sensor has not been triggered.
• on - The terminal is about to be rebooted or shutdown.

This property is null if not applicable.
default: null

auxiliaries/consumerDisplaySensor
Specifies the state of the Consumer Display. Specified as one of the following:

• off - The Consumer Display is switched off.
• on - The Consumer Display is in a good state and is turned on.
• displayError - The Consumer Display is in an error state.

This property is null if not applicable.
default: null

63

Properties

auxiliaries/operatorCallButtonSensor
Specifies the state of the Operator Call Button as one of the following:

• off - The Operator Call Button is released (not pressed).
• on - The Operator Call Button is being pressed.

This property is null if not applicable.
default: null

auxiliaries/handsetSensor
Specifies the state of the Handset, which is a device similar to a telephone receiver. Specified as one of the
following:

• onTheHook - The Handset is on the hook.
• offTheHook - The Handset is off the hook.

This property is null if not applicable.
default: null

auxiliaries/headsetMicrophoneSensor
Specifies the presence or absence of a consumer’s headset microphone connected to the Microphone Jack.
Specified as one of the following:

• present - There is a headset microphone connected.
• notPresent - There is no headset microphone connected.

This property is null if not applicable.
default: null

auxiliaries/fasciaMicrophoneSensor
Specifies the state of the fascia microphone as one of the following:

• off - The Fascia Microphone is turned off.
• on - The Fascia Microphone is turned on.

This property is null if not applicable.
default: null

auxiliaries/safeDoor
Specifies the state of the Safe Doors. Safe Doors are doors that open up for secure hardware, such as the note
dispenser, the security device, etc. Specified as one of the following:

• closed - The Safe Doors are closed.
• open - At least one of the Safe Doors is open.
• locked - All Safe Doors are closed and locked.
• bolted - All Safe Doors are closed, locked and bolted.
• tampered - At least one of the Safe Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/vandalShield
Specifies the state of the Vandal Shield. The Vandal Shield is a door that opens up for consumer access to the
terminal. Specified as one of the following:

• closed - The Vandal Shield is closed.
• open - The Vandal Shield is fully open.
• locked - The Vandal Shield is closed and locked.
• service - The Vandal Shield is in service position.
• keyboard - The Vandal Shield position permits access to the keyboard.
• partiallyOpen - The Vandal Shield is partially open.
• jammed - The Vandal Shield is jammed.
• tampered - The Vandal Shield has potentially been tampered with.

This property is null if not applicable.
default: null

64

Properties

auxiliaries/cabinetFrontDoor
Specifies the overall state of the Front Cabinet Doors. The front is defined as the side facing the
customer/consumer. Cabinet Doors are doors that open up for consumables, and hardware that does not have to
be in a secure place. Specified as one of the following:

• closed - All front Cabinet Doors are closed.
• open - At least one of the front Cabinet Doors is open.
• locked - All front Cabinet Doors are closed and locked.
• bolted - All front Cabinet Doors are closed, locked and bolted.
• tampered - At least one of the front Cabinet Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/cabinetRearDoor
Specifies the overall state of the Rear Cabinet Doors. The rear is defined as the side opposite the side facing the
customer/consumer. Cabinet Doors are doors that open up for consumables, and hardware that does not have to
be in a secure place. Specified as one of the following:

• closed - All rear Cabinet Doors are closed.
• open - At least one of the rear Cabinet Doors is open.
• locked - All rear Cabinet Doors are closed and locked.
• bolted - All rear Cabinet Doors are closed, locked and bolted.
• tampered - At least one of the rear Cabinet Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/cabinetLeftDoor
Specifies the overall state of the Left Cabinet Doors. The left is defined as the side to the left as seen by the
customer/consumer. Cabinet Doors are doors that open up for consumables, and hardware that does not have to
be in a secure place. Specified as one of the following:

• closed - All left Cabinet Doors are closed.
• open - At least one of the left Cabinet Doors is open.
• locked - All left Cabinet Doors are closed and locked.
• bolted - All left Cabinet Doors are closed, locked and bolted.
• tampered - At least one of the left Cabinet Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/cabinetRightDoor
Specifies the overall state of the Right Cabinet Doors. The right is defined as the side to the right as seen by the
customer/consumer. Cabinet Doors are doors that open up for consumables, and hardware that does not have to
be in a secure place. Specified as one of the following:

• closed - All right Cabinet Doors are closed.
• open - At least one of the right Cabinet Doors is open.
• locked - All right Cabinet Doors are closed and locked.
• bolted - All right Cabinet Doors are closed, locked and bolted.
• tampered - At least one of the right Cabinet Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/openClosedIndicator
Specifies the state of the Open/Closed Indicator as one of the following:

• closed - The terminal is closed for a consumer.
• open - The terminal is open to be used by a consumer.

This property is null if not applicable.
default: null

65

Properties

auxiliaries/audio
Specifies the state of the Audio Indicator. This property is null if not applicable.
default: null

auxiliaries/audio/rate
Specifies the state of the Audio Indicator as one of the following values. This may be null in
Common.StatusChangedEvent if unchanged.

• on - Turn on the Audio Indicator.
• off - Turn off the Audio Indicator.
• continuous - Turn the Audio Indicator to continuous.

This property is null if not applicable.
default: null

auxiliaries/audio/signal
Specifies the Audio sound as one of the following values. This may be null in Common.StatusChangedEvent if
unchanged.

• keypress - Sound a key click signal.
• exclamation - Sound an exclamation signal.
• warning - Sound a warning signal.
• error - Sound an error signal.
• critical - Sound a critical error signal.

This property is null if not applicable.
default: null

auxiliaries/heating
Specifies the state of the internal heating as one of the following:

• off - The internal heating is turned off.
• on - The internal heating is turned on.

This property is null if not applicable.
default: null

auxiliaries/consumerDisplayBacklight
Specifies the Consumer Display Backlight as one of the following:

• off - The Consumer Display Backlight is turned off.
• on - Consumer Display Backlight is turned on.

This property is null if not applicable.
default: null

auxiliaries/signageDisplay
Specifies the state of the Signage Display. The Signage Display is a lighted banner or marquee that can be used
to display information or an advertisement. Any dynamic data displayed must be loaded by a means external to
the Service. Specified as one of the following:

• off - The Signage Display is turned off.
• on - The Signage Display is turned on.

This property is null if not applicable.
default: null

66

Properties

auxiliaries/volume
Specifies the value of the Volume Control. The value of Volume Control is defined in an interval from 1 to 1000
where 1 is the lowest volume level and 1000 is the highest volume level. The interval is defined in logarithmic
steps, e.g. a volume control on a radio. Note: The Volume Control property is vendor-specific and therefore it is
not possible to guarantee a consistent actual volume level across different vendor hardware. This property is null
if not applicable.
Property value constraints:
minimum: 1
maximum: 1000
default: null

auxiliaries/UPS
Specifies the state of the Uninterruptible Power Supply. This property is null if not applicable. Properties
contained in this property may be null in Common.StatusChangedEvent if unchanged.
default: null

auxiliaries/UPS/low
The charge level of the UPS is low.
default: null

auxiliaries/UPS/engaged
The UPS is engaged.
default: null

auxiliaries/UPS/powering
The UPS is powering the system.
default: null

auxiliaries/UPS/recovered
The UPS was engaged when the main power went off.
default: null

auxiliaries/audibleAlarm
Species the state of the Audible Alarm device as one of the following:

• off - The Alarm is turned off.
• on - The Alarm is turned on.

This property is null if not applicable.
default: null

67

Properties

auxiliaries/enhancedAudioControl
Specifies the state of the Enhanced Audio Controller. The Enhanced Audio Controller controls how private and
public audio are broadcast when the headset is inserted into/removed from the audio jack and when the handset
is off-hook/on-hook. In the following, Privacy Device is used to refer to either the headset or handset. The
Enhanced Audio Controller state is specified as one of the following:

• publicAudioManual - The Enhanced Audio Controller is in manual mode and is in the
public state (i.e. audio will be played through speakers). Activating a Privacy Device (headset connected/handset
off-hook) will have no impact, i.e. Output will remain through the speakers & no audio will be directed to the
Privacy Device.

• publicAudioAuto - The Enhanced Audio Controller is in auto mode and is in the public
state (i.e. audio will be played through speakers). When a Privacy Device is activated, the device will go to the
private state.

• publicAudioSemiAuto - The Enhanced Audio Controller is in semi-auto mode and is in
the public state (i.e. audio will be played through speakers). When a Privacy Device is activated, the device will
go to the private state.

• privateAudioManual - The Enhanced Audio Controller is in manual mode and is in the
private state (i.e. audio will be played only through a connected Privacy Device). In private mode, no audio is
transmitted through the speakers.

• privateAudioAuto - The Enhanced Audio Controller is in auto mode and is in the private
state (i.e. audio will be played only through a connected Privacy Device). In private mode, no audio is
transmitted through the speakers. When a Privacy Device is deactivated (headset disconnected/handset on-hook),
the device will go to the public state. Where there is more than one Privacy Device, the device will go to the
public state only when all Privacy Devices have been deactivated.

• privateAudioSemiAuto - The Enhanced Audio Controller is in semi-auto mode and is in
the private state (i.e. audio will be played only through a connected Privacy Device). In private mode, no audio is
transmitted through the speakers. When a Privacy Device is deactivated, the device will remain in the private
state.
This property is null if not applicable.
default: null

68

Properties

auxiliaries/enhancedMicrophoneControl
Specifies the state of the Enhanced Microphone Controller. The Enhanced Microphone Controller controls how
private and public audio input are transmitted when the headset is inserted into/removed from the audio jack and
when the handset is off-hook/on-hook. In the following, Privacy Device is used to refer to either the headset or
handset. The Enhanced Microphone Controller state is specified as one of the following values:

• publicAudioManual - The Enhanced Microphone Controller is in manual mode and is in the public
state (i.e. the microphone in the fascia is active). Activating a Privacy Device (headset connected/handset off-
hook) will have no impact, i.e. input will remain through the fascia microphone and any microphone associated
with the Privacy Device will not be active.

• publicAudioAuto - The Enhanced Microphone Controller is in auto mode and is in the public state
(i.e. the microphone in the fascia is active). When a Privacy Device with a microphone is activated, the device
will go to the private state.

• publicAudioSemiAuto - The Enhanced Microphone Controller is in semi-auto mode and is in the
public

state (i.e. the microphone in the fascia is active). When a Privacy Device with a microphone is activated, the
device will go to the private state.

• privateAudioManual - The Enhanced Microphone Controller is in manual mode and is in the private
state (i.e. audio input will be via a microphone in the Privacy Device). In private mode, no audio input is
transmitted through the fascia microphone.

• privateAudioAuto - The Enhanced Microphone Controller is in auto mode and is in the private
state (i.e. audio input will be via a microphone in the Privacy Device). In private mode, no audio input is
transmitted through the fascia microphone. When a Privacy Device with a microphone is deactivated (headset
disconnected/handset on-hook), the device will go to the public state. Where there is more than one Privacy
Device with a microphone, the device will go to the public state only when all such Privacy Devices have been
deactivated.

• privateAudioSemiAuto - The Enhanced Microphone Controller is in semi-auto mode and is in the
private state (i.e. audio input will be via a microphone in the Privacy Device). In private mode, no audio is
transmitted through the fascia microphone. When a Privacy Device with a microphone is deactivated, the device
will remain in the private state.
This property is null if not applicable.
default: null

auxiliaries/microphoneVolume
Specifies the value of the Microphone Volume Control. The value of Volume Control is defined in an interval
from 1 to 1000 where 1 is the lowest volume level and 1000 is the highest volume level. The interval is defined
in logarithmic steps, e.g. a volume control on a radio. Note: The Microphone Volume Control property is
vendor-specific and therefore it is not possible to guarantee a consistent actual volume level across different
vendor hardware. This property is null if not applicable.
Property value constraints:
minimum: 1
maximum: 1000
default: null

vendorMode
Status information for XFS4IoT services implementing the VendorMode interface. This will be null if the
VendorMode interface is not supported.
default: null

vendorMode/device
Specifies the status of the Vendor Mode Service. This property may be null in events if the status did not change,
otherwise will be one of the following values:

• online - The Vendor Mode service is available.
• offline - The Vendor Mode service is not available.

default: null

69

Properties

vendorMode/service
Specifies the service state. This property may be null in events if the state did not change, otherwise will be one
of the following values:

• enterPending - Vendor Mode enter request pending.
• active - Vendor Mode active.
• exitPending - Vendor Mode exit request pending.
• inactive - Vendor Mode inactive.

default: null

vendorApplication
Status information for XFS4IoT services implementing the Vendor Application interface. This will be null in
Common.Status if the interface is not supported.
default: null

vendorApplication/accessLevel
Reports the current access level as one of the following values:

• notActive - The application is not active.
• basic - The application is active for the basic access level.
• intermediate - The application is active for the intermediate access level.
• full - The application is active for the full access level.

Event Messages
None

70

4.1.2 Common.Capabilities
This command retrieves the capabilities of the service. It may also return vendor specific capability information.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Requi
red

{
 "interfaces": [{ array

(object)
🗸🗸

 "name": "Common", string 🗸🗸
 "commands": { object 🗸🗸
 "CardReader.ReadRawData": { object
 "versions": ["1.3", "2.1", "3.0"] array

(string)
🗸🗸

 },
 "CardReader.Move": See
interfaces/commands/CardReader.ReadRawData properties

object

 },
 "events": { object, null
 "CardReader.MediaInsertedEvent": { object
 "versions": ["1.3", "2.1", "3.0"] array

(string)
🗸🗸

 },
 "CardReader.MediaRemovedEvent": See
interfaces/events/CardReader.MediaInsertedEvent properties

object

 },
 "maximumRequests": 0 integer
 }],
 "common": { object 🗸🗸
 "serviceVersion": "1.3.42", string 🗸🗸
 "deviceInformation": [{ array

(object)
🗸🗸

 "modelName": "AcmeModel42", string, null
 "serialNumber": "1.0.12.05", string, null
 "revisionNumber": "1.2.3", string, null
 "modelDescription": "Acme Dispenser Model 3", string, null
 "firmware": [{ array

(object),
null

71

Payload (version 2.0) Type Requi
red

 "firmwareName": "Acme Firmware", string, null
 "firmwareVersion": "1.0.1.2", string, null
 "hardwareRevision": "4.3.0.5" string, null
 }],
 "software": [{ array

(object),
null

 "softwareName": "Acme Software Name", string, null
 "softwareVersion": "1.3.0.2" string, null
 }]
 }],
 "powerSaveControl": false, boolean
 "antiFraudModule": false, boolean
 "endToEndSecurity": { object, null
 "required": "always", string 🗸🗸
 "hardwareSecurityElement": true, boolean 🗸🗸
 "responseSecurityEnabled": "always", string
 "commands": ["CashDispenser.Dispense"], array

(string)
🗸🗸

 "commandNonceTimeout": 3600 integer 🗸🗸
 }
 },
 "cardReader": { object, null
 "type": "motor", string 🗸🗸
 "readTracks": { object, null
 "track1": false, boolean
 "track2": false, boolean
 "track3": false, boolean
 "watermark": false, boolean
 "frontTrack1": false, boolean
 "frontImage": false, boolean
 "backImage": false, boolean
 "track1JIS": false, boolean
 "track3JIS": false, boolean
 "ddi": false boolean
 },
 "writeTracks": { object, null
 "track1": false, boolean
 "track2": false, boolean
 "track3": false, boolean
 "frontTrack1": false, boolean

72

Payload (version 2.0) Type Requi
red

 "track1JIS": false, boolean
 "track3JIS": false boolean
 },
 "chipProtocols": { object, null
 "chipT0": false, boolean
 "chipT1": false, boolean
 "chipProtocolNotRequired": false, boolean
 "chipTypeAPart3": false, boolean
 "chipTypeAPart4": false, boolean
 "chipTypeB": false, boolean
 "chipTypeNFC": false boolean
 },
 "securityType": "mm", string, null
 "powerOnOption": "exit", string, null
 "powerOffOption": "exit", string, null
 "fluxSensorProgrammable": false, boolean
 "readWriteAccessFromExit": false, boolean
 "writeMode": { object, null
 "loco": false, boolean
 "hico": false, boolean
 "auto": false boolean
 },
 "chipPower": { object, null
 "cold": false, boolean
 "warm": false, boolean
 "off": false boolean
 },
 "memoryChipProtocols": { object, null
 "siemens4442": false, boolean
 "gpm896": false boolean
 },
 "positions": { object, null
 "exit": false, boolean
 "transport": false boolean
 },
 "cardTakenSensor": false boolean
 },
 "cashAcceptor": { object, null
 "type": "tellerBill", string 🗸🗸
 "maxCashInItems": 1, integer

73

Payload (version 2.0) Type Requi
red

 "shutter": false, boolean
 "shutterControl": false, boolean
 "intermediateStacker": 0, integer, null
 "itemsTakenSensor": false, boolean
 "itemsInsertedSensor": false, boolean
 "positions": [{ array

(object)
🗸🗸

 "position": "inLeft", string 🗸🗸
 "usage": { object 🗸🗸
 "in": false, boolean
 "refuse": false, boolean
 "rollback": false boolean
 },
 "shutterControl": true, boolean
 "itemsTakenSensor": false, boolean
 "itemsInsertedSensor": false, boolean
 "retractAreas": { object, null
 "retract": false, boolean
 "reject": false, boolean
 "transport": false, boolean
 "stacker": false, boolean
 "billCassettes": false, boolean
 "cashIn": false boolean
 },
 "presentControl": false, boolean
 "preparePresent": false boolean
 }],
 "retractAreas": { object, null
 "retract": false, boolean
 "transport": false, boolean
 "stacker": false, boolean
 "reject": false, boolean
 "billCassette": false, boolean
 "cashIn": false boolean
 },
 "retractTransportActions": { object, null
 "present": false, boolean
 "retract": false, boolean
 "reject": false, boolean
 "billCassette": false, boolean

74

Payload (version 2.0) Type Requi
red

 "cashIn": See cashAcceptor/retractAreas/cashIn boolean
 },
 "retractStackerActions": See
cashAcceptor/retractTransportActions properties

object, null

 "cashInLimit": { object, null
 "byTotalItems": false, boolean
 "byAmount": false boolean
 },
 "countActions": { object, null
 "individual": false, boolean
 "all": false boolean
 },
 "retainAction": { object, null
 "counterfeit": false, boolean
 "suspect": false, boolean
 "inked": false boolean
 }
 },
 "cashDispenser": { object, null
 "type": "tellerBill", string 🗸🗸
 "maxDispenseItems": 1, integer 🗸🗸
 "shutterControl": false, boolean
 "retractAreas": { object, null
 "retract": false, boolean
 "transport": false, boolean
 "stacker": false, boolean
 "reject": false, boolean
 "itemCassette": false, boolean
 "cashIn": false boolean
 },
 "retractTransportActions": { object, null
 "present": false, boolean
 "retract": false, boolean
 "reject": false, boolean
 "itemCassette": false, boolean
 "cashIn": false boolean
 },
 "retractStackerActions": See
cashDispenser/retractTransportActions properties

object, null

 "intermediateStacker": false, boolean
 "itemsTakenSensor": false, boolean

75

Payload (version 2.0) Type Requi
red

 "positions": { object 🗸🗸
 "left": false, boolean
 "right": false, boolean
 "center": false, boolean
 "top": false, boolean
 "bottom": false, boolean
 "front": false, boolean
 "rear": false boolean
 },
 "moveItems": { object, null
 "fromCashUnit": false, boolean
 "toCashUnit": false, boolean
 "toTransport": false, boolean
 "toStacker": false boolean
 }
 },
 "cashManagement": { object, null
 "cashBox": false, boolean
 "exchangeType": { object 🗸🗸
 "byHand": false boolean
 },
 "itemInfoTypes": { object, null
 "serialNumber": false, boolean
 "signature": false, boolean
 "image": false boolean
 },
 "classificationList": false, boolean
 "classifications": { object
 "unrecognized": true, boolean
 "counterfeit": false, boolean
 "suspect": false, boolean
 "inked": false, boolean
 "fit": true, boolean
 "unfit": false boolean
 }
 },
 "check": { object, null
 "type": "singleMediaInput", string 🗸🗸
 "maxMediaOnStacker": 0, integer
 "printSize": { object, null

76

Payload (version 2.0) Type Requi
red

 "rows": 0, integer
 "cols": 0 integer
 },
 "stamp": false, boolean
 "rescan": false, boolean
 "presentControl": false, boolean 🗸🗸
 "applicationRefuse": false, boolean
 "retractLocation": { object, null
 "storage": false, boolean
 "transport": false, boolean
 "stacker": false, boolean
 "rebuncher": false boolean
 },
 "resetControl": { object, null
 "eject": false, boolean
 "storageUnit": false, boolean
 "transport": See check/retractLocation/transport, boolean
 "rebuncher": See check/retractLocation/rebuncher boolean
 },
 "imageType": { object, null
 "tif": false, boolean
 "wmf": false, boolean
 "bmp": false, boolean
 "jpg": false boolean
 },
 "frontImage": { object, null
 "colorFormat": { object 🗸🗸
 "binary": false, boolean
 "grayScale": false, boolean
 "full": false boolean
 },
 "scanColor": { object 🗸🗸
 "red": false, boolean
 "green": false, boolean
 "blue": false, boolean
 "yellow": false, boolean
 "white": false, boolean
 "infraRed": false, boolean
 "ultraViolet": false boolean
 },

77

Payload (version 2.0) Type Requi
red

 "defaultScanColor": "red" string 🗸🗸
 },
 "backImage": See check/frontImage properties object, null
 "codelineFormat": { object 🗸🗸
 "cmc7": false, boolean
 "e13b": false, boolean
 "ocr": false, boolean
 "ocra": false, boolean
 "ocrb": false boolean
 },
 "dataSource": { object 🗸🗸
 "imageFront": false, boolean
 "imageBack": false, boolean
 "codeLine": false boolean
 },
 "insertOrientation": { object 🗸🗸
 "codeLineRight": false, boolean
 "codeLineLeft": false, boolean
 "codeLineBottom": false, boolean
 "codeLineTop": false, boolean
 "faceUp": false, boolean
 "faceDown": false boolean
 },
 "positions": { object 🗸🗸
 "input": { object, null
 "itemsTakenSensor": false, boolean,

null

 "itemsInsertedSensor": false, boolean,
null

 "retractAreas": { object, null
 "retractBin": false, boolean
 "transport": false, boolean
 "stacker": false, boolean
 "rebuncher": false boolean
 }
 },
 "output": See check/positions/input properties object, null
 "refused": See check/positions/input properties object, null
 },
 "imageAfterEndorse": false, boolean

78

Payload (version 2.0) Type Requi
red

 "returnedItemsProcessing": { object, null
 "endorse": false, boolean
 "endorseImage": false boolean
 },
 "printSizeFront": See check/printSize properties object, null
 },
 "mixedMedia": { object, null
 "modes": { object 🗸🗸
 "cashAccept": true, boolean,

null

 "checkAccept": true boolean,
null

 },
 "dynamic": false boolean
 },
 "pinPad": { object, null
 "pinFormats": { object
 "ibm3624": false, boolean
 "ansi": false, boolean
 "iso0": false, boolean
 "iso1": false, boolean
 "eci2": false, boolean
 "eci3": false, boolean
 "visa": false, boolean
 "diebold": false, boolean
 "dieboldCo": false, boolean
 "visa3": false, boolean
 "banksys": false, boolean
 "emv": false, boolean
 "iso3": false, boolean
 "ap": false, boolean
 "iso4": false boolean
 },
 "presentationAlgorithms": { object, null
 "presentClear": false boolean
 },
 "display": { object, null
 "none": false, boolean
 "ledThrough": false, boolean
 "display": false boolean
 },

79

Payload (version 2.0) Type Requi
red

 "idcConnect": false, boolean
 "validationAlgorithms": { object, null
 "des": false, boolean
 "visa": false boolean
 },
 "pinCanPersistAfterUse": false, boolean
 "typeCombined": false, boolean
 "setPinblockDataRequired": false, boolean
 "pinBlockAttributes": { object, null
 "P0": { object
 "T": { object
 "E": { object
 "cryptoMethod": { object 🗸🗸
 "ecb": false, boolean
 "cbc": false, boolean
 "cfb": false, boolean
 "ofb": false, boolean
 "ctr": false, boolean
 "xts": false, boolean
 "rsaesPkcs1V15": false, boolean
 "rsaesOaep": false boolean
 }
 }
 },
 "R": See pinPad/pinBlockAttributes/P0/T properties object
 }
 }
 },
 "crypto": { object, null
 "emvHashAlgorithm": { object, null
 "sha1Digest": false, boolean
 "sha256Digest": false boolean
 },
 "cryptoAttributes": { object, null
 "D0": { object
 "D": { object
 "D": { object
 "cryptoMethod": { object 🗸🗸
 "ecb": false, boolean
 "cbc": false, boolean

80

Payload (version 2.0) Type Requi
red

 "cfb": false, boolean
 "ofb": false, boolean
 "ctr": false, boolean
 "xts": false, boolean
 "rsaesPkcs1V15": false, boolean
 "rsaesOaep": false boolean
 }
 },
 "E": See crypto/cryptoAttributes/D0/D/D properties object
 },
 "T": See crypto/cryptoAttributes/D0/D properties object
 },
 "D1": See crypto/cryptoAttributes/D0 properties object
 },
 "authenticationAttributes": { object, null
 "M0": { object
 "T": { object
 "G": { object, null
 "cryptoMethod": { object, null
 "rsassaPkcs1V15": false, boolean
 "rsassaPss": false boolean
 },
 "hashAlgorithm": { object, null
 "sha1": false, boolean
 "sha256": false boolean
 }
 },
 "S": See crypto/authenticationAttributes/M0/T/G
properties

object, null

 },
 "R": See crypto/authenticationAttributes/M0/T properties object
 },
 "S0": See crypto/authenticationAttributes/M0 properties object
 },
 "verifyAttributes": { object, null
 "M0": See crypto/authenticationAttributes/M0 object
 "T": { object
 "V": { object, null
 "cryptoMethod": See
crypto/authenticationAttributes/M0/T/G/cryptoMethod properties

object, null

81

Payload (version 2.0) Type Requi
red

 "hashAlgorithm": See
crypto/authenticationAttributes/M0/T/G/hashAlgorithm properties

object, null

 }
 },
 "R": See crypto/verifyAttributes/M0/T properties object
 },
 "S0": See crypto/authenticationAttributes/M0 object
 "T": See crypto/verifyAttributes/M0/T properties object
 "R": See crypto/verifyAttributes/M0/T properties object
 }
 }
 },
 "keyManagement": { object, null
 "keyNum": 0, integer 🗸🗸
 "derivationAlgorithms": { object, null
 "chipZka": false boolean
 },
 "keyCheckModes": { object, null
 "self": false, boolean
 "zero": false boolean
 },
 "hsmVendor": "HSM Vendor", string, null
 "rsaAuthenticationScheme": { object, null
 "twoPartySig": false, boolean
 "threePartyCert": false, boolean
 "threePartyCertTr34": false boolean
 },
 "rsaSignatureAlgorithm": { object, null
 "pkcs1V15": false, boolean
 "pss": false boolean
 },
 "rsaCryptAlgorithm": { object, null
 "pkcs1V15": false, boolean
 "oaep": false boolean
 },
 "rsaKeyCheckMode": { object, null
 "sha1": false, boolean
 "sha256": false boolean
 },
 "signatureScheme": { object, null

82

Payload (version 2.0) Type Requi
red

 "randomNumber": false, boolean
 "exportDeviceId": false, boolean
 "enhancedRkl": false boolean
 },
 "emvImportSchemes": { object, null
 "plainCA": false, boolean
 "chksumCA": false, boolean
 "epiCA": false, boolean
 "issuer": false, boolean
 "icc": false, boolean
 "iccPin": false, boolean
 "pkcsv15CA": false boolean
 },
 "keyBlockImportFormats": { object, null
 "A": false, boolean
 "B": false, boolean
 "C": false, boolean
 "D": false boolean
 },
 "keyImportThroughParts": false, boolean
 "desKeyLength": { object, null
 "single": false, boolean
 "double": false, boolean
 "triple": false boolean
 },
 "certificateTypes": { object, null
 "encKey": false, boolean
 "verificationKey": false, boolean
 "hostKey": false boolean
 },
 "loadCertOptions": { object, null
 "certHost": { object
 "newHost": false, boolean
 "replaceHost": false boolean
 },
 "caTr34": See keyManagement/loadCertOptions/certHost
properties

object

 },
 "crklLoadOptions": { object, null
 "noRandom": false, boolean

83

Payload (version 2.0) Type Requi
red

 "noRandomCrl": false, boolean
 "random": false, boolean
 "randomCrl": false boolean
 },
 "symmetricKeyManagementMethods": { object, null
 "fixedKey": false, boolean
 "masterKey": false, boolean
 "tdesDukpt": false boolean
 },
 "keyAttributes": { object
 "M0": { object
 "T": { object
 "C": { object, null
 "restrictedKeyUsage": "string" string, null
 },
 "E": See keyManagement/keyAttributes/M0/T/C properties object, null
 },
 "R": See keyManagement/keyAttributes/M0/T properties object
 },
 "K1": See keyManagement/keyAttributes/M0 properties object
 },
 "decryptAttributes": { object, null
 "A": { object
 "decryptMethod": { object 🗸🗸
 "ecb": false, boolean
 "cbc": false, boolean
 "cfb": false, boolean
 "ofb": false, boolean
 "ctr": false, boolean
 "xts": false, boolean
 "rsaesPkcs1V15": false, boolean
 "rsaesOaep": false boolean
 }
 },
 "T": See keyManagement/decryptAttributes/A properties object
 },
 "verifyAttributes": { object, null
 "M0": { object
 "T": { object
 "V": { object

84

Payload (version 2.0) Type Requi
red

 "cryptoMethod": { object 🗸🗸
 "kcvNone": false, boolean
 "kcvSelf": false, boolean
 "kcvZero": false, boolean
 "sigNone": false, boolean
 "rsassaPkcs1V15": false, boolean
 "rsassaPss": false boolean
 },
 "hashAlgorithm": { object 🗸🗸
 "sha1": false, boolean
 "sha256": false boolean
 }
 },
 "S": See keyManagement/verifyAttributes/M0/T/V
properties

object

 },
 "R": See keyManagement/verifyAttributes/M0/T properties object
 },
 "S0": See keyManagement/verifyAttributes/M0 properties object
 }
 },
 "keyboard": { object, null
 "autoBeep": { object, null
 "activeAvailable": false, boolean
 "activeSelectable": false, boolean
 "inactiveAvailable": false, boolean
 "inactiveSelectable": false boolean
 },
 "etsCaps": { object, null
 "xPos": 0, integer
 "yPos": 0, integer
 "xSize": 0, integer
 "ySize": 0, integer
 "maximumTouchFrames": 0, integer
 "maximumTouchKeys": 0, integer
 "float": { object, null
 "x": false, boolean
 "y": false boolean
 }
 }

85

Payload (version 2.0) Type Requi
red

 },
 "textTerminal": { object, null
 "type": "fixed", string 🗸🗸
 "resolutions": [{ array

(object)
🗸🗸

 "sizeX": 0, integer 🗸🗸
 "sizeY": 0 integer 🗸🗸
 }],
 "keyLock": false, boolean 🗸🗸
 "cursor": false, boolean 🗸🗸
 "forms": false boolean 🗸🗸
 },
 "printer": { object, null
 "type": { object 🗸🗸
 "receipt": false, boolean
 "passbook": false, boolean
 "journal": false, boolean
 "document": false, boolean
 "scanner": false boolean
 },
 "resolution": { object 🗸🗸
 "low": false, boolean
 "medium": false, boolean
 "high": false, boolean
 "veryHigh": false boolean
 },
 "readForm": { object, null
 "ocr": false, boolean
 "micr": false, boolean
 "msf": false, boolean
 "barcode": false, boolean
 "pageMark": false, boolean
 "readImage": false, boolean
 "readEmptyLine": false boolean
 },
 "writeForm": { object 🗸🗸
 "text": false, boolean
 "graphics": false, boolean
 "ocr": See printer/readForm/ocr, boolean

86

Payload (version 2.0) Type Requi
red

 "micr": See printer/readForm/micr, boolean
 "msf": See printer/readForm/msf, boolean
 "barcode": See printer/readForm/barcode, boolean
 "stamp": false boolean
 },
 "extents": { object, null
 "horizontal": false, boolean
 "vertical": false boolean
 },
 "control": { object 🗸🗸
 "eject": false, boolean
 "perforate": false, boolean
 "cut": false, boolean
 "skip": false, boolean
 "flush": false, boolean
 "retract": false, boolean
 "stack": false, boolean
 "partialCut": false, boolean
 "alarm": false, boolean
 "pageForward": false, boolean
 "pageBackward": false, boolean
 "turnMedia": false, boolean
 "stamp": false, boolean
 "park": false, boolean
 "expel": false, boolean
 "ejectToTransport": false, boolean
 "rotate180": false, boolean
 "clearBuffer": false boolean
 },
 "maxMediaOnStacker": 5, integer
 "acceptMedia": false, boolean
 "multiPage": false, boolean
 "paperSources": { object 🗸🗸
 "upper": false, boolean
 "lower": false, boolean
 "external": false, boolean
 "aux": false, boolean
 "aux2": false, boolean
 "park": false, boolean
 "exampleProperty1": false, boolean

87

Payload (version 2.0) Type Requi
red

 "exampleProperty2": See
printer/paperSources/exampleProperty1

boolean

 },
 "mediaTaken": false, boolean
 "retractBins": 1, integer
 "maxRetract": [10], array

(integer),
null

 "imageType": { object, null
 "tif": false, boolean
 "wmf": false, boolean
 "bmp": false, boolean
 "jpg": false boolean
 },
 "frontImageColorFormat": { object, null
 "binary": false, boolean
 "grayscale": false, boolean
 "full": false boolean
 },
 "backImageColorFormat": { object, null
 "binary": See printer/frontImageColorFormat/binary, boolean
 "grayScale": See printer/frontImageColorFormat/grayscale, boolean
 "full": See printer/frontImageColorFormat/full boolean
 },
 "imageSource": { object, null
 "imageFront": false, boolean
 "imageBack": false boolean
 },
 "dispensePaper": false, boolean
 "osPrinter": "example printer", string, null
 "mediaPresented": false, boolean
 "autoRetractPeriod": 0, integer
 "retractToTransport": false, boolean
 "coercivityType": { object, null
 "low": false, boolean
 "high": false, boolean
 "auto": false boolean
 },
 "controlPassbook": { object, null
 "turnForward": false, boolean
 "turnBackward": false, boolean

88

Payload (version 2.0) Type Requi
red

 "closeForward": false, boolean
 "closeBackward": false boolean
 },
 "printSides": "single" string, null
 },
 "barcodeReader": { object, null
 "canFilterSymbologies": false, boolean 🗸🗸
 "symbologies": { object, null
 "ean128": false, boolean
 "ean8": false, boolean
 "ean8_2": false, boolean
 "ean8_5": false, boolean
 "ean13": false, boolean
 "ean13_2": false, boolean
 "ean13_5": false, boolean
 "jan13": false, boolean
 "upcA": false, boolean
 "upcE0": false, boolean
 "upcE0_2": false, boolean
 "upcE0_5": false, boolean
 "upcE1": false, boolean
 "upcE1_2": false, boolean
 "upcE1_5": false, boolean
 "upcA_2": false, boolean
 "upcA_5": false, boolean
 "codabar": false, boolean
 "itf": false, boolean
 "code11": false, boolean
 "code39": false, boolean
 "code49": false, boolean
 "code93": false, boolean
 "code128": false, boolean
 "msi": false, boolean
 "plessey": false, boolean
 "std2Of5": false, boolean
 "std2Of5Iata": false, boolean
 "pdf417": false, boolean
 "microPdf417": false, boolean
 "dataMatrix": false, boolean
 "maxiCode": false, boolean

89

Payload (version 2.0) Type Requi
red

 "codeOne": false, boolean
 "channelCode": false, boolean
 "telepenOriginal": false, boolean
 "telepenAim": false, boolean
 "rss": false, boolean
 "rssExpanded": false, boolean
 "rssRestricted": false, boolean
 "compositeCodeA": false, boolean
 "compositeCodeB": false, boolean
 "compositeCodeC": false, boolean
 "posiCodeA": false, boolean
 "posiCodeB": false, boolean
 "triopticCode39": false, boolean
 "codablockF": false, boolean
 "code16K": false, boolean
 "qrCode": false, boolean
 "aztec": false, boolean
 "ukPost": false, boolean
 "planet": false, boolean
 "postnet": false, boolean
 "canadianPost": false, boolean
 "netherlandsPost": false, boolean
 "australianPost": false, boolean
 "japanesePost": false, boolean
 "chinesePost": false, boolean
 "koreanPost": false boolean
 }
 },
 "biometric": { object, null
 "type": { object 🗸🗸
 "facialFeatures": false, boolean
 "voice": false, boolean
 "fingerprint": false, boolean
 "fingerVein": false, boolean
 "iris": false, boolean
 "retina": false, boolean
 "handGeometry": false, boolean
 "thermalFace": false, boolean
 "thermalHand": false, boolean
 "palmVein": false, boolean

90

Payload (version 2.0) Type Requi
red

 "signature": false boolean
 },
 "maxCapture": 0, integer 🗸🗸
 "templateStorage": 0, integer 🗸🗸
 "dataFormats": { object 🗸🗸
 "isoFid": false, boolean
 "isoFmd": false, boolean
 "ansiFid": false, boolean
 "ansiFmd": false, boolean
 "qso": false, boolean
 "wso": false, boolean
 "reservedRaw1": false, boolean
 "reservedTemplate1": false, boolean
 "reservedRaw2": See biometric/dataFormats/reservedRaw1, boolean
 "reservedTemplate2": See
biometric/dataFormats/reservedTemplate1,

boolean

 "reservedRaw3": See biometric/dataFormats/reservedRaw1, boolean
 "reservedTemplate3": See
biometric/dataFormats/reservedTemplate1

boolean

 },
 "encryptionAlgorithms": { object, null
 "ecb": false, boolean
 "cbc": false, boolean
 "cfb": false, boolean
 "rsa": false boolean
 },
 "storage": { object, null
 "secure": false, boolean
 "clear": false boolean
 },
 "persistenceModes": { object, null
 "persist": false, boolean
 "clear": false boolean
 },
 "matchSupported": "storedMatch", string, null
 "scanModes": { object 🗸🗸
 "scan": false, boolean
 "match": false boolean
 },
 "compareModes": { object, null
 "verify": false, boolean

91

Payload (version 2.0) Type Requi
red

 "identity": false boolean
 },
 "clearData": { object, null
 "scannedData": false, boolean
 "importedData": false, boolean
 "setMatchedData": false boolean
 }
 },
 "camera": { object, null
 "cameras": { object 🗸🗸
 "room": false, boolean
 "person": false, boolean
 "exitSlot": false, boolean
 "vendorSpecificCamera": false boolean
 },
 "maxPictures": 0, integer, null
 "camData": { object, null
 "autoAdd": false, boolean
 "manAdd": false boolean
 },
 "maxDataLength": 0 integer, null
 },
 "lights": { object, null
 "cardReader": { object, null
 "flashRate": { object 🗸🗸
 "off": false, boolean
 "slow": false, boolean
 "medium": false, boolean
 "quick": false, boolean
 "continuous": true boolean
 },
 "color": { object 🗸🗸
 "red": false, boolean
 "green": false, boolean
 "yellow": false, boolean
 "blue": false, boolean
 "cyan": false, boolean
 "magenta": false, boolean
 "white": false boolean
 },

92

Payload (version 2.0) Type Requi
red

 "direction": { object, null
 "entry": false, boolean
 "exit": false boolean
 },
 "position": { object, null
 "left": false, boolean
 "right": false, boolean
 "center": false, boolean
 "top": false, boolean
 "bottom": false, boolean
 "front": false, boolean
 "rear": false boolean
 }
 },
 "pinPad": See lights/cardReader properties object, null
 "notesDispenser": See lights/cardReader properties object, null
 "coinDispenser": See lights/cardReader properties object, null
 "receiptPrinter": See lights/cardReader properties object, null
 "passbookPrinter": See lights/cardReader properties object, null
 "envelopeDepository": See lights/cardReader properties object, null
 "checkUnit": See lights/cardReader properties object, null
 "billAcceptor": See lights/cardReader properties object, null
 "envelopeDispenser": See lights/cardReader properties object, null
 "documentPrinter": See lights/cardReader properties object, null
 "coinAcceptor": See lights/cardReader properties object, null
 "scanner": See lights/cardReader properties object, null
 "contactless": See lights/cardReader properties object, null
 "cardReader2": See lights/cardReader properties object, null
 "notesDispenser2": See lights/cardReader properties object, null
 "billAcceptor2": See lights/cardReader properties object, null
 "statusGood": See lights/cardReader properties object, null
 "statusWarning": See lights/cardReader properties object, null
 "statusBad": See lights/cardReader properties object, null
 "statusSupervisor": See lights/cardReader properties object, null
 "statusInService": See lights/cardReader properties object, null
 "fasciaLight": See lights/cardReader properties object, null
 "vendorSpecificLight": See lights/cardReader properties object, null
 },
 "auxiliaries": { object, null
 "operatorSwitch": { object, null

93

Payload (version 2.0) Type Requi
red

 "run": false, boolean
 "maintenance": false, boolean
 "supervisor": false boolean
 },
 "tamperSensor": false, boolean
 "internalTamperSensor": false, boolean
 "seismicSensor": false, boolean
 "heatSensor": false, boolean
 "proximitySensor": false, boolean
 "ambientLightSensor": false, boolean
 "enhancedAudioSensor": { object, null
 "manual": false, boolean
 "auto": false, boolean
 "semiAuto": false, boolean
 "bidirectional": false boolean
 },
 "bootSwitchSensor": false, boolean
 "consumerDisplaySensor": false, boolean
 "operatorCallButtonSensor": false, boolean
 "handsetSensor": { object, null
 "manual": false, boolean
 "auto": false, boolean
 "semiAuto": false, boolean
 "microphone": false boolean
 },
 "headsetMicrophoneSensor": { object, null
 "manual": false, boolean
 "auto": false, boolean
 "semiAuto": false boolean
 },
 "fasciaMicrophoneSensor": false, boolean
 "cabinetDoor": { object, null
 "closed": false, boolean
 "open": false, boolean
 "locked": false, boolean
 "bolted": false, boolean
 "tampered": false boolean
 },
 "safeDoor": See auxiliaries/cabinetDoor properties object, null
 "vandalShield": { object, null

94

Payload (version 2.0) Type Requi
red

 "closed": false, boolean
 "open": false, boolean
 "locked": false, boolean
 "service": false, boolean
 "keyboard": false, boolean
 "tampered": false boolean
 },
 "frontCabinet": See auxiliaries/cabinetDoor properties object, null
 "rearCabinet": See auxiliaries/cabinetDoor properties object, null
 "leftCabinet": See auxiliaries/cabinetDoor properties object, null
 "rightCabinet": See auxiliaries/cabinetDoor properties object, null
 "openCloseIndicator": false, boolean
 "audio": false, boolean
 "heating": false, boolean
 "consumerDisplayBacklight": false, boolean
 "signageDisplay": false, boolean
 "volume": 1, integer
 "ups": { object, null
 "low": false, boolean
 "engaged": false, boolean
 "powering": false, boolean
 "recovered": false boolean
 },
 "audibleAlarm": false, boolean
 "enhancedAudioControl": { object, null
 "headsetDetection": false, boolean
 "modeControllable": false boolean
 },
 "enhancedMicrophoneControl": { object, null
 "headsetDetection": false, boolean
 "modeControllable": false boolean
 },
 "microphoneVolume": 1, integer, null
 "autoStartupMode": { object, null
 "specific": false, boolean
 "daily": false, boolean
 "weekly": false boolean
 }
 },
 "vendorApplication": { object, null

95

Payload (version 2.0) Type Requi
red

 "supportedAccessLevels": { object, null 🗸🗸
 "basic": false, boolean
 "intermediate": false, boolean
 "full": false boolean
 }
 }
}

Properties

interfaces
Array of interfaces supported by this XFS4IoT service.

interfaces/name
Name of supported XFS4IoT interface. Following values are supported:

• Common - Common interface. Every device implements this interface.
• CardReader - CardReader interface.
• CashAcceptor - CashAcceptor interface.
• CashDispenser - CashDispenser interface.
• CashManagement - CashManagement interface.
• PinPad - PinPad interface.
• Crypto - Crypto interface.
• KeyManagement - KeyManagement interface.
• Keyboard - Keyboard interface.
• TextTerminal - TextTerminal interface.
• Printer - Printer interface.
• BarcodeReader - BarcodeReader interface.
• Lights - Lights interface.
• Auxiliaries - Auxiliaries interface.
• VendorMode - VendorMode interface.
• VendorApplication - VendorApplication interface.
• Storage - Storage interface.
• Biometric - Biometric interface.
• Check - Check interface.
• MixedMedia - MixedMedia interface.

interfaces/commands
The commands supported by the service.

interfaces/commands/CardReader.ReadRawData (example name)
A command name.
Property name constraints:
pattern: ^[0-9A-Za-z]*\.[0-9A-Za-z]*$

interfaces/commands/CardReader.ReadRawData/versions
The versions of the command supported by the service. There will be one item for each major version supported.
The minor version number qualifies the exact version of the message the service supports.
Property value constraints:
pattern: ^[1-9][0-9]*\.([1-9][0-9]*|0)$

interfaces/events
The events (both event and unsolicited) supported by the service. May be null if no events are supported.
default: null

96

Properties

interfaces/events/CardReader.MediaInsertedEvent (example name)
An event name.
Property name constraints:
pattern: ^[0-9A-Za-z]*\.[0-9A-Za-z]*$

interfaces/events/CardReader.MediaInsertedEvent/versions
The versions of the event supported by the service. There will be one item for each major version supported. The
minor version number qualifies the exact version of the message the service supports.
Property value constraints:
pattern: ^[1-9][0-9]*\.([1-9][0-9]*|0)$

interfaces/maximumRequests
Specifies the maximum number of requests which can be queued by the Service. This will be 0 if the maximum
number of requests is unlimited.
Property value constraints:
minimum: 0
default: 0

common
Capability information common to all XFS4IoT services.

common/serviceVersion
Specifies the Service Version.

common/deviceInformation
Array of deviceInformation structures. If the service uses more than one device there will be on array element for
each device.

common/deviceInformation/modelName
Specifies the device model name. The property is null if the device model name is unknown.
default: null

common/deviceInformation/serialNumber
Specifies the unique serial number of the device. The property is null if the serial number is unknown.
default: null

common/deviceInformation/revisionNumber
Specifies the device revision number. The property is null if the device revision number is unknown.
default: null

common/deviceInformation/modelDescription
Contains a description of the device. The property is null if the model description is unknown.
default: null

common/deviceInformation/firmware
Array of firmware structures specifying the names and version numbers of the firmware that is present. Single or
multiple firmware versions can be reported. If the firmware versions are not reported, then this property is null.
default: null

common/deviceInformation/firmware/firmwareName
Specifies the firmware name. The property is null if the firmware name is unknown.
default: null

common/deviceInformation/firmware/firmwareVersion
Specifies the firmware version. The property is null if the firmware version is unknown.
default: null

common/deviceInformation/firmware/hardwareRevision
Specifies the hardware revision. The property is null if the hardware revision is unknown.
default: null

97

Properties

common/deviceInformation/software
Array of software structures specifying the names and version numbers of the software components that are
present. Single or multiple software versions can be reported. If the software versions are not reported, then this
property is null.
default: null

common/deviceInformation/software/softwareName
Specifies the software name. The property is null if the software name is unknown.
default: null

common/deviceInformation/software/softwareVersion
Specifies the software version. The property is null if the software version is unknown.
default: null

common/powerSaveControl
Specifies whether power saving control is available.
default: false

common/antiFraudModule
Specifies whether the anti-fraud module is available.
default: false

common/endToEndSecurity
If present then end to end security is supported. The sub-properties detail exactly how it is supported and what
level of support is enabled. Also see common.StatusProperties.endToEndSecurity for the current status of end to
end security, such as if it is being enforced, or if configuration is required.
If this is null then end to end security is not supported by this service.
default: null

common/endToEndSecurity/required
Specifies the level of support for end to end security

• ifConfigured - The device is capable of supporting E2E security, but it will not be enforced if not
configured, for example because the required keys are not loaded.

• always - E2E security is supported and enforced at all times. Failure to supply the required security
details will lead to errors. If E2E security is not correctly configured, for example because the required
keys are not loaded, all secured commands will fail with an error.

common/endToEndSecurity/hardwareSecurityElement
Specifies if this device has a Hardware Security Element (HSE) which validates the security token. If this
property is false it means that validation is performed in software.

common/endToEndSecurity/responseSecurityEnabled
Specifies if this device will return a security token as part of the response data to commands that support end to
end security, for example, to validate the result of a dispense operation. This property is null in Common.Status
if the device is incapable of returning a response token, otherwise one of the following values:

• ifConfigured - The device is capable of supporting E2E security if correctly configured. If E2E
security has not been correctly configured, for example because the required keys are not loaded,
commands will complete without a security token.

• always - A security token will be included with command responses. If E2E security is not correctly
configured, for example because the required keys are not loaded, the command will complete with an
error.

98

Properties

common/endToEndSecurity/commands
Array of commands which require an E2E token to authorize. These commands will fail if called without a valid
token.
The commands that can be listed here depends on the XFS4IoT standard, but it's possible that the standard will
change over time, so for maximum compatibility an application should check this property before calling a
command.
Note that this only includes commands that require a token. Commands that take a nonce and return a token will
not be listed here. Those commands can be called without a nonce and will continue to operate in a compatible
way.
Property value constraints:
pattern: ^[A-Za-z][A-Za-z0-9]*\.[A-Za-z][A-Za-z0-9]*$

common/endToEndSecurity/commandNonceTimeout
If this device supports end to end security and can return a command nonce with the command
Common.GetCommandNonce, and the device automatically clears the command nonce after a fixed length of
time, this property will report the number of seconds between returning the command nonce and clearing it.
The value is given in seconds but it should not be assumed that the timeout will be accurate to the nearest
second. The nonce may also become invalid before the timeout, for example because of a power failure.
The device may impose a timeout to reduce the chance of an attacker re-using a nonce value or a token. This
timeout will be long enough to support normal operations such as dispense and present including creating the
required token on the host and passing it to the device. For example, a command nonce might time out after one
hour (that is, 3600 seconds).
In all other cases, commandNonceTimeout will have a value of zero. Any command nonce will never timeout. It
may still become invalid, for example because of a power failure or when explicitly cleared using the
Common.ClearCommandNonce command.
Property value constraints:
minimum: 0

cardReader
Capability information for XFS4IoT services implementing the CardReader interface. This will be null if the
CardReader interface is not supported.
default: null

cardReader/type
Specifies the type of the ID card unit as one of the following:

• motor - The ID card unit is a motor driven card unit.
• swipe - The ID card unit is a swipe (pull-through) card unit.
• dip - The ID card unit is a dip card unit. This dip type is not capable of latching cards entered.
• latchedDip - The ID card unit is a latched dip card unit. This device type is used when a dip card unit

device supports chip communication. The latch ensures the consumer cannot remove the card during
chip communication. Any card entered will automatically latch when a request to initiate a chip dialog
is made (via the CardReader.ReadRawData command). The CardReader.Move command is used to
unlatch the card.

• contactless - The ID card unit is a contactless card unit, i.e. no insertion of the card is required.
• intelligentContactless - The ID card unit is an intelligent contactless card unit, i.e. no insertion

of the card is required and the card unit has built-in EMV or smart card application functionality that
adheres to the EMVCo Contactless Specifications [Ref. cardreader-3] or individual payment system's
specifications. The ID card unit is capable of performing both magnetic stripe emulation and EMV-like
transactions.

• permanent - The ID card unit is dedicated to a permanently housed chip card (no user interaction is
available with this type of card).

cardReader/readTracks
Specifies the tracks that can be read by the card reader. May be null if not applicable.
default: null

99

Properties

cardReader/readTracks/track1
The card reader can access track 1.
default: false

cardReader/readTracks/track2
The card reader can access track 2.
default: false

cardReader/readTracks/track3
The card reader can access track 3.
default: false

cardReader/readTracks/watermark
The card reader can access the Swedish watermark track.
default: false

cardReader/readTracks/frontTrack1
The card reader can access front track 1.
default: false

cardReader/readTracks/frontImage
The card reader can read the front image of the card.
default: false

cardReader/readTracks/backImage
The card reader can read the back image of the card.
default: false

cardReader/readTracks/track1JIS
The card reader can access JIS I track 1.
default: false

cardReader/readTracks/track3JIS
The card reader can access JIS I track 3.
default: false

cardReader/readTracks/ddi
The card reader can provide dynamic digital identification of the magnetic strip.
default: false

cardReader/writeTracks
Specifies the tracks that can be written by the card reader. May be null if no tracks can be written.
default: null

cardReader/writeTracks/track1
The card reader can write on track 1.
default: false

cardReader/writeTracks/track2
The card reader can write on track 2.
default: false

cardReader/writeTracks/track3
The card reader can write on track 3.
default: false

cardReader/writeTracks/frontTrack1
The card reader can write on front track 1.
default: false

100

Properties

cardReader/writeTracks/track1JIS
The card reader can write on JIS I track 1.
default: false

cardReader/writeTracks/track3JIS
The card reader can write on JIS I track 3.
default: false

cardReader/chipProtocols
Specifies the chip card protocols that are supported by the card reader. May be null if none are supported.
default: null

cardReader/chipProtocols/chipT0
The card reader can handle the T=0 protocol.
default: false

cardReader/chipProtocols/chipT1
The card reader can handle the T=1 protocol.
default: false

cardReader/chipProtocols/chipProtocolNotRequired
The carder is capable of communicating with the chip without requiring the application to specify any protocol.
default: false

cardReader/chipProtocols/chipTypeAPart3
The card reader can handle the ISO 14443 (Part3) Type A contactless chip card protocol.
default: false

cardReader/chipProtocols/chipTypeAPart4
The card reader can handle the ISO 14443 (Part4) Type A contactless chip card protocol.
default: false

cardReader/chipProtocols/chipTypeB
The card reader can handle the ISO 14443 Type B contactless chip card protocol.
default: false

cardReader/chipProtocols/chipTypeNFC
The card reader can handle the ISO 18092 (106/212/424kbps) contactless chip card protocol.
default: false

cardReader/securityType
Specifies the type of security module as one of the following or null if the device has no security module.

• mm - The security module is a MMBox.
• cim86 - The security module is a CIM86.

default: null

cardReader/powerOnOption
Specifies the power-on (or off) capabilities of the device hardware as one of the following options (applicable
only to motor driven ID card units). May be null if the device does not support power on (or off) options.

• exit - The card will be moved to the exit position.
• retain - The card will be moved to a retain storage unit.
• exitThenRetain - The card will be moved to the exit position for a finite time, then if not taken, the

card will be moved to a retain storage unit. The time for which the card remains at the exit position is
vendor dependent.

• transport - The card will be moved to the transport position.
If multiple retain storage units are present, the storage unit to which the card is retained is vendor specific.
default: null

101

Properties

cardReader/powerOffOption
Specifies the power-off capabilities of the device hardware. See powerOnOption.
default: null

cardReader/fluxSensorProgrammable
Specifies whether the Flux Sensor on the card unit is programmable.
default: false

cardReader/readWriteAccessFromExit
Specifies whether a card may be read or written after having been moved to the exit position with a
CardReader.Move command. The card will be moved back into the card reader.
default: false

cardReader/writeMode
The write capabilities, with respect to whether the device can write low coercivity (loco) and/or high coercivity
(hico) magnetic stripes. May be null if not applicable.
default: null

cardReader/writeMode/loco
Supports writing of loco magnetic stripes.
default: false

cardReader/writeMode/hico
Supports writing of hico magnetic stripes.
default: false

cardReader/writeMode/auto
The Service is capable of automatically determining whether loco or hico magnetic stripes should be written.
default: false

cardReader/chipPower
The chip power management capabilities (in relation to the user or permanent chip controlled by the Service.
May be null if not applicable.
default: null

cardReader/chipPower/cold
The card reader can power on the chip and reset it (Cold Reset).
default: false

cardReader/chipPower/warm
The card reader can reset the chip (Warm Reset).
default: false

cardReader/chipPower/off
The card reader can power off the chip.
default: false

cardReader/memoryChipProtocols
The memory card protocols that are supported. May be null if not applicable.
default: null

cardReader/memoryChipProtocols/siemens4442
The device supports the Siemens 4442 Card Protocol (also supported by the Gemplus GPM2K card).
default: false

cardReader/memoryChipProtocols/gpm896
The device supports the Gemplus GPM 896 Card Protocol.
default: false

102

Properties

cardReader/positions
Specifies the target positions that are supported for the CardReader.Move command. This is independent of the
storage units. May be null if not applicable.
default: null

cardReader/positions/exit
The device can move a card to the exit position. In this position, the card is accessible to the user.
default: false

cardReader/positions/transport
The device can move a card to the transport. In this position, the card is not accessible to the user. A service
which supports this position must also support the exit position.
default: false

cardReader/cardTakenSensor
Specifies whether or not the card reader has the ability to detect when a card is taken from the exit slot by a user.
If true, a CardReader.MediaRemovedEvent will be sent when the card is removed.
default: false

cashAcceptor
Capability information for XFS4IoT services implementing the CashAcceptor interface. This will be null if the
CashAcceptor interface is not supported.
default: null

cashAcceptor/type
Supplies the type of CashAcceptor. The following values are possible:

• tellerBill - The CashAcceptor is a Teller Bill Acceptor.
• selfServiceBill - The CashAcceptor is a Self-Service Bill Acceptor.
• tellerCoin - The CashAcceptor is a Teller Coin Acceptor.
• selfServiceCoin - The CashAcceptor is a Self-Service Coin Acceptor.

cashAcceptor/maxCashInItems
Supplies the maximum number of items that can be accepted in a single CashAcceptor.CashIn command. This
value reflects the hardware limitations of the device and therefore it does not change as part of the
CashAcceptor.CashInStart command.
Property value constraints:
minimum: 1
default: 1

cashAcceptor/shutter
If true then the device has a shutter and explicit shutter control through the commands
CashManagement.OpenShutter and CashManagement.CloseShutter is supported. The definition of a shutter will
depend on the h/w implementation. On some devices where items are automatically detected and accepted then a
shutter is simply a latch that is opened and closed, usually under implicit control by the Service. On other
devices, the term shutter refers to a door, which is opened and closed to allow the customer to place the items
onto a tray. If a Service cannot detect when items are inserted and there is a shutter on the device, then it must
provide explicit application control of the shutter.
default: false

cashAcceptor/shutterControl
If true the shutter is controlled implicitly by the service.
If false the shutter must be controlled explicitly by the application using the CashManagement.OpenShutter and
CashManagement.CloseShutter commands.
In either case the CashAcceptor.PresentMedia command may be used if the presentControl property is false.
This property is always true if the device has no shutter. This property applies to all shutters and all positions.
default: false

103

Properties

cashAcceptor/intermediateStacker
Specifies the number of items the intermediate stacker for cash-in can hold. Will be null if there is no
intermediate stacker for cash-in available.
Property value constraints:
minimum: 0
default: null

cashAcceptor/itemsTakenSensor
Specifies whether the CashAcceptor can detect when items at the exit position are taken by the user. If true the
Service generates an accompanying CashManagement.ItemsTakenEvent. If false this event is not generated. This
property relates to all output positions.
default: false

cashAcceptor/itemsInsertedSensor
Specifies whether the CashAcceptor has the ability to detect when items have been inserted by the user. If true
the service generates an accompanying CashManagement.ItemsInsertedEvent. If false this event is not generated.
This relates to all input positions and should not be reported as true unless item insertion can be detected.
default: false

cashAcceptor/positions
Array of position capabilities for all positions configured in this service.

cashAcceptor/positions/position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

cashAcceptor/positions/usage
Indicates if a position is used to input, reject or rollback.

cashAcceptor/positions/usage/in
It is an input position.
default: false

cashAcceptor/positions/usage/refuse
It is an output position used to refuse items.
default: false

cashAcceptor/positions/usage/rollback
It is an output position used to rollback items.
default: false

104

Properties

cashAcceptor/positions/shutterControl
If true the shutter is controlled implicitly by the Service.
If false the shutter must be controlled explicitly by the application using the CashManagement.OpenShutter and
CashManagement.CloseShutter commands.
In either case the CashAcceptor.PresentMedia command may be used if presentControl is false. The
shutterControl property is always true if the described position has no shutter.
default: true

cashAcceptor/positions/itemsTakenSensor
Specifies whether or not the described position can detect when items at the exit position are taken by the user.
If true the service generates an accompanying CashManagement.ItemsTakenEvent. If false this event is not
generated.
This property relates to output and refused positions.
default: false

cashAcceptor/positions/itemsInsertedSensor
Specifies whether the described position has the ability to detect when items have been inserted by the user.
If true the service generates an accompanying CashManagement.ItemsInsertedEvent. If false this event is not
generated.
This property relates to all input positions.
default: false

cashAcceptor/positions/retractAreas
Specifies the areas to which items may be retracted from this position. This is not reported if the device cannot
retract.
default: null

cashAcceptor/positions/retractAreas/retract
Items may be retracted to a retract storage unit.
default: false

cashAcceptor/positions/retractAreas/reject
Items may be retracted to a reject storage unit.
default: false

cashAcceptor/positions/retractAreas/transport
Items may be retracted to the transport.
default: false

cashAcceptor/positions/retractAreas/stacker
Items may be retracted to the intermediate stacker.
default: false

cashAcceptor/positions/retractAreas/billCassettes
Items may be retracted to item cassettes, i.e. cash-in and recycle storage units.
default: false

cashAcceptor/positions/retractAreas/cashIn
Items may be retracted to a cash-in storage unit.
default: false

105

Properties

cashAcceptor/positions/presentControl
Specifies how the presenting of media items is controlled.
If true then the CashAcceptor.PresentMedia command is not supported and items are moved to the output
position for removal as part of the relevant command, e.g. CashAcceptor.CashIn or
CashAcceptor.CashInRollback where there is implicit shutter control.
If false then items returned or rejected can be moved to the output position using the
CashAcceptor.PresentMedia command, this includes items returned or rejected as part of a
CashAcceptor.CashIn or CashAcceptor.CashInRollback operation. The CashAcceptor.PresentMedia command
will open and close the shutter implicitly.
default: false

cashAcceptor/positions/preparePresent
Specifies how the presenting of items is controlled.
If false then items to be removed are moved to the output position as part of the relevant command. e.g.
CashManagement.OpenShutter, CashAcceptor.PresentMedia or CashAcceptor.CashInRollback.
If true then items are moved to the output position using the CashAcceptor.PreparePresent command.
default: false

cashAcceptor/retractAreas
Specifies the area to which items may be retracted. If the device does not have a retract capability this will be
null.
default: null

cashAcceptor/retractAreas/retract
The items may be retracted to a retract storage unit.
default: false

cashAcceptor/retractAreas/transport
The items may be retracted to the transport.
default: false

cashAcceptor/retractAreas/stacker
The items may be retracted to the intermediate stacker.
default: false

cashAcceptor/retractAreas/reject
The items may be retracted to a reject storage unit.
default: false

cashAcceptor/retractAreas/billCassette
The items may be retracted to cash-in and recycle storage units.
default: false

cashAcceptor/retractAreas/cashIn
Items may be retracted to cash-in storage units.
default: false

cashAcceptor/retractTransportActions
Specifies the actions which may be performed on items which have been retracted to the transport. If the device
does not have the capability to retract items to the transport or move items from the transport this will be null.
default: null

cashAcceptor/retractTransportActions/present
The items may be presented.
default: false

cashAcceptor/retractTransportActions/retract
The items may be moved to a retract storage unit.
default: false

106

Properties

cashAcceptor/retractTransportActions/reject
The items may be moved to a reject storage unit.
default: false

cashAcceptor/retractTransportActions/billCassette
The items may be moved to the cash-in and recycle storage units.
default: false

cashAcceptor/retractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker. If the device
does not have the capability to retract items to the stacker or move items from the stacker this will be null.
default: null

cashAcceptor/cashInLimit
Specifies which cash-in limitations are supported for the CashAcceptor.CashInStart command. If the device does
not have the capability to limit the amount or the number of items during cash-in operations this property is null.
default: null

cashAcceptor/cashInLimit/byTotalItems
The number of successfully processed cash-in items can be limited by specifying the total number of items.
default: false

cashAcceptor/cashInLimit/byAmount
The number of successfully processed cash-in items can be limited by specifying the maximum amount of a
specific currency.
default: false

cashAcceptor/countActions
Specifies the count action supported by the CashAcceptor.CashUnitCount command. If the device does not
support counting then this property is null.
default: null

cashAcceptor/countActions/individual
The counting of individual storage units is supported.
default: false

cashAcceptor/countActions/all
The counting of all storage units is supported.
default: false

cashAcceptor/retainAction
If counterfeit, inked or suspect items are supported by the Service (see classifications), this specifies whether
such items are retained by the device if detected during a cash-in transaction. See acceptor for details of the
impact on offering cash-in transactions if unable to retain items due to storage unit status.
This applies regardless of whether their specific note type is configured to not be accepted by
CashAcceptor.ConfigureNoteTypes.
This property may be null if none of these note classifications are supported.
default: null

cashAcceptor/retainAction/counterfeit
Items classified as counterfeit are retained during a cash-in transaction.
default: false

cashAcceptor/retainAction/suspect
Items classified as suspect are retained during a cash-in transaction.
default: false

cashAcceptor/retainAction/inked
Items classified as inked are retained during a cash-in transaction.
default: false

107

Properties

cashDispenser
Capability information for XFS4IoT services implementing the CashDispenser interface. This will be null if the
CashDispenser interface is not supported.
default: null

cashDispenser/type
Supplies the type of Dispenser. Following values are possible:

• tellerBill - The Dispenser is a Teller Bill Dispenser.
• selfServiceBill - The Dispenser is a Self-Service Bill Dispenser.
• tellerCoin - The Dispenser is a Teller Coin Dispenser.
• selfServiceCoin - The Dispenser is a Self-Service Coin Dispenser.

cashDispenser/maxDispenseItems
Supplies the maximum number of items that can be dispensed in a single dispense operation.
Property value constraints:
minimum: 1

cashDispenser/shutterControl
If true the shutter is controlled implicitly by the Service. If false the shutter must be controlled explicitly by the
application using the CashManagement.OpenShutter and CashManagement.CloseShutter commands.
This property is always true if the device has no shutter. This property applies to all shutters and all output
positions.
default: false

cashDispenser/retractAreas
Specifies the area to which items may be retracted. If the device does not have a retract capability this will be
null.
default: null

cashDispenser/retractAreas/retract
The items may be retracted to a retract storage unit.
default: false

cashDispenser/retractAreas/transport
The items may be retracted to the transport.
default: false

cashDispenser/retractAreas/stacker
The items may be retracted to the intermediate stacker.
default: false

cashDispenser/retractAreas/reject
The items may be retracted to a reject storage unit.
default: false

cashDispenser/retractAreas/itemCassette
The items may be retracted to storage units which would be used during a Cash In transaction including
recycling storage units.
default: false

cashDispenser/retractAreas/cashIn
The items may be retracted to storage units which would be used during a Cash In transaction not including
recycling storage units.
default: false

cashDispenser/retractTransportActions
Specifies the actions which may be performed on items which have been retracted to the transport. If the device
does not have the capability to retract items to the transport or move items from the transport this will be null.
default: null

108

Properties

cashDispenser/retractTransportActions/present
The items may be presented.
default: false

cashDispenser/retractTransportActions/retract
The items may be moved to a retract storage unit.
default: false

cashDispenser/retractTransportActions/reject
The items may be moved to a reject storage unit.
default: false

cashDispenser/retractTransportActions/itemCassette
The items may be moved to storage units which would be used during a Cash In transaction including recycling
storage units.
default: false

cashDispenser/retractTransportActions/cashIn
The items may be moved to storage units which would be used during a Cash In transaction not including
recycling storage units.
default: false

cashDispenser/retractStackerActions
Specifies the actions which may be performed on items which have been retracted to the stacker. If the device
does not have the capability to retract items to the stacker or move items from the stacker this will be null.
default: null

cashDispenser/intermediateStacker
Specifies whether the Dispenser supports stacking items to an intermediate position before the items are moved
to the exit position.
default: false

cashDispenser/itemsTakenSensor
Specifies whether the Dispenser can detect when items at the exit position are taken by the user. This applies to
all output positions.
If true the Service generates an accompanying CashManagement.ItemsTakenEvent.
If false this event is not generated.
default: false

cashDispenser/positions
Specifies the Dispenser output positions which are available.

cashDispenser/positions/left
The Dispenser has a left output position.
default: false

cashDispenser/positions/right
The Dispenser has a right output position.
default: false

cashDispenser/positions/center
The Dispenser has a center output position.
default: false

cashDispenser/positions/top
The Dispenser has a top output position.
default: false

109

Properties

cashDispenser/positions/bottom
The Dispenser has a bottom output position.
default: false

cashDispenser/positions/front
The Dispenser has a front output position.
default: false

cashDispenser/positions/rear
The Dispenser has a rear output position.
default: false

cashDispenser/moveItems
Specifies the Dispenser move item options which are available. If not applicable, this property is null.
default: null

cashDispenser/moveItems/fromCashUnit
The Dispenser can dispense items from the storage units to the intermediate stacker while there are items on the
transport.
default: false

cashDispenser/moveItems/toCashUnit
The Dispenser can retract items to the storage units while there are items on the intermediate stacker.
default: false

cashDispenser/moveItems/toTransport
The Dispenser can retract items to the transport while there are items on the intermediate stacker.
default: false

cashDispenser/moveItems/toStacker
The Dispenser can dispense items from the storage units to the intermediate stacker while there are already items
on the intermediate stacker that have not been in customer access. Items remaining on the stacker from a
previous dispense may first need to be rejected explicitly by the application if they are not to be presented.
default: false

cashManagement
Capability information for XFS4IoT services implementing the CashManagement interface. This will be null if
the CashManagement interface is not supported.
default: null

cashManagement/cashBox
This property is only applicable to teller type devices. It specifies whether or not tellers have been assigned a
cash box.
default: false

cashManagement/exchangeType
Specifies the type of storage unit exchange operations supported by the device.

cashManagement/exchangeType/byHand
The device supports manual replenishment either by filling the storage unit by hand or by replacing the storage
unit.
default: false

cashManagement/itemInfoTypes
Specifies the types of information that can be retrieved through the CashManagement.GetItemInfo command.
This property is null if not supported.
default: null

cashManagement/itemInfoTypes/serialNumber
Serial Number of the item.
default: false

110

Properties

cashManagement/itemInfoTypes/signature
Signature of the item.
default: false

cashManagement/itemInfoTypes/image
Image of the item.
default: false

cashManagement/classificationList
Specifies whether the Service has the capability to maintain a classification list of serial numbers as well as
supporting the associated operations.
default: false

cashManagement/classifications
Specifies the classifications supported - see Note Classification.

cashManagement/classifications/unrecognized
Items can be classified as unrecognized.
default: true

cashManagement/classifications/counterfeit
Items can be recognized as counterfeit.
default: false

cashManagement/classifications/suspect
Items can be suspected as counterfeit.
default: false

cashManagement/classifications/inked
Ink-stained items are recognized.
default: false

cashManagement/classifications/fit
Genuine items fit for recycling are recognized.
default: true

cashManagement/classifications/unfit
Genuine items not fit for recycling are recognized.
default: false

check
Capability information for XFS4IoT services implementing the Check interface. This will be null if the Check
interface is not supported.
default: null

check/type
Specifies the type of the physical device. The following values are possible:

• singleMediaInput - Device accepts a single media item from the customer.
• bunchMediaInput - Device accepts a bunch of media items from the customer.

check/maxMediaOnStacker
Specifies the maximum number of media items that the stacker can hold (zero if the device does not have a
stacker). If the device has a bunch media input capability and the stacker is not present or has a capacity of one
then the application must process each item inserted sequentially as described in section Multi-Feed Devices
without a Stacker.
Property value constraints:
minimum: 0
default: 0

111

Properties

check/printSize
Specifies the maximum print capabilities on the back side of the check, null if device has no back printing
capabilities. If the media item is inserted in one of the orientations specified in insertOrientation, the device will
print on the back side of the media. If the media item is inserted in a different orientation to those specified in
insertOrientation then printing may occur on the front side, upside down or both.
default: null

check/printSize/rows
Specifies the maximum number of rows of text that the device can print on the media item. This value is 1 for
single line printers.
Property value constraints:
minimum: 0
default: 0

check/printSize/cols
Specifies the maximum number of characters that can be printed on a row.
Property value constraints:
minimum: 0
default: 0

check/stamp
Specifies whether the device has stamping capabilities. If the media item is inserted in one of the orientations
specified in insertOrientation, the device will stamp on the front side of the media. If the media item is inserted
in a different orientation to those specified in insertOrientation then stamping may occur on the back, upside
down or both.
default: false

check/rescan
Specifies whether the device has the capability to either physically rescan media items after they have been
inserted into the device or is able to generate any image supported by the device during the ReadImage
command (regardless of the images requested during the MediaIn command). If true then the item can be
rescanned or the images can be generated using the parameters passed in the ReadImage command. If false then
all images required (various color, file format, bit depth) must be gathered during execution of the MediaIn
command.
default: false

check/presentControl
Specifies how the presenting of media items is controlled during the MediaInEnd and MediaInRollback
commands. If true the presenting is controlled implicitly by the Service. If false the presenting must be
controlled explicitly by the application using the PresentMedia command. This applies to all positions.

check/applicationRefuse
Specifies if the Device supports the MediaIn command mode where the application decides to accept or refuse
each media item that has successfully been accepted by the device. If true then the Service supports this mode. If
false then the Service does not support this mode (or the device does not have a stacker).
default: false

check/retractLocation
Specifies the locations to which the media can be retracted using the Check.RetractMedia command, as a
combination of these properties. May be null if not supported:
Property value constraints:
minProperties: 1
default: null

check/retractLocation/storage
Retract the media to a storage unit.
default: false

112

Properties

check/retractLocation/transport
Retract the media to the transport.
default: false

check/retractLocation/stacker
Retract the media to the stacker.
default: false

check/retractLocation/rebuncher
Retract the media to the re-buncher.
default: false

check/resetControl
Specifies the manner in which the media can be handled on Reset, as a combination of these properties. May be
null if the command is not supported:
Property value constraints:
minProperties: 1
default: null

check/resetControl/eject
Eject the media.
default: false

check/resetControl/storageUnit
Retract the media to retract storage unit.
default: false

check/imageType
Specifies the image format supported by this device, as a combination of these properties. May be null if not
supported.
Property value constraints:
minProperties: 1
default: null

check/imageType/tif
The device can return scanned images in TIFF 6.0 format.
default: false

check/imageType/wmf
The device can return scanned images in WMF (Windows Metafile) format.
default: false

check/imageType/bmp
The device can return scanned images in windows BMP format.
default: false

check/imageType/jpg
The device can return scanned images in JPG format.
default: false

check/frontImage
Specifies the capabilities of the front image supported by this device. May be null if front images are not
supported.
default: null

check/frontImage/colorFormat
Specifies the image color formats supported by this device, as a combination of these properties:

113

Properties

check/frontImage/colorFormat/binary
The device can return scanned images in binary.
default: false

check/frontImage/colorFormat/grayScale
The device can return scanned images in gray scale.
default: false

check/frontImage/colorFormat/full
The device can return scanned images in full color.
default: false

check/frontImage/scanColor
Specifies the image scan colors supported by this device and individually controllable by the application. Scan
colors are used to enhance the scanning results on colored scan media. This value is specified as a combination
of these properties:

check/frontImage/scanColor/red
The device can return images scanned with red light.
default: false

check/frontImage/scanColor/green
The device can return images scanned with green light.
default: false

check/frontImage/scanColor/blue
The device can return images scanned with blue light.
default: false

check/frontImage/scanColor/yellow
The device can return images scanned with yellow light.
default: false

check/frontImage/scanColor/white
The device can return images scanned with white light.
default: false

check/frontImage/scanColor/infraRed
The device can return images scanned with infrared light.
default: false

check/frontImage/scanColor/ultraViolet
The device can return images scanned with ultraviolet light.
default: false

check/frontImage/defaultScanColor
Specifies the default image color format used by this device (i.e. when not explicitly set). The following values
are possible:

• red - The default color is red light.
• green - The default color is green light.
• blue - The default color is blue light.
• yellow - The default color is yellow light.
• white - The default color is white light.
• infraRed - The default color is infrared light.
• ultraViolet - The default color is ultraviolet light.

check/backImage
Specifies the capabilities of the back image supported by this device. May be null if back images are not
supported.
default: null

114

Properties

check/codelineFormat
Specifies the code line formats supported by this device, as a combination of these properties:
Property value constraints:
minProperties: 1

check/codelineFormat/cmc7
The device can read MICR CMC7 [Ref. check-4] code lines.
default: false

check/codelineFormat/e13b
The device can read MICR E13B [Ref. check-3] code lines.
default: false

check/codelineFormat/ocr
The device can read code lines using Optical Character Recognition. The default or pre-configured OCR font
will be used.
default: false

check/codelineFormat/ocra
The device can read code lines using Optical Character Recognition font A. The ASCII codes will conform to
[Ref. check-1].
default: false

check/codelineFormat/ocrb
The device can read code lines using Optical Character Recognition font B. The ASCII codes will conform to
[Ref. check-2].
default: false

check/dataSource
Specifies the reading/imaging capabilities supported by this device, as a combination of these properties:
Property value constraints:
minProperties: 1

check/dataSource/imageFront
The device can scan the front image of the document.
default: false

check/dataSource/imageBack
The device can scan the back image of the document.
default: false

check/dataSource/codeLine
The device can recognize the code line.
default: false

check/insertOrientation
Specifies the media item insertion orientations supported by the Device such that hardware features such as
MICR reading, endorsing and stamping will be aligned with the correct edges and sides of the media item.
Devices may still return code lines and images even if one of these orientations is not used during media
insertion. If the media items are inserted in one of the orientations defined in this capability then any printing or
stamping will be on the correct side of the media item. If the media is inserted in a different orientation then any
printing or stamping may be on the wrong side, upside down or both. This value is reported based on the
customer's perspective. This value is a combination of these properties:
Property value constraints:
minProperties: 1

check/insertOrientation/codeLineRight
The media item should be inserted short edge first with the code line to the right.
default: false

115

Properties

check/insertOrientation/codeLineLeft
The media item should be inserted short edge first with the code line to the left.
default: false

check/insertOrientation/codeLineBottom
The media item should be inserted long edge first with the code line to the bottom.
default: false

check/insertOrientation/codeLineTop
The media item should be inserted long edge first with the code line to the top.
default: false

check/insertOrientation/faceUp
The media item should be inserted with the front of the media item facing up.
default: false

check/insertOrientation/faceDown
The media item should be inserted with the front of the media item facing down.
default: false

check/positions
Specifies the capabilities of up to three logical position types.
Property value constraints:
minProperties: 1

check/positions/input
Structure that specifies the capabilities of the input position.
default: null

check/positions/input/itemsTakenSensor
Specifies whether or not the described position can detect when items at the exit position are taken by the user. If
true the Service generates an accompanying MediaTakenEvent. If false this event is not generated. This relates
to output and refused positions, so will be null for input positions.
default: null

check/positions/input/itemsInsertedSensor
Specifies whether the described position has the ability to detect when items have been inserted by the user. If
true the Service generates an accompanying MediaInsertedEvent. If false this event is not generated. This relates
to all input positions, so will always be null for input positions.
default: null

check/positions/input/retractAreas
Specifies the areas to which items may be retracted from this position. May be null if items can not be retracted
from this position.
Property value constraints:
minProperties: 1
default: null

check/positions/input/retractAreas/retractBin
Can retract items in this position to a retract storage unit.
default: false

check/positions/input/retractAreas/transport
Can retract items in this position to the transport.
default: false

check/positions/input/retractAreas/stacker
Can retract items in this position to the stacker.
default: false

116

Properties

check/positions/input/retractAreas/rebuncher
Can retract items in this position to the re-buncher.
default: false

check/positions/output
Structure that specifies the capabilities of the output position.
default: null

check/positions/refused
Structure that specifies the capabilities of the refused position.
default: null

check/imageAfterEndorse
Specifies whether the device can generate an image after text is printed on the media item. If true then the
generation of the image can be specified using the SetMediaParameters command. If false, this functionality is
not available. This capability applies to media items whose destination is a storage unit; the
returnedItemsProcessing capability indicates whether this functionality is supported for media items that are to
be returned to the customer.
default: false

check/returnedItemsProcessing
Specifies the processing that this device supports for media items that are identified to be returned to the
customer using the SetMediaParameters command, as a combination of these properties or null if none apply:
Property value constraints:
minProperties: 1
default: null

check/returnedItemsProcessing/endorse
This device can endorse a media item to be returned to the customer; the endorsement is specified using the
SetMediaParameters command.
default: false

check/returnedItemsProcessing/endorseImage
This device can generate an image of a media item to be returned to the customer after it has been endorsed; the
request for the image is specified using the SetMediaParameters command.
default: false

check/printSizeFront
Reports the printing capabilities of the device on the front side of the check, null if device has no front printing
capabilities. If the media item is inserted in one of the orientations specified in insertOrientation, the device will
print on the front side of the media. If the media item is inserted in a different orientation to those specified in
insertOrientation then printing may occur on the back side, upside down or both.
default: null

mixedMedia
Capability information for XFS4IoT services implementing the MixedMedia interface. This will be null if the
MixedMedia interface is not supported.
default: null

mixedMedia/modes
Specifies the transaction modes supported by the Service.
Property value constraints:
minProperties: 1

mixedMedia/modes/cashAccept
Specifies whether transactions can accept cash. This property may be null if no change required or its state has
not changed in Common.StatusChangedEvent.
default: null

117

Properties

mixedMedia/modes/checkAccept
Specifies whether transactions can accept checks. This property may be null if no change required or its state has
not changed in Common.StatusChangedEvent.
default: null

mixedMedia/dynamic
Specifies whether the mode can be modified during a transaction.
default: false

pinPad
Capability information for XFS4IoT services implementing the PinPad interface. This will be null if the PinPad
interface is not supported.
default: null

pinPad/pinFormats
Supported PIN format.

pinPad/pinFormats/ibm3624
PIN left justified, filled with padding characters, PIN length 4-16 digits. The padding character is a hexadecimal
digit in the range 0x00 to 0x0F.
default: false

pinPad/pinFormats/ansi
PIN is preceded by 0x00 and the length of the PIN (0x04 to 0x0C), filled with padding character 0x0F to the
right, PIN length 4-12 digits, XORed with PAN (Primary Account Number, minimum 12 digits without check
number).
default: false

pinPad/pinFormats/iso0
PIN is preceded by 0x00 and the length of the PIN (0x04 to 0x0C), filled with padding character 0x0F to the
right, PIN length 4-12 digits, XORed with PAN (Primary Account Number without check number, no minimum
length specified, missing digits are filled with 0x00).
default: false

pinPad/pinFormats/iso1
PIN is preceded by 0x01 and the length of the PIN (0x04 to 0x0C), padding characters are taken from a
transaction field (10 digits).
default: false

pinPad/pinFormats/eci2
PIN left justified, filled with padding characters, PIN only 4 digits.
default: false

pinPad/pinFormats/eci3
PIN is preceded by the length (digit), PIN length 4-6 digits, the padding character can range from 0x0 through
0xF".
default: false

pinPad/pinFormats/visa
PIN is preceded by the length (digit), PIN length 4-6 digits. If the PIN length is less than six digits the PIN is
filled with 0x0 to the length of six, the padding character can range from 0x0 through 0x9 (This format is also
referred to as VISA2).
default: false

pinPad/pinFormats/diebold
PIN is padded with the padding character and may be not encrypted, single encrypted or double encrypted.
default: false

118

Properties

pinPad/pinFormats/dieboldCo
PIN with the length of 4 to 12 digits, each one with a value of 0x0 to 0x9, is preceded by the one-digit
coordination number with a value from 0x0 to 0xF, padded with the padding character with a value from 0x0 to
0xF and may be not encrypted, single encrypted or double encrypted.
default: false

pinPad/pinFormats/visa3
PIN with the length of 4 to 12 digits, each one with a value of 0x0 to 0x9, is followed by a delimiter with the
value of 0xF and then padded by the padding character with a value between 0x0 to 0xF.
default: false

pinPad/pinFormats/banksys
PIN is encrypted and formatted according to the Banksys PIN block specifications.
default: false

pinPad/pinFormats/emv
The PIN block is constructed as follows: PIN is preceded by 0x02 and the length of the PIN (0x04 to 0x0C),
filled with padding character 0x0F to the right, formatted up to 248 bytes of other data as defined within the
EMV 4.0 specifications and finally encrypted with an RSA key.
default: false

pinPad/pinFormats/iso3
PIN is preceded by 0x03 and the length of the PIN (0x04 to 0x0C), padding characters sequentially or randomly
chosen, XORed with digits from PAN.
default: false

pinPad/pinFormats/ap
PIN is formatted according to the Italian Bancomat specifications (see [Ref. pinpad-5]). It is known as the
Authentication Parameter PIN block and is created with a 5 digit PIN, an 18 digit PAN, and the 8 digit CCS from
the track data.
default: false

pinPad/pinFormats/iso4
PIN is formatted according to ISO 9564-1: 2017 Format-4 (uses AES Encryption).
default: false

pinPad/presentationAlgorithms
Supported presentation algorithms. This property is null if not supported.
default: null

pinPad/presentationAlgorithms/presentClear
Algorithm for the presentation of a clear text PIN to a chipcard. Each digit of the clear text PIN is inserted as one
nibble (=halfbyte) into ChipData.
default: false

pinPad/display
Specifies the type of the display used in the PIN pad module. This property is null if not supported.
default: null

pinPad/display/none
No display unit.
default: false

pinPad/display/ledThrough
Lights next to text guide user.
default: false

pinPad/display/display
A real display is available (this doesn't apply for self-service).
default: false

119

Properties

pinPad/idcConnect
Specifies whether the PIN pad is directly physically connected to the ID card unit. If the value is true, the PIN
will be transported securely during the command PinPad.PresentIdc.
default: false

pinPad/validationAlgorithms
Specifies the algorithms for PIN validation supported by the service. This property is null if not supported.
default: null

pinPad/validationAlgorithms/des
DES algorithm.
default: false

pinPad/validationAlgorithms/visa
Visa algorithm.
default: false

pinPad/pinCanPersistAfterUse
Specifies whether the device can retain the PIN after a PIN processing command.
default: false

pinPad/typeCombined
Specifies whether the keypad used in the secure PIN pad module is integrated within a generic Win32 keyboard.
true means the secure PIN keypad is integrated within a generic Win32 keyboard and standard Win32 key events
will be generated for any key when there is no active Keyboard.GetData or Keyboard.GetPin command. Note
that XFS continues to support defined PIN keys only, and is not extended to support new alphanumeric keys.
default: false

pinPad/setPinblockDataRequired
Specifies whether the command PinPad.SetPinblockData must be called before the PIN is entered via
Keyboard.GetPin and retrieved via PinPad.GetPinblock.
default: false

pinPad/pinBlockAttributes
Attributes supported by the PinPad.GetPinblock command to generate encrypted PIN block.
default: null

pinPad/pinBlockAttributes/P0 (example name)
Specifies the key usages supported by the PinPad.PinBlock command. The following values are possible:

• P0 - PIN Encryption
Property name constraints:
pattern: ^P0$
Property value constraints:
minProperties: 1

pinPad/pinBlockAttributes/P0/T (example name)
Specifies the encryption algorithms supported by the PinPad.PinBlock command. The following values are
possible:

• A - AES.
• D - DEA.
• R - RSA.
• T - Triple DEA (also referred to as TDEA).

Property name constraints:
pattern: ^[ADRT]$
Property value constraints:
minProperties: 1

120

Properties

pinPad/pinBlockAttributes/P0/T/E (example name)
Specifies the encryption modes supported by the PinPad.PinBlock command. The following value is possible:

• E - Encrypt
Property name constraints:
pattern: ^E$

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod
Specifies the cryptographic method supported. If the algorithm is 'A', 'D', or 'T', then the following properties can
be true:

• ecb - The ECB encryption method.
• cbc - The CBC encryption method.
• cfb - The CFB encryption method.
• ofb - The OFB encryption method.
• ctr - The CTR method defined in NIST SP800-38A (See [Ref. pinpad-7]).
• xts - The XTS method defined in NIST SP800-38E (See [Ref. pinpad-8]).

If the algorithm is 'R', then following properties can be true:
• rsaesPkcs1V15 - Use the RSAES_PKCS1-v1.5 algorithm.
• rsaesOaep - Use the RSAES OAEP algorithm.

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod/ecb
The ECB encryption method.
default: false

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod/cbc
The CBC encryption method.
default: false

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod/cfb
The CFB encryption method.
default: false

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod/ofb
The OFB encryption method.
default: false

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod/ctr
The CTR method defined in NIST SP800-38A (See [Ref. pinpad-7]).
default: false

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod/xts
The XTS method defined in NIST SP800-38E (See [Ref. pinpad-8]).
default: false

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod/rsaesPkcs1V15
The RSAES_PKCS1-v1.5 algorithm.
default: false

pinPad/pinBlockAttributes/P0/T/E/cryptoMethod/rsaesOaep
The RSAES OAEP algorithm.
default: false

crypto
Capability information for XFS4IoT services implementing the Crypto interface. This will be null if the Crypto
interface is not supported.
default: null

121

Properties

crypto/emvHashAlgorithm
Specifies which hash algorithm is supported for the calculation of the HASH. This property is null if not
supported.
default: null

crypto/emvHashAlgorithm/sha1Digest
The SHA 1 digest algorithm is supported by the Crypto.Digest command.
default: false

crypto/emvHashAlgorithm/sha256Digest
The SHA 256 digest algorithm, as defined in ISO/IEC 10118-3:2004 [Ref. crypto-1] and FIPS 180-2 [Ref.
crypto-2], is supported by the Crypto.Digest command.
default: false

crypto/cryptoAttributes
Attributes supported by the Crypto.CryptoData command to encrypt or decrypt data.
default: null

crypto/cryptoAttributes/D0 (example name)
The following key usage is possible:

• D0 - Symmetric data encryption.
• D1 - Asymmetric data encryption.

Property name constraints:
pattern: ^D[0-1]$
Property value constraints:
minProperties: 1

crypto/cryptoAttributes/D0/D (example name)
Specifies the encryption algorithms supported by the Crypto.CryptoData command. The following values are
possible:

• A - AES.
• D - DEA.
• R - RSA.
• T - Triple DEA (also referred to as TDEA).

Property name constraints:
pattern: ^[ADRT]$
Property value constraints:
minProperties: 1

crypto/cryptoAttributes/D0/D/D (example name)
Specifies the Mode of Use supported by the Crypto.CryptoData command. The following values are possible:

• D - Decrypt
• E - Encrypt

Property name constraints:
pattern: ^[DE]$

122

Properties

crypto/cryptoAttributes/D0/D/D/cryptoMethod
Specifies the cryptographic method supported by the Crypto.CryptoData command. If the key usage is
symmetric encryption methods 'D0'), then the following properties can be true.

• ecb - The ECB encryption method.
• cbc - The CBC encryption method.
• cfb - The CFB encryption method.
• ofb - The OFB encryption method.
• ctr - The CTR method defined in NIST SP800-38A (See [Ref. crypto-4])
• xts - The XTS method defined in NIST SP800-38E (See [Ref. crypto-5])

If the key usage is asymmetric encryption methods 'D1', then the following properties can be true.
• rsaesPkcs1V15 - RSAES_PKCS1-v1.5 algorithm.
• rsaesOaep - The RSAES OAEP algorithm.

crypto/cryptoAttributes/D0/D/D/cryptoMethod/ecb
The ECB encryption method.
default: false

crypto/cryptoAttributes/D0/D/D/cryptoMethod/cbc
The CBC encryption method.
default: false

crypto/cryptoAttributes/D0/D/D/cryptoMethod/cfb
The CFB encryption method.
default: false

crypto/cryptoAttributes/D0/D/D/cryptoMethod/ofb
The OFB encryption method.
default: false

crypto/cryptoAttributes/D0/D/D/cryptoMethod/ctr
The CTR method defined in NIST SP800-38A (See [Ref. crypto-4])
default: false

crypto/cryptoAttributes/D0/D/D/cryptoMethod/xts
The XTS method defined in NIST SP800-38E. (See [Ref. crypto-5])
default: false

crypto/cryptoAttributes/D0/D/D/cryptoMethod/rsaesPkcs1V15
The RSAES_PKCS1-v1.5 algorithm.
default: false

crypto/cryptoAttributes/D0/D/D/cryptoMethod/rsaesOaep
The RSAES OAEP algorithm.
default: false

crypto/authenticationAttributes
Attributes supported by the Crypto.GenerateAuthentication command to generate authentication data.
default: null

123

Properties

crypto/authenticationAttributes/M0 (example name)
The following key usages are possible:

• M0 - ISO 16609 MAC Algorithm 1 (using TDEA).
• M1- ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:1999 MAC Algorithm 5.
• M6 - 9797-1:2011 MAC Algorithm 5/CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• S0 - Asymmetric key pair for digital signature.
• S1 - Asymmetric key pair, CA.
• S2 - Asymmetric key pair, nonX9.24 key.

Property name constraints:
pattern: ^M[0-8]$|^S[0-2]$
Property value constraints:
minProperties: 1

crypto/authenticationAttributes/M0/T (example name)
Specifies the encryption algorithms supported by the Crypto.GenerateAuthentication command. The following
value is possible:

• A - AES.
• D - DEA.
• R - RSA.
• T - Triple DEA (also referred to as TDEA).

Property name constraints:
pattern: ^[ADRT]$
Property value constraints:
minProperties: 1

crypto/authenticationAttributes/M0/T/G (example name)
Specifies the Mode of Use supported by the Crypto.GenerateAuthentication command. The following values are
possible:

• C - Both Generate and Verify.
• G - Generate. This be used to generate a MAC.
• S - Signature
• T - Both Sign and Decrypt.

Property name constraints:
pattern: ^[CGST]$
default: null

crypto/authenticationAttributes/M0/T/G/cryptoMethod
Specifies the asymmetric signature verification method supported by the Crypto.GenerateAuthentication
command.
If the key usage is one of the MAC usages (e.g. 'M0'), this property should be null.
Property value constraints:
minProperties: 1
default: null

crypto/authenticationAttributes/M0/T/G/cryptoMethod/rsassaPkcs1V15
The RSASSA-PKCS1-v1.5 algorithm.
default: false

124

Properties

crypto/authenticationAttributes/M0/T/G/cryptoMethod/rsassaPss
The RSASSA-PSS algorithm.
default: false

crypto/authenticationAttributes/M0/T/G/hashAlgorithm
Specifies the hash algorithm supported.
If the key usage is one of the MAC usages (e.g. 'M0'), this property should be null.
Property value constraints:
minProperties: 1
default: null

crypto/authenticationAttributes/M0/T/G/hashAlgorithm/sha1
The SHA 1 digest algorithm.
default: false

crypto/authenticationAttributes/M0/T/G/hashAlgorithm/sha256
The SHA 256 digest algorithm, as defined in ISO/IEC 10118-3:2004 [Ref. crypto-1] and FIPS 180-2 [Ref.
crypto-2].
default: false

crypto/verifyAttributes
Attributes supported by the Crypto.VerifyAuthentication command to verify authentication data.
default: null

crypto/verifyAttributes/M0/T (example name)
Specifies the encryption algorithms supported by Crypto.VerifyAuthentication command. The following value is
possible:

• A - AES.
• D - DEA.
• R - RSA.
• T - Triple DEA (also referred to as TDEA).

Property name constraints:
pattern: ^[ADRT]$
Property value constraints:
minProperties: 1

crypto/verifyAttributes/M0/T/V (example name)
Specifies the Mode of Use supported by Crypto.VerifyAuthentication command. The following values are
possible:

• V - Verify. This be used to verify a MAC.
Property name constraints:
pattern: ^V$
default: null

crypto/verifyAttributes/M0/T/V/cryptoMethod
Specifies the asymmetric signature verification method supported by the Crypto.VerifyAuthentication command.
If the key usage is one of the MAC usages (e.g. 'M0'), this property should be null.
Property value constraints:
minProperties: 1
default: null

crypto/verifyAttributes/M0/T/V/hashAlgorithm
Specifies the hash algorithm supported.
If the key usage is one of the MAC usages (e.g. 'M0'), this property should be null.
Property value constraints:
minProperties: 1
default: null

125

Properties

keyManagement
Capability information for XFS4IoT services implementing the KeyManagement interface. This will be null if
the KeyManagement interface is not supported.
default: null

keyManagement/keyNum
Number of the keys which can be stored in the encryption/decryption module.
Property value constraints:
minimum: 0

keyManagement/derivationAlgorithms
Supported derivation algorithms. This property is null if not supported.
default: null

keyManagement/derivationAlgorithms/chipZka
Algorithm for the derivation of a chip card individual key as described by the German ZKA.
default: false

keyManagement/keyCheckModes
Specifies the key check modes that are supported to check the correctness of an imported key value. The modes
available for each key may depend on security requirements of the algorithm. The algorithm (i.e. DES, 3DES,
AES) and use is determined by the algorithm of the key being checked and security requirements. This property
is null if not supported.
default: null

keyManagement/keyCheckModes/self
The key check value is created by an encryption of the key with itself. For a double-length or triple-length key
the KCV is generated using 3DES encryption using the first 8 bytes of the key as the source data for the
encryption.
default: false

keyManagement/keyCheckModes/zero
The key check value is created by encrypting a zero value with the key.
default: false

keyManagement/hsmVendor
Identifies the Hardware Security Module (HSM) Vendor.
This should be null if not supported or the HSM vendor is unknown.
default: null

keyManagement/rsaAuthenticationScheme
Specifies the types of Remote Key Loading/Authentication that are supported. This property is null if not
supported.
default: null

keyManagement/rsaAuthenticationScheme/twoPartySig
Two-party Signature based authentication.
default: false

keyManagement/rsaAuthenticationScheme/threePartyCert
Three-party Certificate based authentication.
default: false

keyManagement/rsaAuthenticationScheme/threePartyCertTr34
Three-party Certificate based authentication described by X9 TR34-2019 [Ref. keymanagement-9].
default: false

keyManagement/rsaSignatureAlgorithm
Specifies the types of RSA Signature Algorithm that are supported.
default: null

126

Properties

keyManagement/rsaSignatureAlgorithm/pkcs1V15
pkcs1V15 Signatures supported.
default: false

keyManagement/rsaSignatureAlgorithm/pss
pss Signatures supported.
default: false

keyManagement/rsaCryptAlgorithm
Specifies the types of RSA Encipherment Algorithm that are supported. This property is null if not supported.
default: null

keyManagement/rsaCryptAlgorithm/pkcs1V15
pkcs1V15 algorithm supported.
default: false

keyManagement/rsaCryptAlgorithm/oaep
oaep algorithm supported.
default: false

keyManagement/rsaKeyCheckMode
Specifies which hash algorithms used to generate the public key check value/thumb print are supported. This
property is null if not supported.

keyManagement/rsaKeyCheckMode/sha1
sha1 is supported as defined in [Ref. keymanagement-2].
default: false

keyManagement/rsaKeyCheckMode/sha256
sha256 is supported as defined in ISO/IEC 10118-3:2004 [Ref. keymanagement-7] and FIPS 180-2 [Ref.
keymanagement-8].
default: false

keyManagement/signatureScheme
Specifies which capabilities are supported by the Signature scheme. This property is null if not supported.

keyManagement/signatureScheme/randomNumber
Specifies if the service returns a random number from the KeyManagement.StartKeyExchange command within
the RSA Signature Scheme.
default: false

keyManagement/signatureScheme/exportDeviceId
Specifies if the service supports exporting the device Security Item within the RSA Signature Scheme.
default: false

keyManagement/signatureScheme/enhancedRkl
Specifies that the service supports the Enhanced Signature Remote Key Scheme. This scheme allows the
customer to manage their own public keys independently of the Signature Issuer. When this mode is supported
then the key loaded signed with the Signature Issuer key is the host root public key PKROOT, rather than PKHOST.
default: false

keyManagement/emvImportSchemes
Identifies the supported EMV Import Scheme(s). This property is null if not supported.
default: null

keyManagement/emvImportSchemes/plainCA
A plain text CA public key is imported with no verification.
default: false

127

Properties

keyManagement/emvImportSchemes/chksumCA
A plain text CA public key is imported using the EMV 2000 verification algorithm. See [Ref. keymanagement-
3].
default: false

keyManagement/emvImportSchemes/epiCA
A CA public key is imported using the selfsign scheme defined in the Europay International, EPI CA Module
Technical - Interface specification Version 1.4, [Ref. ref-keymanagement-4].
default: false

keyManagement/emvImportSchemes/issuer
An Issuer public key is imported as defined in EMV 2000 Book II, [Ref. keymanagement-3].
default: false

keyManagement/emvImportSchemes/icc
An ICC public key is imported as defined in EMV 2000 Book II, [Ref. keymanagement-3].
default: false

keyManagement/emvImportSchemes/iccPin
An ICC PIN public key is imported as defined in EMV 2000 Book II, [Ref. keymanagement-3].
default: false

keyManagement/emvImportSchemes/pkcsv15CA
A CA public key is imported and verified using a signature generated with a private key for which the public key
is already loaded..
default: false

keyManagement/keyBlockImportFormats
Supported key block formats. This property is null if not supported.
default: null

keyManagement/keyBlockImportFormats/A
Supports X9.143 key block version ID A.
default: false

keyManagement/keyBlockImportFormats/B
Supports X9.143 key block version ID B.
default: false

keyManagement/keyBlockImportFormats/C
Supports X9.143 key block version ID C.
default: false

keyManagement/keyBlockImportFormats/D
Supports X9.143 key block version ID D.
default: false

keyManagement/keyImportThroughParts
Specifies whether the device is capable of importing keys in multiple parts.
default: false

keyManagement/desKeyLength
Specifies which DES key lengths are supported. This property is null if not supported.
default: null

keyManagement/desKeyLength/single
8 byte DES keys are supported.
default: false

128

Properties

keyManagement/desKeyLength/double
16 byte DES keys are supported.
default: false

keyManagement/desKeyLength/triple
24 byte DES keys are supported.
default: false

keyManagement/certificateTypes
Specifies supported certificate types. This property is null if not supported.
default: null

keyManagement/certificateTypes/encKey
Supports the device public encryption certificate.
default: false

keyManagement/certificateTypes/verificationKey
Supports the device public verification certificate.
default: false

keyManagement/certificateTypes/hostKey
Supports the Host public certificate.
default: false

keyManagement/loadCertOptions
Specifying the options supported by the KeyManagement.LoadCertificate command. This property is null if not
supported.
Property value constraints:
minProperties: 1
default: null

keyManagement/loadCertOptions/certHost (example name)
Specifies a supported signer. The following signers are possible.

• certHost - The current Host RSA Private Key is used to sign the token.
• sigHost - The current Host RSA Private Key is used to sign the token, signature format is used.
• hl - A Higher-Level Authority RSA Private Key is used to sign the token.
• certHostTr34 - The current Host RSA Private Key is used to sign the token, compliant with X9

TR34-2019 [Ref. keymanagement-9].
• caTr34 - The Certificate Authority RSA Private Key is used to sign the token, compliant with

X9 TR34-2019 [Ref. keymanagement-9].
• hlTr34 - A Higher-Level Authority RSA Private Key is used to sign the token, compliant with

X9 TR34-2019 [Ref. keymanagement-9].
Property name constraints:
pattern: ^(certHost|sigHost|hl|certHostTr34|caTr34|hlTr34|hlTr34)$

keyManagement/loadCertOptions/certHost/newHost
Load a new Host certificate, where one has not already been loaded.
default: false

keyManagement/loadCertOptions/certHost/replaceHost
Replace (or rebind) the device to a new Host certificate, where the new Host certificate is signed by signer.
default: false

keyManagement/crklLoadOptions
Supported options to load the Key Transport Key using the Certificate Remote Key Loading protocol. This
property is null if not supported.
default: null

129

Properties

keyManagement/crklLoadOptions/noRandom
Import a Key Transport Key without generating and using a random number.
default: false

keyManagement/crklLoadOptions/noRandomCrl
Import a Key Transport Key with a Certificate Revocation List appended to the input message. A random
number is not generated nor used.
default: false

keyManagement/crklLoadOptions/random
Import a Key Transport Key by generating and using a random number.
default: false

keyManagement/crklLoadOptions/randomCrl
Import a Key Transport Key with a Certificate Revocation List appended to the input parameter. A random
number is generated and used.
default: false

keyManagement/symmetricKeyManagementMethods
Specifies the Symmentric Key Management modes. This property is null if not supported.
default: null

keyManagement/symmetricKeyManagementMethods/fixedKey
This method of key management uses fixed keys for transaction processing.
default: false

keyManagement/symmetricKeyManagementMethods/masterKey
This method uses a hierarchy of Key Encrypting Keys and Transaction Keys. The highest level of Key
Encrypting Key is known as a Master Key. Transaction Keys are distributed and replaced encrypted under a Key
Encrypting Key.
default: false

keyManagement/symmetricKeyManagementMethods/tdesDukpt
This method uses TDES Derived Unique Key Per Transaction (see [Ref. keymanagement-10]).
default: false

keyManagement/keyAttributes
Attributes supported by KeyManagement.ImportKey command for the key to be loaded.

130

Properties

keyManagement/keyAttributes/M0 (example name)
Specifies the key usages supported by KeyManagement.ImportKey command and key usage string length must
be two. The following values are possible:

• B0 - Base Derivation Key (BDK).
• B1 - Initial DUKPT Key.
• B2 - Base Key Variant Key (deprecated).
• B3 - Key Derivation Key (Non ANSI X9.24).
• C0 - CVK Card Verification Key.
• D0 - Symmetric Key for Data Encryption.
• D1 - Asymmetric Key for Data Encryption.
• D2 - Data Encryption Key for Decimalization Table.
• D3 - Data Encryption Key for Sensitive Data.
• E0 - EMV / Chip Issuer Master Key: Application Cryptogram.
• E1 - EMV / Chip Issuer Master Key: Secure Messaging for Confidentiality.
• E2 - EMV / Chip Issuer Master Key: Secure Messaging for Integrity.
• E3 - EMV / Chip Issuer Master Key: Data Authentication Code.
• E4 - EMV / Chip Issuer Master Key: Dynamic.
• E5 - EMV / Chip Issuer Master Key: Card Personalization.
• E6 - EMV / Chip Issuer Master Key: Other Initialization Vector (IV).
• E7 - EMV / Chip Asymmetric Key Pair for EMV/Smart Card based PIN/PIN Block Encryption.
• I0 - Initialization Vector (IV).
• K0 - Key Encryption or wrapping.
• K1 - X9.143 Key Block Protection Key.
• K2 - TR-34 Asymmetric Key.
• K3 - Asymmetric Key for key agreement / key wrapping.
• K4 - Key Block Protection Key, ISO 20038.
• M0 - MAC Key, ISO 16609 MAC algorithm 1 (using TDEA).
• M1 - MAC Key, ISO 9797-1 MAC Algorithm 1.
• M2 - MAC Key, ISO 9797-1 MAC Algorithm 2.
• M3 - MAC Key, ISO 9797-1 MAC Algorithm 3.
• M4 - MAC Key, ISO 9797-1 MAC Algorithm 4.
• M5 - MAC Key, ISO 9797-1:2011 MAC Algorithm 5.
• M6 - MAC Key, ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC Key.
• M8 - MAC Key, ISO 9797-1:2011 MAC Algorithm 6.
• P0 - PIN Encryption.
• P1 - PIN Generation Key (reserved for ANSI X9.132-202x).
• S0 - Asymmetric Key Pair for Digital Signature.
• S1 - Asymmetric Key Pair, CA Key.
• S2 - Asymmetric Key Pair, non-ANSI X9.24 Key.
• V0 - PIN Verification Key, PVK, other algorithm.
• V1 - PIN Verification Key, IBM 3624.
• V2 - PIN Verification Key, VISA PVV.
• V3 - PIN Verification Key, ANSI X9-132 algorithm 1.
• V4 - PIN Verification Key, ANSI X9-132 algorithm 2.
• V5 - PIN Verification Key, ANSI X9.132 algorithm 3.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property name constraints:
pattern: ^B[0-3]$|^C0$|^D[0-3]$|^E[0-7]$|^I0$|^K[0-4]$|^M[0-8]$|^P[0-1]$|^S[0-
2]$|^V[0-5]$|^[0-9][0-9]$
Property value constraints:
minProperties: 1

131

Properties

keyManagement/keyAttributes/M0/T (example name)
Specifies the encryption algorithms supported by the KeyManagement.ImportKey command. The following
values are possible:

• A - AES.
• D - DEA (Note that this is included for backwards compatibility).
• H - HMAC (specify the underlying hash algorithm in optional field).
• R - RSA.
• T - Triple DEA (TDEA).
• 0 - 9 - These numeric values are reserved for proprietary use.

Property name constraints:
pattern: ^[0-9ADHRT]$
Property value constraints:
minProperties: 1

keyManagement/keyAttributes/M0/T/C (example name)
Specifies the Mode of Use supported by KeyManagement.ImportKey key. The following values are possible:

• B - Both Encrypt/Wrap and Decrypt/Unwrap.
• C - Both Generate and Verify.
• D - Decrypt / Unwrap Only.
• E - Encrypt / Wrap Only.
• G - Generate Only.
• S - Signature Only.
• T - Both Sign and Decrypt.
• V - Verify Only.
• X - Key used to derive other keys(s).
• Y - Key used to create key variants.
• 0 - 9 - These numeric values are reserved for proprietary use.

Property name constraints:
pattern: ^[0-9BCDEGSTVXY]$
default: null

132

Properties

keyManagement/keyAttributes/M0/T/C/restrictedKeyUsage
If the key usage is a key encryption usage (e.g. 'K0') this specifies the key usage of the keys that can be
encrypted by the key.
This property should be null if restricted key usage is not supported or required.
The following values are possible:

• B0 - BDK Base Derivation Key.
• B1 - Initial DUKPT key.
• B2 - Base Key Variant Key.
• B3 - Key Derivation Key (Non ANSI X9.24).
• C0 - CVK Card Verification Key.
• D0 - Symmetric Key for Data Encryption.
• D1 - Asymmetric Key for Data Encryption.
• D2 - Data Encryption Key for Decimalization Table.
• D3 - Data Encryption Key for Sensitive Data.
• E0 - EMV / Chip Issuer Master Key: Application Cryptogram.
• E1 - EMV / Chip Issuer Master Key: Secure Messaging for Confidentiality.
• E2 - EMV / Chip Issuer Master Key: Secure Messaging for Integrity.
• E3 - EMV / Chip Issuer Master Key: Data Authentication Code.
• E4 - EMV / Chip Issuer Master Key: Dynamic.
• E5 - EMV / Chip Issuer Master Key: Card Personalization.
• E6 - EMV / Chip Issuer Master Key: Other Initialization Vector (IV).
• E7 - EMV / Chip Asymmetric Key Pair for EMV/Smart Card based PIN/PIN Block Encryption.
• I0 - Initialization Vector (IV).
• K0 - Key Encryption or wrapping.
• K1 - X9.143 Key Block Protection Key.
• K2 - TR-34 Asymmetric Key.
• K3 - Asymmetric Key for key agreement / key wrapping.
• K4 - Key Block Protection Key, ISO 20038.
• M0 - ISO 16609 MAC algorithm 1 (using TDEA).
• M1 - ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:2011 MAC Algorithm 5.
• M6 - ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• P0 - PIN Encryption.
• P1 - PIN Generation Key (reserved for ANSI X9.132-202x).
• S0 - Asymmetric key pair for digital signature.
• S1 - Asymmetric key pair, CA key.
• S2 - Asymmetric key pair, nonX9.24 key.
• V0 - PIN verification, KPV, other algorithm.
• V1 - PIN verification, IBM 3624.
• V2 - PIN verification, VISA PVV.
• V3 - PIN verification, X9-132 algorithm 1.
• V4 - PIN verification, X9-132 algorithm 2.
• V5 - PIN Verification Key, ANSI X9.132 algorithm 3.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^B[0-3]$|^C0$|^D[0-3]$|^E[0-7]$|^I0$|^K[0-4]$|^M[0-8]$|^P[0-1]$|^S[0-
2]$|^V[0-5]$|^[0-9][0-9]$
default: null

133

Properties

keyManagement/decryptAttributes
Attributes supported by the KeyManagement.ImportKey command for the key used to decrypt or unwrap the key
being imported.
default: null

keyManagement/decryptAttributes/A (example name)
Specifies the encryption algorithms supported by the KeyManagement.ImportKey command. The following
values are possible:

• A - AES.
• D - DEA.
• R - RSA.
• T - Triple DEA (also referred to as TDEA).
• 0 - 9 - These numeric values are reserved for proprietary use.

Property name constraints:
pattern: ^[0-9ADRT]$

keyManagement/decryptAttributes/A/decryptMethod
Specifies the cryptographic method supported.
If the algorithm is 'A', 'D', or 'T', then one or more of the following properties must be true.

• ecb - The ECB encryption method.
• cbc - The CBC encryption method.
• cfb - The CFB encryption method.
• ofb - The OFB encryption method.
• ctr - The CTR method defined in NIST SP800-38A (See [Ref. keymanagement-11]).
• xts - The XTS method defined in NIST SP800-38E (See [Ref. keymanagement-12]).

If the algorithm is 'R' then one or more of the following properties must be true.
• rsaesPkcs1V15 - Use the RSAES_PKCS1-v1.5 algorithm.
• rsaesOaep - Use the RSAES OAEP algorithm.

Property value constraints:
minProperties: 1

keyManagement/decryptAttributes/A/decryptMethod/ecb
The ECB encryption method is supported.
default: false

keyManagement/decryptAttributes/A/decryptMethod/cbc
The CBC encryption method is supported.
default: false

keyManagement/decryptAttributes/A/decryptMethod/cfb
The CFB encryption method is supported.
default: false

keyManagement/decryptAttributes/A/decryptMethod/ofb
The OFB encryption method is supported.
default: false

keyManagement/decryptAttributes/A/decryptMethod/ctr
The CTR method is supported and defined in NIST SP800-38A (See [Ref. 11]).
default: false

keyManagement/decryptAttributes/A/decryptMethod/xts
The XTS method is supported and defined in NIST SP800-38E (See [Ref. keymanagement-12]).
default: false

134

Properties

keyManagement/decryptAttributes/A/decryptMethod/rsaesPkcs1V15
The RSAES-PKCS1-v1.5 algorithm is supported.
default: false

keyManagement/decryptAttributes/A/decryptMethod/rsaesOaep
The RSAES-OAEP algorithm is supported.
default: false

keyManagement/verifyAttributes
Attributes supported by the KeyManagement.ImportKey for the key used for verification before importing the
key.
default: null

keyManagement/verifyAttributes/M0 (example name)
Specifies the key usages supported by the KeyManagement.ImportKey command. The following values are
possible:

• M0 - ISO 16609 MAC Algorithm 1 (using TDEA).
• M1 - ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:1999 MAC Algorithm 5.
• M6 - ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• S0 - Asymmetric key pair or digital signature.
• S1 - Asymmetric key pair, CA key.
• S2 - Asymmetric key pair, nonX9.24 key.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property name constraints:
pattern: ^M[0-8]$|^S[0-2]$|^[0-9][0-9]$
Property value constraints:
minProperties: 1

keyManagement/verifyAttributes/M0/T (example name)
Specifies the encryption algorithms supported by the KeyManagement.ImportKey command. The following
values are possible:

• A - AES.
• D - DEA.
• R - RSA.
• T - Triple DEA (also referred to as TDEA).
• 0 - 9 - These numeric values are reserved for proprietary use.

Property name constraints:
pattern: ^[0-9ADRT]$
Property value constraints:
minProperties: 1

keyManagement/verifyAttributes/M0/T/V (example name)
Specifies the encryption modes supported by the KeyManagement.ImportKey command. The following values
are possible:

• S - Signature.
• V - Verify Only.
• 0 - 9 - These numeric values are reserved for proprietary use.

Property name constraints:
pattern: ^[0-9SV]$

135

Properties

keyManagement/verifyAttributes/M0/T/V/cryptoMethod
This parameter specifies the cryptographic method that will be used with encryption algorithm.
If the algorithm is 'A', 'D', or 'T' and the key usage is a MAC usage (i.e. 'M1'), then all properties are false.
If the algorithm is 'A', 'D', or 'T' and the key usage is '00', then one of properties must be set true.

• kcvNone - There is no key check value (KCV) verification required.
• kcvSelf - The KCV is created by an encryption of the key with itself.
• kcvZero - The KCV is created by encrypting a zero value with the key.

If the algorithm is 'R' and the key usage is not '00', then one of properties must be set true.
• sigNone - No signature algorithm specified. No signature verification will take place

and the content of verificationData must be set.
• rsassaPkcs1V15 - Use the RSASSA-PKCS1-v1.5 algorithm.
• rsassaPss - Use the RSASSA-PSS algorithm.

keyManagement/verifyAttributes/M0/T/V/cryptoMethod/kcvNone
There is no key check value (KCV) verification required.
default: false

keyManagement/verifyAttributes/M0/T/V/cryptoMethod/kcvSelf
The key check value (KCV) is created by an encryption of the key with itself.
default: false

keyManagement/verifyAttributes/M0/T/V/cryptoMethod/kcvZero
The key check value (KCV) is created by encrypting a zero value with the key.
default: false

keyManagement/verifyAttributes/M0/T/V/cryptoMethod/sigNone
The No signature algorithm specified. No signature verification will take place.
default: false

keyManagement/verifyAttributes/M0/T/V/cryptoMethod/rsassaPkcs1V15
The RSASSA-PKCS1-v1.5 algorithm.
default: false

keyManagement/verifyAttributes/M0/T/V/cryptoMethod/rsassaPss
The RSASSA-PSS algorithm.
default: false

keyManagement/verifyAttributes/M0/T/V/hashAlgorithm
For asymmetric signature verification methods (key usage is 'S0', 'S1', or 'S2'), then one of the following
properties are true. If the key usage is any of the MAC usages (i.e. 'M1'), then both 'sha1' and 'sha256' properties
are false.

keyManagement/verifyAttributes/M0/T/V/hashAlgorithm/sha1
The SHA 1 digest algorithm.
default: false

keyManagement/verifyAttributes/M0/T/V/hashAlgorithm/sha256
The SHA 256 digest algorithm, as defined in ISO/IEC 10118-3:2004 [Ref. keymanagement-7] and FIPS 180-2
[Ref. keymanagement-8].
default: false

keyboard
Capability information for XFS4IoT services implementing the Keyboard interface. This will be null if the
Keyboard interface is not supported.
default: null

136

Properties

keyboard/autoBeep
Specifies whether the device will emit a key beep tone on key presses of active keys or inactive keys, and if so,
which mode it supports. This property is null if not supported.
default: null

keyboard/autoBeep/activeAvailable
Automatic beep tone on active key key-press is supported. If this flag is not set then automatic beeping for active
keys is not supported.
default: false

keyboard/autoBeep/activeSelectable
Automatic beeping for active keys can be controlled turned on and off by the application. If this flag is not set
then automatic beeping for active keys cannot be controlled by an application.
default: false

keyboard/autoBeep/inactiveAvailable
Automatic beep tone on inactive key keypress is supported. If this flag is not set then automatic beeping for
inactive keys is not supported.
default: false

keyboard/autoBeep/inactiveSelectable
Automatic beeping for inactive keys can be controlled turned on and off by the application. If this flag is not set
then automatic beeping for inactive keys cannot be controlled by an application.
default: false

keyboard/etsCaps
Specifies the capabilities of the Encrypting Touch Screen device. This property is null if not supported.
default: null

keyboard/etsCaps/xPos
Specifies the position of the left edge of the Encrypting Touch Screen in virtual screen coordinates. This value
may be negative because the of the monitor position on the virtual desktop.
Property value constraints:
minimum: 0
default: 0

keyboard/etsCaps/yPos
Specifies the position of the right edge of the Encrypting Touch Screen in virtual screen coordinates. This value
may be negative because the of the monitor position on the virtual desktop.
Property value constraints:
minimum: 0
default: 0

keyboard/etsCaps/xSize
Specifies the width of the Encrypting Touch Screen in virtual screen coordinates.
Property value constraints:
minimum: 0
default: 0

keyboard/etsCaps/ySize
Specifies the height of the Encrypting Touch Screen in virtual screen coordinates.
Property value constraints:
minimum: 0
default: 0

137

Properties

keyboard/etsCaps/maximumTouchFrames
Specifies the maximum number of Touch-Frames that the device can support in a touch keyboard definition.
Property value constraints:
minimum: 0
default: 0

keyboard/etsCaps/maximumTouchKeys
Specifies the maximum number of Touch-Keys that the device can support within a touch frame.
Property value constraints:
minimum: 0
default: 0

keyboard/etsCaps/float
Specifies if the device can float the touch keyboards. Both properties x and y are false if the device cannot
randomly shift the layout. This property is null if not supported.
default: null

keyboard/etsCaps/float/x
Specifies that the device will randomly shift the layout in a horizontal direction.
default: false

keyboard/etsCaps/float/y
Specifies that the device will randomly shift the layout in a vertical direction.
default: false

textTerminal
Capability information for XFS4IoT services implementing the TextTerminal interface. This will be null if the
TextTerminal interface is not supported.
default: null

textTerminal/type
Specifies the type of the text terminal unit as one of the following:

• fixed - The text terminal unit is a fixed device.
• removable - The text terminal unit is a removable device.

textTerminal/resolutions
Array specifies the resolutions supported by the physical display device. (For the definition of Resolution see the
command TextTerminal.SetResolution). The resolution indicated in the first position is the default resolution and
the device will be placed in this resolution when the Service is initialized or reset through the
TextTerminal.Reset command.
Property value constraints:
minItems: 1

textTerminal/resolutions/sizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that can be
displayed).
Property value constraints:
minimum: 0

textTerminal/resolutions/sizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be displayed).
Property value constraints:
minimum: 0

textTerminal/keyLock
Specifies whether the text terminal unit has a key lock switch.

textTerminal/cursor
Specifies whether the text terminal unit display supports a cursor.

138

Properties

textTerminal/forms
Specifies whether the text terminal unit service supports forms oriented input and output.

printer
Capability information for XFS4IoT services implementing the Printer interface. This will be null if the Printer
interface is not supported.
default: null

printer/type
Specifies the type(s) of the physical device driven by the logical service.

printer/type/receipt
The device is a receipt printer.
default: false

printer/type/passbook
The device is a passbook printer.
default: false

printer/type/journal
The device is a journal printer.
default: false

printer/type/document
The device is a document printer.
default: false

printer/type/scanner
The device is a scanner that may have printing capabilities.
default: false

printer/resolution
Specifies at which resolution(s) the physical device can print. Used by the application to select the level of print
quality desired; does not imply any absolute level of resolution, only relative.

printer/resolution/low
The device can print low resolution.
default: false

printer/resolution/medium
The device can print medium resolution.
default: false

printer/resolution/high
The device can print high resolution.
default: false

printer/resolution/veryHigh
The device can print very high resolution.
default: false

printer/readForm
Specifies whether the device can read data from media. This property is null if the device can not read data.
default: null

printer/readForm/ocr
Device has OCR capability.
default: false

139

Properties

printer/readForm/micr
Device has MICR capability.
default: false

printer/readForm/msf
Device has MSF capability.
default: false

printer/readForm/barcode
Device has Barcode capability.
default: false

printer/readForm/pageMark
Device has Page Mark capability.
default: false

printer/readForm/readImage
Device has imaging capability.
default: false

printer/readForm/readEmptyLine
Device has capability to detect empty print lines for passbook printing.
default: false

printer/writeForm
Specifies whether the device can write data to the media.

printer/writeForm/text
Device has Text capability.
default: false

printer/writeForm/graphics
Device has Graphics capability.
default: false

printer/writeForm/stamp
Device has stamping capability.
default: false

printer/extents
Specifies whether the device is able to measure the inserted media. This property is null if the device is unable to
measure inserted media.

printer/extents/horizontal
Device has horizontal size detection capability.
default: false

printer/extents/vertical
Device has vertical size detection capability.
default: false

printer/control
Specifies the manner in which media can be controlled.
Property value constraints:
minProperties: 1

printer/control/eject
Device can eject media.
default: false

140

Properties

printer/control/perforate
Device can perforate media.
default: false

printer/control/cut
Device can cut media.
default: false

printer/control/skip
Device can skip to mark.
default: false

printer/control/flush
Device can be sent data that is buffered internally, and flushed to the printer on request.
default: false

printer/control/retract
Device can retract media under application control.
default: false

printer/control/stack
Device can stack media items before ejecting as a bundle.
default: false

printer/control/partialCut
Device can partially cut the media.
default: false

printer/control/alarm
Device can ring a bell, beep or otherwise sound an audible alarm.
default: false

printer/control/pageForward
Capability to turn one page forward.
default: false

printer/control/pageBackward
Capability to turn one page backward.
default: false

printer/control/turnMedia
Device can turn inserted media.
default: false

printer/control/stamp
Device can stamp on media.
default: false

printer/control/park
Device can park a document into the parking station.
default: false

printer/control/expel
Device can expel media out of the exit slot.
default: false

printer/control/ejectToTransport
Device can move media to a position on the transport just behind the exit slot.
default: false

141

Properties

printer/control/rotate180
Device can rotate media 180 degrees in the printing plane.
default: false

printer/control/clearBuffer
The Service can clear buffered data.
default: false

printer/maxMediaOnStacker
Specifies the maximum number of media items that the stacker can hold.
Property value constraints:
minimum: 0
default: 0

printer/acceptMedia
Specifies whether the device is able to accept media while no execute command is running that is waiting
explicitly for media to be inserted.
default: false

printer/multiPage
Specifies whether the device is able to support multiple page print jobs.
default: false

printer/paperSources
Specifies the paper sources available for this printer.

printer/paperSources/upper
The upper paper source.
default: false

printer/paperSources/lower
The lower paper source.
default: false

printer/paperSources/external
The external paper source.
default: false

printer/paperSources/aux
The auxiliary paper source.
default: false

printer/paperSources/aux2
The second auxiliary paper source.
default: false

printer/paperSources/park
The parking station.
default: false

printer/paperSources/exampleProperty1 (example name)
The vendor specific paper source.
Property name constraints:
pattern: ^[a-zA-Z]([a-zA-Z0-9]*)$
default: false

printer/mediaTaken
Specifies whether the device is able to detect when the media is taken from the exit slot. If false, the
Printer.MediaTakenEvent event is not fired.
default: false

142

Properties

printer/retractBins
Specifies the number of retract bins.
Property value constraints:
minimum: 0
default: 0

printer/maxRetract
An array of the length retractBins with the maximum number of media items that each retract bin can hold (one
count for each supported bin, starting from zero for bin number 1 to retractBins - 1 for bin number retractBins).
This will be null if there are no retract bins.
Property value constraints:
minimum: 0
default: null

printer/imageType
Specifies the image format supported by this device. This will be null if the device is unable to scan images.
default: null

printer/imageType/tif
The device can return scanned images in TIFF 6.0 format.
default: false

printer/imageType/wmf
The device can return scanned images in WMF (Windows Metafile) format.
default: false

printer/imageType/bmp
The device can return scanned images in Windows BMP format.
default: false

printer/imageType/jpg
The device can return scanned images in JPG format.
default: false

printer/frontImageColorFormat
Specifies the front image color formats supported by this device. This will be null if the device is unable to scan
front images.
default: null

printer/frontImageColorFormat/binary
The device can return scanned images in binary (image contains two colors, usually the colors black and white).
default: false

printer/frontImageColorFormat/grayscale
The device can return scanned images in gray scale (image contains multiple gray colors).
default: false

printer/frontImageColorFormat/full
The device can return scanned images in full color (image contains colors like red, green, blue etc.).
default: false

printer/backImageColorFormat
Specifies the back image color formats supported by this device. This will be null if the device is unable to scan
back images.
default: null

printer/imageSource
Specifies the source for the read image command supported by this device. This will be null if the device does
not support reading images.
default: null

143

Properties

printer/imageSource/imageFront
The device can scan the front image of the document.
default: false

printer/imageSource/imageBack
The device can scan the back image of the document.
default: false

printer/dispensePaper
Specifies whether the device is able to dispense paper.
default: false

printer/osPrinter
Specifies the name of the default logical operating system printer that is associated with this Service.
Applications should use this printer name to generate native printer files to be printed through the
Printer.PrintNative command. This will be null if the Service does not support the Printer.PrintNative command.
default: null

printer/mediaPresented
Specifies whether the device is able to detect when the media is presented to the user for removal. If true, the
Printer.MediaPresentedEvent event is fired. If false, the Printer.MediaPresentedEvent event is not fired.
default: false

printer/autoRetractPeriod
Specifies the number of seconds before the device will automatically retract the presented media. If the
command that generated the media is still active when the media is automatically retracted, the command will
complete with an error. If the device does not retract media automatically this value is 0.
Property value constraints:
minimum: 0
default: 0

printer/retractToTransport
Specifies whether the device is able to retract the previously ejected media to the transport.
default: false

printer/coercivityType
Specifies the form write modes supported by this device. This will be null if the device is unable to write
magnetic stripes.
default: null

printer/coercivityType/low
This device can write the magnetic stripe by low coercivity mode.
default: false

printer/coercivityType/high
This device can write the magnetic stripe by high coercivity mode.
default: false

printer/coercivityType/auto
The Service or the device is capable of automatically determining whether low or high coercivity magnetic stripe
should be written.
default: false

printer/controlPassbook
Specifies how the passbook can be controlled with the Printer.ControlPassbook command. This will be null if
the command is not supported.
default: null

144

Properties

printer/controlPassbook/turnForward
The device can turn forward multiple pages of the passbook.
default: false

printer/controlPassbook/turnBackward
The device can turn backward multiple pages of the passbook.
default: false

printer/controlPassbook/closeForward
The device can close the passbook forward.
default: false

printer/controlPassbook/closeBackward
The device can close the passbook backward.
default: false

printer/printSides
Specifies on which sides of the media this device can print as one of the following values. This will be null if the
device is not capable of printing on any sides of the media.

• single - The device is capable of printing on one side of the media.
• dual - The device is capable of printing on two sides of the media.

default: null

barcodeReader
Capability information for XFS4IoT services implementing the BarcodeReader interface. This will be null if the
BarcodeReader interface is not supported.
default: null

barcodeReader/canFilterSymbologies
Specifies whether the device is capable of discriminating between the presented barcode symbologies such that
only the desired symbologies are recognized/reported

barcodeReader/symbologies
Specifies the barcode symbologies readable by the scanner. This will be null if the supported barcode
symbologies can not be determined.
default: null

barcodeReader/symbologies/ean128
GS1-128
default: false

barcodeReader/symbologies/ean8
EAN-8
default: false

barcodeReader/symbologies/ean8_2
EAN-8 with 2 digit add-on
default: false

barcodeReader/symbologies/ean8_5
EAN-8 with 5 digit add-on
default: false

barcodeReader/symbologies/ean13
EAN-13
default: false

barcodeReader/symbologies/ean13_2
EAN-13 with 2 digit add-on
default: false

145

Properties

barcodeReader/symbologies/ean13_5
EAN-13 with 5 digit add-on
default: false

barcodeReader/symbologies/jan13
JAN-13
default: false

barcodeReader/symbologies/upcA
UPC-A
default: false

barcodeReader/symbologies/upcE0
UPC-E
default: false

barcodeReader/symbologies/upcE0_2
UPC-E with 2 digit add-on
default: false

barcodeReader/symbologies/upcE0_5
UPC-E with 5 digit add-on
default: false

barcodeReader/symbologies/upcE1
UPC-E with leading 1
default: false

barcodeReader/symbologies/upcE1_2
UPC-E with leading 1and 2 digit add-on
default: false

barcodeReader/symbologies/upcE1_5
UPC-E with leading 1and 5 digit add-on
default: false

barcodeReader/symbologies/upcA_2
UPC-A with2 digit add-on
default: false

barcodeReader/symbologies/upcA_5
UPC-A with 5 digit add-on
default: false

barcodeReader/symbologies/codabar
CODABAR (NW-7)
default: false

barcodeReader/symbologies/itf
Interleaved 2 of 5 (ITF)
default: false

barcodeReader/symbologies/code11
CODE 11 (USD-8)
default: false

barcodeReader/symbologies/code39
CODE 39
default: false

146

Properties

barcodeReader/symbologies/code49
CODE 49
default: false

barcodeReader/symbologies/code93
CODE 93
default: false

barcodeReader/symbologies/code128
CODE 128
default: false

barcodeReader/symbologies/msi
MSI
default: false

barcodeReader/symbologies/plessey
PLESSEY
default: false

barcodeReader/symbologies/std2Of5
STANDARD 2 of 5 (INDUSTRIAL 2 of 5 also)
default: false

barcodeReader/symbologies/std2Of5Iata
STANDARD 2 of 5 (IATA Version)
default: false

barcodeReader/symbologies/pdf417
PDF-417
default: false

barcodeReader/symbologies/microPdf417
MICROPDF-417
default: false

barcodeReader/symbologies/dataMatrix
GS1 DataMatrix
default: false

barcodeReader/symbologies/maxiCode
MAXICODE
default: false

barcodeReader/symbologies/codeOne
CODE ONE
default: false

barcodeReader/symbologies/channelCode
CHANNEL CODE
default: false

barcodeReader/symbologies/telepenOriginal
Original TELEPEN
default: false

barcodeReader/symbologies/telepenAim
AIM version of TELEPEN
default: false

147

Properties

barcodeReader/symbologies/rss
GS1 DataBar™
default: false

barcodeReader/symbologies/rssExpanded
Expanded GS1 DataBar™
default: false

barcodeReader/symbologies/rssRestricted
Restricted GS1 DataBar™
default: false

barcodeReader/symbologies/compositeCodeA
Composite Code A Component
default: false

barcodeReader/symbologies/compositeCodeB
Composite Code B Component
default: false

barcodeReader/symbologies/compositeCodeC
Composite Code C Component
default: false

barcodeReader/symbologies/posiCodeA
Posicode Variation A
default: false

barcodeReader/symbologies/posiCodeB
Posicode Variation B
default: false

barcodeReader/symbologies/triopticCode39
Trioptic Code 39
default: false

barcodeReader/symbologies/codablockF
Codablock F
default: false

barcodeReader/symbologies/code16K
Code 16K
default: false

barcodeReader/symbologies/qrCode
QR Code
default: false

barcodeReader/symbologies/aztec
Aztec Codes
default: false

barcodeReader/symbologies/ukPost
UK Post
default: false

barcodeReader/symbologies/planet
US Postal Planet
default: false

148

Properties

barcodeReader/symbologies/postnet
US Postal Postnet
default: false

barcodeReader/symbologies/canadianPost
Canadian Post
default: false

barcodeReader/symbologies/netherlandsPost
Netherlands Post
default: false

barcodeReader/symbologies/australianPost
Australian Post
default: false

barcodeReader/symbologies/japanesePost
Japanese Post
default: false

barcodeReader/symbologies/chinesePost
Chinese Post
default: false

barcodeReader/symbologies/koreanPost
Korean Post
default: false

biometric
Capability information for XFS4IoT services implementing the Biometrics interface. This will be null if the
Biometrics interface is not supported.
default: null

biometric/type
Specifies the type of biometric device.

biometric/type/facialFeatures
The biometric device supports facial recognition scanning.
default: false

biometric/type/voice
The biometric device supports voice recognition.
default: false

biometric/type/fingerprint
The biometric device supports fingerprint scanning.
default: false

biometric/type/fingerVein
The biometric device supports finger vein scanning.
default: false

biometric/type/iris
The biometric device supports iris scanning.
default: false

biometric/type/retina
The biometric device supports retina scanning.
default: false

149

Properties

biometric/type/handGeometry
The biometric device supports hand geometry scanning.
default: false

biometric/type/thermalFace
The biometric device supports thermal face image scanning.
default: false

biometric/type/thermalHand
The biometric device supports thermal hand image scanning.
default: false

biometric/type/palmVein
The biometric device supports palm vein scanning.
default: false

biometric/type/signature
The biometric device supports signature scanning.
default: false

biometric/maxCapture
Specifies the maximum number of times that the device can attempt to capture biometric data during a
Biometric.Read. If this is zero then the device or the Service determines how many captures will be attempted.
Property value constraints:
minimum: 0

biometric/templateStorage
Specifies the storage space that is reserved on the device for the storage of templates in bytes. This will be set to
zero if not reported or unknown.
Property value constraints:
minimum: 0

biometric/dataFormats
Specifies the supported biometric raw data and template data formats reported.

biometric/dataFormats/isoFid
Raw ISO FID format [Ref. biometric-3].
default: false

biometric/dataFormats/isoFmd
ISO FMD template format [Ref. biometric-4].
default: false

biometric/dataFormats/ansiFid
Raw ANSI FID format [Ref. biometric-1].
default: false

biometric/dataFormats/ansiFmd
ANSI FMD template format [Ref. biometric-2].
default: false

biometric/dataFormats/qso
Raw QSO image format.
default: false

biometric/dataFormats/wso
WSQ image format.
default: false

150

Properties

biometric/dataFormats/reservedRaw1
Reserved for a vendor-defined Raw format.
default: false

biometric/dataFormats/reservedTemplate1
Reserved for a vendor-defined Template format.
default: false

biometric/encryptionAlgorithms
Supported encryption algorithms. This property is null if no encryption algorithms are supported.
default: null

biometric/encryptionAlgorithms/ecb
Triple DES with Electronic Code Book.
default: false

biometric/encryptionAlgorithms/cbc
Triple DES with Cipher Block Chaining.
default: false

biometric/encryptionAlgorithms/cfb
Triple DES with Cipher Feed Back.
default: false

biometric/encryptionAlgorithms/rsa
RSA Encryption.
default: false

biometric/storage
Indicates whether or not biometric template data can be stored securely. This property is null if biometric
template data is not stored in the device.
default: null

biometric/storage/secure
Biometric template data is securely stored as encrypted data.
default: false

biometric/storage/clear
Biometric template data is stored unencrypted in the device.
default: false

biometric/persistenceModes
Specifies which data persistence modes can be set using the Biometric.SetDataPersistence. This applies
specifically to the biometric data that has been captured using the Biometric.Read. This property is null if
persistence is entirely under device control and cannot be set.
default: null

biometric/persistenceModes/persist
Biometric data captured using the Biometric.Read can persist until all sessions are closed, the device is power
failed or rebooted, or the Biometric.Read is requested again. This captured biometric data can also be explicitly
cleared using the Biometric.Clear or Biometric.Reset.
default: false

biometric/persistenceModes/clear
Captured biometric data will not persist. Once the data has been either returned in the Biometric.Read or used by
the Biometric.Match, then the data is cleared from the device.
default: false

151

Properties

biometric/matchSupported
Specifies if matching is supported using the Biometric.Match and/or Biometric.SetMatch command. This
property is null if the device does not support matching. This will be one of the following values:

• storedMatch - The device scans biometric data using the Biometric.Read command and stores it, then
the scanned data can be compared with imported biometric data using the Biometric.Match.

• combinedMatch - The device scans biometric data and performs a match against imported biometric
data as a single operation. The Biometric.SetMatchmust be called before the Biometric.Read in order to
set the matching criteria. Then the Biometric.Match can be called to return the result.

default: null

biometric/scanModes
Specifies the scan modes that can be used through the Biometric.Read.

biometric/scanModes/scan
The Biometric.Read can be used to scan data only, for example to enroll a user or collect data for matching in an
external biometric system.
default: false

biometric/scanModes/match
The Biometric.Read can be used to scan data for a match operation using the Biometric.Match.
default: false

biometric/compareModes
Specifies the type of match operations. This property is null if the device does not support matching.
default: null

biometric/compareModes/verify
The biometric data can be compared as a one to one verification operation.
default: false

biometric/compareModes/identity
The biometric data can be compared as a one to many identification operation.
default: false

biometric/clearData
Specifies the type of data that can be cleared from storage using the Biometric.Clear or Biometric.Reset
command. This property is null if the device does not support clearing data from storage using commands.
default: null

biometric/clearData/scannedData
Raw image data that has been scanned using the Biometric.Read can be cleared.
default: false

biometric/clearData/importedData
Template data that was imported using the Biometric.Import can be cleared.
default: false

biometric/clearData/setMatchedData
Match criteria data that was set using the Biometric.Match can be cleared.
default: false

camera
Capability information for XFS4IoT services implementing the Camera interface. This will be null if the Camera
interface is not supported.
default: null

camera/cameras
Specifies whether cameras are available.

152

Properties

camera/cameras/room
Specifies whether the camera that monitors the whole self-service area is available.
default: false

camera/cameras/person
Specifies whether the camera that monitors the person standing in front of the self-service is available.
default: false

camera/cameras/exitSlot
Specifies whether the camera that monitors the exit slot(s) of the self-service machine is available.
default: false

camera/cameras/vendorSpecificCamera (example name)
Allows vendor specific cameras to be reported.
default: false

camera/maxPictures
Specifies the maximum number of pictures that can be stored on the recording media. This property is null if not
applicable.
Property value constraints:
minimum: 0
default: null

camera/camData
Specifies whether the methods are supported for adding data to the picture. If null, no data can be added to the
picture.
default: null

camera/camData/autoAdd
Specifies whether data can be added automatically to the picture.
default: false

camera/camData/manAdd
Specifies whether data can be added manually to the picture using Camera.TakePicture.camData.
default: false

camera/maxDataLength
Specifies the maximum length of the data that is displayed on the photo. This property is null if not applicable.
Property value constraints:
minimum: 0
default: null

lights
Capability information for XFS4IoT services implementing the Lights interface. This will be null if the Lights
interface is not supported.
default: null

lights/cardReader
Card Unit Light.
default: null

lights/cardReader/flashRate
Indicates the light flash rate.

lights/cardReader/flashRate/off
The light can be turned off.
default: false

153

Properties

lights/cardReader/flashRate/slow
The light can flash slowly.
default: false

lights/cardReader/flashRate/medium
The light can flash medium frequency.
default: false

lights/cardReader/flashRate/quick
The light can flash quickly.
default: false

lights/cardReader/flashRate/continuous
The light can flash continuous (steady).
default: true

lights/cardReader/color
Indicates the light color.

lights/cardReader/color/red
The light can be red.
default: false

lights/cardReader/color/green
The light can be green.
default: false

lights/cardReader/color/yellow
The light can be yellow.
default: false

lights/cardReader/color/blue
The light can be blue.
default: false

lights/cardReader/color/cyan
The light can be cyan.
default: false

lights/cardReader/color/magenta
The light can be magenta.
default: false

lights/cardReader/color/white
The light can be white.
default: false

lights/cardReader/direction
Indicates the light direction. This property is null if not applicable.
default: null

lights/cardReader/direction/entry
The light can indicate entry.
default: false

lights/cardReader/direction/exit
The light can indicate exit.
default: false

154

Properties

lights/cardReader/position
Indicates the light position. This property is null if not applicable.
default: null

lights/cardReader/position/left
The left position.
default: false

lights/cardReader/position/right
The right position.
default: false

lights/cardReader/position/center
The center position.
default: false

lights/cardReader/position/top
The top position.
default: false

lights/cardReader/position/bottom
The bottom position.
default: false

lights/cardReader/position/front
The front position.
default: false

lights/cardReader/position/rear
The rear position.
default: false

lights/pinPad
Pin Pad Light.
default: null

lights/notesDispenser
Notes Dispenser Light.
default: null

lights/coinDispenser
Coin Dispenser Light.
default: null

lights/receiptPrinter
Receipt Printer Light.
default: null

lights/passbookPrinter
Passbook Printer Light.
default: null

lights/envelopeDepository
Envelope Depository Light.
default: null

lights/checkUnit
Check Unit Light.
default: null

155

Properties

lights/billAcceptor
Bill Acceptor Light.
default: null

lights/envelopeDispenser
Envelope Dispenser Light.
default: null

lights/documentPrinter
Document Printer Light.
default: null

lights/coinAcceptor
Coin Acceptor Light.
default: null

lights/scanner
Scanner Light.
default: null

lights/contactless
Contactless Reader Light.
default: null

lights/cardReader2
Card Reader 2 Light.
default: null

lights/notesDispenser2
Notes Dispenser 2 Light.
default: null

lights/billAcceptor2
Bill Acceptor 2 Light.
default: null

lights/statusGood
Status indicator light - Good.
default: null

lights/statusWarning
Status indicator light - Warning.
default: null

lights/statusBad
Status indicator light - Bad.
default: null

lights/statusSupervisor
Status indicator light - Supervisor.
default: null

lights/statusInService
Status indicator light - In Service.
default: null

lights/fasciaLight
Fascia light.
default: null

156

Properties

lights/vendorSpecificLight (example name)
Additional vendor specific lights.
default: null

auxiliaries
Capability information for XFS4IoT services implementing the Auxiliaries interface. This will be null if the
Auxiliaries interface is not supported.
default: null

auxiliaries/operatorSwitch
Specifies which states the Operator Switch can be set to. If not available, this property is null.
default: null

auxiliaries/operatorSwitch/run
The switch can be set in Run mode.
default: false

auxiliaries/operatorSwitch/maintenance
The switch can be set in Maintenance mode.
default: false

auxiliaries/operatorSwitch/supervisor
The switch can be set in Supervisor mode.
default: false

auxiliaries/tamperSensor
Specifies whether the Tamper Sensor for the terminal is available.
default: false

auxiliaries/internalTamperSensor
Specifies whether the Internal Tamper Sensor for the terminal is available.
default: false

auxiliaries/seismicSensor
Specifies whether the Seismic Sensor for the terminal is available.
default: false

auxiliaries/heatSensor
Specifies whether the Heat Sensor for the terminal is available.
default: false

auxiliaries/proximitySensor
Specifies whether the Proximity Sensor for the terminal is available.
default: false

auxiliaries/ambientLightSensor
Specifies whether the Ambient Light Sensor for the terminal is available.
default: false

auxiliaries/enhancedAudioSensor
Specifies which modes the Audio Jack supports. if present. Null if not applicable.
default: null

auxiliaries/enhancedAudioSensor/manual
The Audio Jack is available and supports manual mode.
default: false

auxiliaries/enhancedAudioSensor/auto
The Audio Jack is available and supports auto mode.
default: false

157

Properties

auxiliaries/enhancedAudioSensor/semiAuto
The Audio Jack is available and supports semi-auto mode.
default: false

auxiliaries/enhancedAudioSensor/bidirectional
The Audio Jack is available and can support headphones that have an integrated microphone via a single jack.
default: false

auxiliaries/bootSwitchSensor
Specifies whether the Boot Switch Sensor for the terminal is available.
default: false

auxiliaries/consumerDisplaySensor
Specifies whether the Consumer Display Sensor is available.
default: false

auxiliaries/operatorCallButtonSensor
Specifies whether the Operator Call Button is available. The Operator Call Button does not actually call the
operator but just sends a signal to the application.
default: false

auxiliaries/handsetSensor
Specifies which modes the Handset supports if present. Null if not applicable.
default: null

auxiliaries/handsetSensor/manual
The Handset is available and it supports manual mode.
default: false

auxiliaries/handsetSensor/auto
The Handset is available and it supports auto mode.
default: false

auxiliaries/handsetSensor/semiAuto
The Handset is available and it supports semi-auto mode.
default: false

auxiliaries/handsetSensor/microphone
The Handset is available and contains an embedded microphone for audio input.
default: false

auxiliaries/headsetMicrophoneSensor
Specifies whether the Microphone Jack is present, and if so, which modes it supports. If the enhancedAudio
capability indicates the presence of a bi-directional Audio Jack then both sensors reference the same physical
jack. Null if not applicable.
default: null

auxiliaries/headsetMicrophoneSensor/manual
The Microphone Jack is available and it supports manual mode.
default: false

auxiliaries/headsetMicrophoneSensor/auto
The Microphone Jack is available and it supports auto mode.
default: false

auxiliaries/headsetMicrophoneSensor/semiAuto
The Microphone Jack is available and it supports semi-auto mode.
default: false

158

Properties

auxiliaries/fasciaMicrophoneSensor
Specifies whether a Fascia Microphone (for public audio input) is present.
default: false

auxiliaries/cabinetDoor
Specifies whether the Cabinet Door is available, and if so, which states it supports. If there are multiple Cabinet
Doors available, use appropriate position of Cabinet Door. frontCabinet, rearCabinet, leftCabinet or
rightCabinet properties. Null if not applicable.
default: null

auxiliaries/cabinetDoor/closed
Specifies that the door can report the closed state.
default: false

auxiliaries/cabinetDoor/open
Specifies that the door can report the open state.
default: false

auxiliaries/cabinetDoor/locked
Specifies that the door can report the locked state.
default: false

auxiliaries/cabinetDoor/bolted
Specifies that the door can report the bolted state.
default: false

auxiliaries/cabinetDoor/tampered
Specifies that the door can report the tampered state.
default: false

auxiliaries/safeDoor
Specifies whether the Safe Door is available, and if so, which states it supports. Null if not applicable.
default: null

auxiliaries/vandalShield
Specifies the states the Vandal Shield can support, if available. Null if not applicable.
default: null

auxiliaries/vandalShield/closed
The Vandal Shield can be closed.
default: false

auxiliaries/vandalShield/open
The Vandal Shield can be open.
default: false

auxiliaries/vandalShield/locked
The Vandal Shield can be locked.
default: false

auxiliaries/vandalShield/service
The Vandal Shield can be in the service position.
default: false

auxiliaries/vandalShield/keyboard
The Vandal Shield can be in a position that permits access to the keyboard.
default: false

auxiliaries/vandalShield/tampered
The Vandal Shield can detect potential tampering.
default: false

159

Properties

auxiliaries/frontCabinet
Specifies whether at least one Front Cabinet Door is available, and if so, which states they support. Null if not
applicable.
default: null

auxiliaries/rearCabinet
Specifies whether at least one Rear Cabinet Door is available, and if so, which states they support. Null if not
applicable.
default: null

auxiliaries/leftCabinet
Specifies whether at least one left Cabinet Door is available, and if so, which states they support. Null if not
applicable.
default: null

auxiliaries/rightCabinet
Specifies whether at least one right Cabinet Door is available, and if so, which states they support. Null if not
applicable.
default: null

auxiliaries/openCloseIndicator
Specifies whether the Open/Closed Indicator is available.
default: false

auxiliaries/audio
Specifies whether the Audio Indicator device is available.
default: false

auxiliaries/heating
Specifies whether the Internal Heating device is available.
default: false

auxiliaries/consumerDisplayBacklight
Specifies whether the Consumer Display Backlight is available.
default: false

auxiliaries/signageDisplay
Specifies whether the Signage Display is available.
default: false

auxiliaries/volume
Specifies the Volume Control increment/decrement value recommended by the vendor.
Property value constraints:
minimum: 1
maximum: 1000

auxiliaries/ups
Specifies what states the UPS device supports. Null if not applicable.
default: null

auxiliaries/ups/low
The UPS can indicate that its charge level is low.
default: false

auxiliaries/ups/engaged
The UPS can be engaged and disengaged by the application.
default: false

auxiliaries/ups/powering
The UPS can indicate that it is powering the system while the main power supply is off.
default: false

160

Properties

auxiliaries/ups/recovered
The UPS can indicate that it was engaged when the main power went off.
default: false

auxiliaries/audibleAlarm
Specifies whether the Audible Alarm is available.
default: false

auxiliaries/enhancedAudioControl
Specifies the modes the Enhanced Audio Controller can support. The Enhanced Audio Controller controls how
private and public audio are broadcast when the headset is inserted into/removed from the audio jack and when
the handset is off-hook/on-hook. In the following Privacy Device is used to refer to either the headset or handset.
Null if not applicable.
default: null

auxiliaries/enhancedAudioControl/headsetDetection
The Enhanced Audio Controller is supports Privacy Device activation/deactivation. The device is able to report
events to indicate Privacy Device activation/deactivation.
default: false

auxiliaries/enhancedAudioControl/modeControllable
The Enhanced Audio Controller supports application control of the Privacy Device mode via
Auxiliaries.SetAuxiliaries.
default: false

auxiliaries/enhancedMicrophoneControl
Specifies the modes the Enhanced Microphone Controller can support. The Enhanced Microphone Controller
controls how private and public audio input are transmitted when the headset is inserted into/removed from the
audio jack and when the handset is off-hook/on-hook. In the following Privacy Device is used to refer to either
the headset or handset. Null if not applicable.
default: null

auxiliaries/enhancedMicrophoneControl/headsetDetection
The Enhanced Microphone Controller supports Privacy Device activation/deactivation. The device is able to
report events to indicate Privacy Device activation/deactivation.
default: false

auxiliaries/enhancedMicrophoneControl/modeControllable
The Enhanced Microphone Controller supports application control of the Privacy Device mode via
Auxiliaries.SetAuxiliaries.
default: false

auxiliaries/microphoneVolume
Specifies the Microphone Volume Control increment/decrement value recommended by the vendor. Null if not
applicable.
Property value constraints:
minimum: 1
maximum: 1000
default: null

auxiliaries/autoStartupMode
Specifies which modes of the auto start-up control are supported. Null if not applicable.
default: null

auxiliaries/autoStartupMode/specific
The device supports one-time auto start-up on a specific date at a specific time.
default: false

161

Properties

auxiliaries/autoStartupMode/daily
The device supports auto start-up every day at a specific time.
default: false

auxiliaries/autoStartupMode/weekly
The device supports auto start-up at a specified time on a specific day of every week.
default: false

vendorApplication
Capability information for XFS4IoT services implementing the VendorApplication interface. This will be null if
the Vendor Application interface is not supported.
default: null

vendorApplication/supportedAccessLevels
Specifies the supported access levels. This allows the application to show a user interface with reduced or
extended functionality depending on the access levels. The exact meaning or functionality definition is left to the
vendor. If no access levels are supported this property will be null.
default: null

vendorApplication/supportedAccessLevels/basic
The application supports the basic access level. Once the application is active it will show the user interface for
the basic access level.
default: false

vendorApplication/supportedAccessLevels/intermediate
The application supports the intermediate access level. Once the application is active it will show the user
interface for the intermediate access level.
default: false

vendorApplication/supportedAccessLevels/full
The application supports the full access level. Once the application is active it will show the user interface for the
full access level.
default: false

Event Messages
None

162

4.1.3 Common.SetVersions
This command sets the major versions of the command, event and unsolicited message types for the client
connection. The completion message version will match the command message version.

Versions are set only for the client connection on which the command is received. It does not modify the versions
other client connections expect to use.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0) Type Require
d

{
 "commands": { object,

null

 "CardReader.ReadRawData": 1, integer
 "CardReader.Move": See commands/CardReader.ReadRawData integer
 },
 "events": { object,

null

 "CardReader.MediaInsertedEvent": 1, integer
 "CardReader.MediaRemovedEvent": See
events/CardReader.MediaInsertedEvent

integer

 }
}

Properties

commands
The commands for which a version is being set.
Property value constraints:
minProperties: 1
default: null

commands/CardReader.ReadRawData (example name)
The major version of the command that the Service should use.
Property name constraints:
pattern: ^[0-9A-Za-z]*\.[0-9A-Za-z]*$
Property value constraints:
minimum: 1

events
The events for which a version is being set
Property value constraints:
minProperties: 1
default: null

events/CardReader.MediaInsertedEvent (example name)
The major version of the event that the Service should use.
Property name constraints:
pattern: ^[0-9A-Za-z]*\.[0-9A-Za-z]*$
Property value constraints:
minimum: 1

163

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

164

4.1.4 Common.Cancel
This command instructs the Service to attempt to cancel one, more or all command requests associated with the
client connection on which this command is received.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0) Type Required
{
 "requestIds": [1, 2] array (integer), null
}

Properties

requestIds
The request(s) to be canceled.
If included, the Service will only attempt to cancel the specified command requests which are queued or
executing and which are associated with the client connection on which this command is received. All other
requestIds will be ignored.
If null, the Service will attempt to cancel all queued or executing command requests associated with the client
connection on which this command is received.
Property value constraints:
minimum: 1
minItems: 1
uniqueItems: true
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noMatchingRequestIDs" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noMatchingRequestIDs - No queued or executing command matches the requestIds property.
default: null

Event Messages
None

165

4.1.5 Common.PowerSaveControl
This command activates or deactivates the power-saving mode. If the Service receives another command while in
power saving mode:

• If the command requires the device to be powered up while in power saving mode, the Service
automatically exits the power saving mode, and executes the requested command.

• If the command does not require the device to be powered up while in power saving mode, the Service will
not exit the power saving mode.

Command Message

Payload (version 2.0) Type Required
{
 "maxPowerSaveRecoveryTime": 5 integer 🗸🗸
}

Properties

maxPowerSaveRecoveryTime
Specifies the maximum number of seconds in which the device must be able to return to its normal operating
state when exiting power save mode. The device will be set to the highest possible power save mode within this
constraint. If set to 0 then the device will exit the power saving mode.
Property value constraints:
minimum: 0

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

166

4.1.6 Common.SetTransactionState
This command allows the application to specify the transaction state, which the Service can then utilize in order to
optimize performance. After receiving this command, this Service can perform the necessary processing to start or
end the customer transaction. This command should be called for every Service that could be used in a customer
transaction. The transaction state applies to every session.

Command Message

Payload (version 2.0) Type Required
{
 "state": "active", string 🗸🗸
 "transactionID": "Example transaction ID" string, null
}

Properties

state
Specifies the transaction state. Following values are possible:

• active - A customer transaction is in progress.
• inactive - No customer transaction is in progress.

transactionID
Specifies a string which identifies the transaction ID.
if state is inactive, this property:

• Is ignored in Common.SetTransactionState
• Is null in Common.GetTransactionState.

default: null

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

167

4.1.7 Common.GetTransactionState
This command can be used to get the transaction state.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "state": "active", string 🗸🗸
 "transactionID": "Example transaction ID" string, null
}

Properties

state
Specifies the transaction state. Following values are possible:

• active - A customer transaction is in progress.
• inactive - No customer transaction is in progress.

transactionID
Specifies a string which identifies the transaction ID.
if state is inactive, this property:

• Is ignored in Common.SetTransactionState
• Is null in Common.GetTransactionState.

default: null

Event Messages
None

168

4.1.8 Common.GetCommandNonce
Get a nonce to be included in an Authorization Token for a command that will be used to ensure end to end
security.

The device will overwrite any existing stored Command nonce with this new value. The value will be stored for
future authentication. Any Authorization Token received will be compared with this stored nonce and if the Token
doesn't contain the same nonce it will be considered invalid and rejected, causing the command that contains that
Authorization Token to fail.

The nonce must match the algorithm used. For example, HMAC SHA256 means the nonce must be 256 bit/32
bytes.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "commandNonce": "646169ECDD0E440C2CECC8DDD7C27C22" string 🗸🗸
}

Properties

commandNonce
A nonce that should be included in the Authorization Token in a command used to provide end to end protection.
The nonce will be given as an integer string, or HEX (upper case.)
Property value constraints:
pattern: ^[0-9A-F]{32}$|^[0-9]*$

Event Messages
None

169

4.1.9 Common.ClearCommandNonce
Clear the command nonce from the device. The command nonce is included in an Authorization Token for a
command that will be used to ensure end to end security.

Clearing this value from the device will make any tokens with the old nonce invalid. It will not be possible to use
any token, or perform any end to end secured operation, until a new nonce is created with
Common.GetCommandNonce and a new token is created.

There is no requirement for the client to clear the command nonce, but doing so may be useful for various reasons:

1. Clearing the command nonce once the application has finished with it will stop an attacker from using that
value and may help improve security.

2. Clearing the command nonce will cause the Common.NonceClearedEvent event to be fired immediately
which avoids the client having to handle it at a later time. This could make event handling simpler.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

170

4.2 Unsolicited Messages

4.2.1 Common.StatusChangedEvent
This event reports that a change of state has occurred. The new value of all properties which have changed value
are included in the event payload. Any properties which have not changed state are null.

Unsolicited Message

Payload (version 2.0) Type Requir
ed

{
 "common": { object, null
 "device": "online", string, null
 "devicePosition": "notInPosition", string, null
 "powerSaveRecoveryTime": 10, integer, null
 "antiFraudModule": "ok", string, null
 "exchange": "active", string, null
 "endToEndSecurity": "enforced" string, null
 },
 "cardReader": { object, null
 "media": "unknown", string, null
 "security": "notReady", string, null
 "chipPower": "unknown", string, null
 "chipModule": "ok", string, null
 "magWriteModule": "ok", string, null
 "frontImageModule": "ok", string, null
 "backImageModule": "ok" string, null
 },
 "cashAcceptor": { object, null
 "intermediateStacker": "empty", string, null
 "stackerItems": "customerAccess", string, null
 "banknoteReader": "ok", string, null
 "dropBox": true, boolean, null
 "positions": [{ array (object),

null

 "position": "inLeft", string 🗸🗸
 "shutter": "closed", string, null
 "positionStatus": "empty", string, null
 "transport": "ok", string, null
 "transportStatus": "empty" string, null
 }]
 },
 "cashDispenser": { object, null

171

Payload (version 2.0) Type Requir
ed

 "intermediateStacker": "empty", string, null
 "positions": [{ array (object),

null

 "position": "outDefault", string
 "shutter": "closed", string, null
 "positionStatus": "empty", string, null
 "transport": "ok", string, null
 "transportStatus": "empty" string, null
 }]
 },
 "cashManagement": { object, null
 "dispenser": "ok", string, null
 "acceptor": "ok" string, null
 },
 "check": { object, null
 "acceptor": "ok", string, null
 "media": "present", string, null
 "toner": "full", string, null
 "ink": "full", string, null
 "frontImageScanner": "ok", string, null
 "backImageScanner": "ok", string, null
 "mICRReader": "ok", string, null
 "stacker": "empty", string, null
 "rebuncher": "empty", string, null
 "mediaFeeder": "notEmpty", string, null
 "positions": { object, null
 "input": { object, null
 "shutter": "closed", string, null 🗸🗸
 "positionStatus": "empty", string, null
 "transport": "ok", string, null
 "transportMediaStatus": "empty", string, null
 "jammedShutterPosition": "notJammed" string, null
 },
 "output": See check/positions/input properties object, null
 "refused": See check/positions/input properties object, null
 }
 },
 "mixedMedia": { object, null
 "modes": { object 🗸🗸
 "cashAccept": true, boolean, null

172

Payload (version 2.0) Type Requir
ed

 "checkAccept": true boolean, null
 }
 },
 "keyManagement": { object, null
 "encryptionState": "ready", string, null
 "certificateState": "unknown" string, null
 },
 "keyboard": { object, null
 "autoBeepMode": { object 🗸🗸
 "activeAvailable": false, boolean, null
 "inactiveAvailable": false boolean, null
 }
 },
 "textTerminal": { object, null
 "keyboard": "on", string, null
 "keyLock": "on", string, null
 "displaySizeX": 0, integer, null
 "displaySizeY": 0 integer, null
 },
 "printer": { object, null
 "media": "unknown", string, null
 "paper": { object, null
 "upper": "unknown", string, null
 "lower": "unknown", string, null
 "external": "unknown", string, null
 "aux": "unknown", string, null
 "aux2": "unknown", string, null
 "park": "unknown", string, null
 "vendorSpecificPaperSupply": "unknown" string, null
 },
 "toner": "unknown", string, null
 "ink": "unknown", string, null
 "lamp": "unknown", string, null
 "retractBins": [{ array (object),

null

 "state": "unknown", string, null
 "count": 0 integer, null
 }],
 "mediaOnStacker": 7, integer, null
 "paperType": { object, null

173

Payload (version 2.0) Type Requir
ed

 "upper": "unknown", string, null
 "lower": "unknown", string, null
 "external": "unknown", string, null
 "aux": "unknown", string, null
 "aux2": "unknown", string, null
 "park": "unknown", string, null
 "exampleProperty1": "unknown", string, null
 "exampleProperty2": See
printer/paperType/exampleProperty1

string, null

 },
 "blackMarkMode": "unknown" string, null
 },
 "barcodeReader": { object, null
 "scanner": "on" string 🗸🗸
 },
 "biometric": { object, null
 "subject": "present", string, null
 "capture": false, boolean, null
 "dataPersistence": "persist", string, null
 "remainingStorage": 0 integer, null
 },
 "camera": { object, null
 "media": { object, null
 "room": "ok", string, null
 "person": "ok", string, null
 "exitSlot": "ok", string, null
 "vendorSpecificCameraMedia": "ok" string, null
 },
 "cameras": { object, null
 "room": "ok", string, null
 "person": "ok", string, null
 "exitSlot": "ok", string, null
 "vendorSpecificCameraState": See
camera/media/vendorSpecificCameraMedia

string, null

 },
 "pictures": { object, null
 "room": 0, integer, null
 "person": 0, integer, null
 "exitSlot": 0, integer, null
 "vendorSpecificCameraPictures": 0 integer, null
 }

174

Payload (version 2.0) Type Requir
ed

 },
 "lights": { object, null
 "cardReader": { object, null
 "position": "left", string 🗸🗸
 "flashRate": "off", string, null
 "color": "red", string, null
 "direction": "entry" string, null
 },
 "pinPad": See lights/cardReader properties object, null
 "notesDispenser": See lights/cardReader properties object, null
 "coinDispenser": See lights/cardReader properties object, null
 "receiptPrinter": See lights/cardReader properties object, null
 "passbookPrinter": See lights/cardReader properties object, null
 "envelopeDepository": See lights/cardReader properties object, null
 "checkUnit": See lights/cardReader properties object, null
 "billAcceptor": See lights/cardReader properties object, null
 "envelopeDispenser": See lights/cardReader properties object, null
 "documentPrinter": See lights/cardReader properties object, null
 "coinAcceptor": See lights/cardReader properties object, null
 "scanner": See lights/cardReader properties object, null
 "contactless": See lights/cardReader properties object, null
 "cardReader2": See lights/cardReader properties object, null
 "notesDispenser2": See lights/cardReader properties object, null
 "billAcceptor2": See lights/cardReader properties object, null
 "statusGood": See lights/cardReader properties object, null
 "statusWarning": See lights/cardReader properties object, null
 "statusBad": See lights/cardReader properties object, null
 "statusSupervisor": See lights/cardReader properties object, null
 "statusInService": See lights/cardReader properties object, null
 "fasciaLight": See lights/cardReader properties object, null
 "vendorSpecificLight": See lights/cardReader properties object, null
 },
 "auxiliaries": { object, null
 "operatorSwitch": "run", string, null
 "tamperSensor": "on", string, null
 "internalTamperSensor": "on", string, null
 "seismicSensor": "on", string, null
 "heatSensor": "on", string, null
 "proximitySensor": "present", string, null
 "ambientLightSensor": "veryDark", string, null

175

Payload (version 2.0) Type Requir
ed

 "enhancedAudioSensor": "present", string, null
 "bootSwitchSensor": "off", string, null
 "consumerDisplaySensor": "off", string, null
 "operatorCallButtonSensor": "off", string, null
 "handsetSensor": "onTheHook", string, null
 "headsetMicrophoneSensor": "present", string, null
 "fasciaMicrophoneSensor": "off", string, null
 "safeDoor": "closed", string, null
 "vandalShield": "closed", string, null
 "cabinetFrontDoor": "closed", string, null
 "cabinetRearDoor": "closed", string, null
 "cabinetLeftDoor": "closed", string, null
 "cabinetRightDoor": "closed", string, null
 "openClosedIndicator": "closed", string, null
 "audio": { object, null
 "rate": "on", string, null
 "signal": "keypress" string, null
 },
 "heating": "off", string, null
 "consumerDisplayBacklight": "off", string, null
 "signageDisplay": "off", string, null
 "volume": 1, integer, null
 "UPS": { object, null
 "low": true, boolean, null
 "engaged": false, boolean, null
 "powering": false, boolean, null
 "recovered": false boolean, null
 },
 "audibleAlarm": "on", string, null
 "enhancedAudioControl": "publicAudioManual", string, null
 "enhancedMicrophoneControl": "publicAudioManual", string, null
 "microphoneVolume": 1 integer, null
 },
 "vendorMode": { object, null
 "device": "online", string, null
 "service": "enterPending" string, null
 },
 "vendorApplication": { object, null
 "accessLevel": "notActive" string 🗸🗸
 }

176

Payload (version 2.0) Type Requir
ed

}

Properties

common
Status information common to all XFS4IoT services. May be null if none of the properties have changed.
default: null

common/device
Specifies the state of the device. This property is required in Common.Status, but may be null in
Common.StatusChangedEvent if it has not changed. Following values are possible:

• online - The device is online. This is returned when the device is present and operational.
• offline - The device is offline (e.g., the operator has taken the device offline by turning a switch or

breaking an interlock).
• powerOff - The device is powered off or physically not connected.
• noDevice - The device is not intended to be there, e.g. this type of self service machine does not

contain such a device or it is internally not configured.
• hardwareError - The device is inoperable due to a hardware error.
• userError - The device is present but a person is preventing proper device operation.
• deviceBusy - The device is busy and unable to process a command at this time.
• fraudAttempt - The device is present but is inoperable because it has detected a fraud attempt.
• potentialFraud - The device has detected a potential fraud attempt and is capable of remaining in

service. In this case the application should make the decision as to whether to take the device offline.
• starting - The device is starting and performing whatever initialization is necessary. This can be

reported after the connection is made but before the device is ready to accept commands. This must only be a
temporary state, the Service must report a different state as soon as possible. If an error causes initialization to
fail then the state should change to hardwareError.
default: null

common/devicePosition
Position of the device. This property is null in Common.Status if position status reporting is not supported,
otherwise the following values are possible:

• inPosition - The device is in its normal operating position, or is fixed in place and cannot be moved.
• notInPosition - The device has been removed from its normal operating position.
• unknown - Due to a hardware error or other condition, the position of the device cannot be determined.

default: null

common/powerSaveRecoveryTime
Specifies the actual number of seconds required by the device to resume its normal operational state from the
current power saving mode. This value is 0 if the power saving mode has not been activated. This property is
null in Common.Status if power save control is not supported.
Property value constraints:
minimum: 0
default: null

common/antiFraudModule
Specifies the state of the anti-fraud module if available. This property is null in Common.Status if there is no
anti-fraud module, otherwise the following values are possible:

• ok - Anti-fraud module is in a good state and no foreign device is detected.
• inoperable - Anti-fraud module is inoperable.
• deviceDetected - Anti-fraud module detected the presence of a foreign device.
• unknown - The state of the anti-fraud module cannot be determined.

default: null

177

Properties

common/exchange
Specifies the exchange state of the service. Exchange can used to perform a manual replenishment of a device
and is entered by Storage.StartExchange and completed by Storage.EndExchange. This property is null in
Common.Status if not supported, otherwise the following values are possible:

• active - Exchange is active on this service. Commands which interact with the device may be rejected
with an error code as appropriate.

• inactive - Exchange is not active on this service.
default: null

common/endToEndSecurity
Specifies the status of end to end security support on this device. This property is null in Common.Status if E2E
security is not supported by this hardware and any command can be called without a token, otherwise the
following values are possible.
Also see Common.CapabilityProperties.endToEndSecurity.

• notEnforced - E2E security is supported by this hardware but it is not currently enforced, for
example because required keys aren't loaded. It's currently possible to perform E2E commands without a token.

• notConfigured - E2E security is supported but not correctly configured, for example because
required

keys aren't loaded. Any attempt to perform any command protected by E2E security will fail.
• enforced - E2E security is supported and correctly configured. E2E security will be enforced.

Calling E2E protected commands will only be possible if a valid token is given.
default: null

cardReader
Status information for XFS4IoT services implementing the CardReader interface. This will be null if the
CardReader interface is not supported.
default: null

cardReader/media
Specifies the transport/exit position media state. This property will be null if the capability to report media
position is not supported by the device (e.g., a typical swipe reader or contactless chip card reader), otherwise
one of the following values:

• unknown - The media state cannot be determined with the device in its current state (e.g. the value of
device is noDevice, powerOff, offline or hardwareError.

• present - Media is present in the device, not in the entering position and not jammed. On the latched
dip device, this indicates that the card is present in the device and the card is unlatched.

• notPresent - Media is not present in the device and not at the entering position.
• jammed - Media is jammed in the device; operator intervention is required.
• entering - Media is at the entry/exit slot of a motorized device.
• latched - Media is present and latched in a latched dip card unit. This means the card can be used for

chip card dialog.
default: null

cardReader/security
Specifies the state of the security module. This property will be null if no security module is available, otherwise
one of the following values:

• notReady - The security module is not ready to process cards or is inoperable.
• open - The security module is open and ready to process cards.

default: null

178

Properties

cardReader/chipPower
Specifies the state of the chip controlled by this service. Depending on the value of capabilities response, this can
either be the chip on the currently inserted user card or the chip on a permanently connected chip card. This
property will be null if the capability to report the state of the chip is not supported by the ID card unit device
and will apply to contactless chip card readers, otherwise one of the following values:

• unknown - The state of the chip cannot be determined with the device in its current state.
• online - The chip is present, powered on and online (i.e. operational, not busy processing a request

and not in an error state).
• busy - The chip is present, powered on, and busy (unable to process a command at this time).
• poweredOff - The chip is present, but powered off (i.e. not contacted).
• noDevice - A card is currently present in the device, but has no chip.
• hardwareError - The chip is present, but inoperable due to a hardware error that prevents it from

being used (e.g. MUTE, if there is an unresponsive card in the reader).
• noCard - There is no card in the device.

default: null

cardReader/chipModule
Specifies the state of the chip card module reader. This property will be null if reporting the chip card module
status is not supported, otherwise one of the following values:

• ok - The chip card module is in a good state.
• inoperable - The chip card module is inoperable.
• unknown - The state of the chip card module cannot be determined.

default: null

cardReader/magWriteModule
Specifies the state of the magnetic card writer. This property will be null if reporting the magnetic card writing
module status is not supported, otherwise one of the following values:

• ok - The magnetic card writing module is in a good state.
• inoperable - The magnetic card writing module is inoperable.
• unknown - The state of the magnetic card writing module cannot be determined.

default: null

cardReader/frontImageModule
Specifies the state of the front image reader. This property will be null if reporting the front image reading
module status is not supported, otherwise one of the following values:

• ok - The front image reading module is in a good state.
• inoperable - The front image reading module is inoperable.
• unknown - The state of the front image reading module cannot be determined.

default: null

cardReader/backImageModule
Specifies the state of the back image reader. This property will be null if reporting the back image reading
module status is not supported, otherwise one of the following values:

• ok - The back image reading module is in a good state.
• inoperable - The back image reading module is inoperable.
• unknown - The state of the back image reading module cannot be determined.

default: null

cashAcceptor
Status information for XFS4IoT services implementing the CashAcceptor interface. This will be null if the
CashAcceptor interface is not supported.
default: null

179

Properties

cashAcceptor/intermediateStacker
Supplies the state of the intermediate stacker. This property is null in Common.Status if the physical device has
no intermediate stacker, otherwise the following values are possible:

• empty - The intermediate stacker is empty.
• notEmpty - The intermediate stacker is not empty.
• full - The intermediate stacker is full. This may also be reported during a cash-in transaction

where a limit specified by CashAcceptor.CashInStart has been reached.
• unknown - Due to a hardware error or other condition, the state of the intermediate stacker

cannot be determined.
default: null

cashAcceptor/stackerItems
This property informs the application whether items on the intermediate stacker have been in customer access.
This property is null in Common.Status if the physical device has no intermediate stacker, otherwise the
following values are possible:

• customerAccess - Items on the intermediate stacker have been in customer access. If the device is a
cash recycler then the items on the intermediate stacker may be there as a result of a previous cash-out operation.

• noCustomerAccess - Items on the intermediate stacker have not been in customer access.
• accessUnknown - It is not known if the items on the intermediate stacker have been in customer

access.
• noItems - There are no items on the intermediate stacker.

default: null

cashAcceptor/banknoteReader
Supplies the state of the banknote reader. This property is null in Common.Status if the physical device has no
banknote reader, otherwise the following values are possible:

• ok - The banknote reader is in a good state.
• inoperable - The banknote reader is inoperable.
• unknown - Due to a hardware error or other condition, the state of the banknote reader cannot be

determined.
default: null

cashAcceptor/dropBox
The drop box is an area within the Cash Acceptor where items which have caused a problem during an operation
are stored. This property specifies the status of the drop box. If true, some items are stored in the drop box due to
a cash-in transaction which caused a problem. If false, the drop box is empty or there is no drop box. This
property may be null if there is no drop box or its state has not changed in Common.StatusChangedEvent.
default: null

cashAcceptor/positions
Array of structures reporting status for each position from which items can be accepted. This may be null in
Common.StatusChangedEvent if no position states have changed.
default: null

180

Properties

cashAcceptor/positions/position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

cashAcceptor/positions/shutter
Supplies the state of the shutter. This property is null in Common.Status if the physical position has no shutter,
otherwise the following values are possible:

• closed - The shutter is operational and is fully closed.
• open - The shutter is operational and is open.
• jammedOpen - The shutter is jammed, but fully open. It is not operational.
• jammedPartiallyOpen - The shutter is jammed, but partially open. It is not operational.
• jammedClosed - The shutter is jammed, but fully closed. It is not operational.
• jammedUnknown - The shutter is jammed, but its position is unknown. It is not operational.
• unknown - Due to a hardware error or other condition, the state of the shutter cannot be determined.

default: null

cashAcceptor/positions/positionStatus
The status of the input or output position. This property is null in Common.Status if the device is not capable of
reporting whether items are at the position, otherwise the following values are possible:

• empty - The position is empty.
• notEmpty - The position is not empty.
• unknown - Due to a hardware error or other condition, the state of the position cannot be determined.
• foreignItems - Foreign items have been detected in the position.

default: null

cashAcceptor/positions/transport
Supplies the state of the transport mechanism. The transport is defined as any area leading to or from the
position. This property is null in Common.Status if the device has no transport or transport state reporting is not
supported, otherwise the following values are possible:

• ok - The transport is in a good state.
• inoperative - The transport is inoperative due to a hardware failure or media jam.
• unknown - Due to a hardware error or other condition the state of the transport cannot be determined.

default: null

181

Properties

cashAcceptor/positions/transportStatus
Returns information regarding items which may be on the transport. If the device is a recycler device it is
possible that the transport will not be empty due to a previous dispense operation. This property is null in
Common.Status if the device has no transport or is not capable of reporting whether items are on the transport,
otherwise the following values are possible:

• empty - The transport is empty.
• notEmpty - The transport is not empty.
• notEmptyCustomer - Items which a customer has had access to are on the transport.
• unknown - Due to a hardware error or other condition it is not known whether there are items on the

transport.
default: null

cashDispenser
Status information for XFS4IoT services implementing the CashDispenser interface. This will be null if the
CashDispenser interface is not supported.
default: null

cashDispenser/intermediateStacker
Supplies the state of the intermediate stacker. These bills are typically present on the intermediate stacker as a
result of a retract operation or because a dispense has been performed without a subsequent present. This
property is null in Common.Status if the physical device has no intermediate stacker, otherwise the following
values are possible:

• empty - The intermediate stacker is empty.
• notEmpty - The intermediate stacker is not empty. The items have not been in customer access.
• notEmptyCustomer - The intermediate stacker is not empty. The items have been in customer access.

If the device is
a recycler then the items on the intermediate stacker may be there as a result of a previous cash-in operation.

• notEmptyUnknown - The intermediate stacker is not empty. It is not known if the items have been in
customer access.

• unknown - Due to a hardware error or other condition, the state of the intermediate stacker cannot be
determined.

default: null

cashDispenser/positions
Array of structures for each position to which items can be dispensed or presented. This may be null in
Common.StatusChangedEvent if no position states have changed.
default: null

cashDispenser/positions/position
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

182

Properties

cashDispenser/positions/shutter
Supplies the state of the shutter. This property is null in Common.Status if the physical position has no shutter,
otherwise the following values are possible:

• closed - The shutter is operational and is closed.
• open - The shutter is operational and is open.
• jammedOpen - The shutter is jammed, but fully open. It is not operational.
• jammedPartiallyOpen - The shutter is jammed, but partially open. It is not operational.
• jammedClosed - The shutter is jammed, but fully closed. It is not operational.
• jammedUnknown - The shutter is jammed, but its position is unknown. It is not operational.
• unknown - Due to a hardware error or other condition, the state of the shutter cannot be determined.

default: null

cashDispenser/positions/positionStatus
Returns information regarding items which may be at the output position. If the device is a recycler it is possible
that the output position will not be empty due to a previous cash-in operation. This property is null in
Common.Status if the device is not capable of reporting whether items are at the position, otherwise the
following values are possible:

• empty - The position is empty.
• notEmpty - The position is not empty.
• unknown - Due to a hardware error or other condition, the state of the position cannot be determined.

default: null

cashDispenser/positions/transport
Supplies the state of the transport mechanism. The transport is defined as any area leading to or from the
position. This property is null in Common.Status if the device has no transport or transport state reporting is not
supported, otherwise the following values are possible:

• ok - The transport is in a good state.
• inoperative - The transport is inoperative due to a hardware failure or media jam.
• unknown - Due to a hardware error or other condition the state of the transport cannot be determined.

default: null

cashDispenser/positions/transportStatus
Returns information regarding items which may be on the transport. If the device is a recycler device it is
possible that the transport will not be empty due to a previous cash-in operation. This property is null in
Common.Status if the device has no transport or is not capable of reporting whether items are on the transport,
otherwise the following values are possible:

• empty - The transport is empty.
• notEmpty - The transport is not empty.
• notEmptyCustomer - Items which a customer has had access to are on the transport.
• unknown - Due to a hardware error or other condition it is not known whether there are items on the

transport.
default: null

cashManagement
Status information for XFS4IoT services implementing the CashManagement interface. This will be null if the
CashManagement interface is not supported.
default: null

183

Properties

cashManagement/dispenser
Supplies the state of the storage units for dispensing cash. This may be null in Common.Status if the device is
not capable of dispensing cash, otherwise the following values are possible:

• ok - All storage units present are in a good state.
• attention - One or more of the storage units is in a low, empty, inoperative or manipulated condition.

Items can still be dispensed from at least one of the storage units.
• stop - Due to a storage unit failure dispensing is impossible. No items can be dispensed because

all of the storage units are empty, missing, inoperative or in a manipulated condition. This state may also occur
when a reject/retract storage unit is full or no reject/retract storage unit is present, or when an application lock is
set on every storage unit which can be locked.

• unknown - Due to a hardware error or other condition, the state of the storage units cannot be
determined.

default: null

cashManagement/acceptor
Supplies the state of the storage units for accepting cash. This may be null in Common.Status if the device is not
capable of accepting cash, otherwise the following values are possible:

• ok - All storage units present are in a good state.
• attention - One or more of the storage units is in a high, full, inoperative or manipulated condition.

Items can still be accepted into at least one of the storage units.
• stop - Due to a storage unit failure accepting is impossible. No items can be accepted because

all of the storage units are in a full, inoperative or manipulated condition. This state may also occur when a
retract storage unit is full or no retract storage unit is present, or when an application lock is set on every storage
unit, or when items are to be automatically retained within storage units (see retainAction), but all of the
designated storage units for storing them are full or inoperative.

• unknown - Due to a hardware error or other condition, the state of the storage units cannot be
determined.
default: null

check
Status information for XFS4IoT services implementing the Check interface. This will be null if the Check
interface is not supported.
default: null

check/acceptor
Supplies the state of the overall acceptor storage units. This may be null in Common.StatusChangedEvent if the
state has not changed. The following values are possible:

• ok - All storage units present are in a good state.
• state - One or more of the storage units is in a high, full or inoperative condition. Items can still

be accepted into at least one of the storage units. The status of the storage units can be obtained through the
Storage.GetStorage command.

• stop - Due to a storage unit problem accepting is impossible. No items can be accepted because all of
the storage units are in a full or in an inoperative condition.

• unknown - Due to a hardware error or other condition, the state of the storage units cannot be
determined.

default: null

184

Properties

check/media
Specifies the state of the media. This may be null in Common.Status if the capability to report the state of the
media is not supported by the device, otherwise the following values are possible:

• present - Media is present in the device.
• notPresent - Media is not present in the device.
• jammed - Media is jammed in the device.
• unknown - The state of the media cannot be determined with the device in its current state.
• position - Media is at one or more of the input, output and refused positions.

default: null

check/toner
Specifies the state of the toner or ink supply or the state of the ribbon of the endorser. This may be null in
Common.Status if the physical device does not support endorsing or the capability to report the status of the
toner/ink is not supported by the device, otherwise the following values are possible:

• full - The toner or ink supply is full or the ribbon is OK.
• low - The toner or ink supply is low or the print contrast with a ribbon is weak.
• out - The toner or ink supply is empty or the print contrast with a ribbon is not sufficient any more.
• unknown - Status of toner or ink supply or the ribbon cannot be determined with the device in its

current state.
default: null

check/ink
Specifies the status of the stamping ink in the device. This may be null in Common.Status if the physical device
does not support stamping or the capability to report the status of the stamp ink supply is not supported by the
device, otherwise the following values are possible:

• full - Ink supply in the device is full.
• low - Ink supply in the device is low.
• out - Ink supply in the device is empty.
• unknown - Status of the stamping ink supply cannot be determined with the device in its current state.

default: null

check/frontImageScanner
Specifies the status of the image scanner that captures images of the front of the media items. This may be null in
Common.Status if the physical device has no front scanner or the capability to report the status of the front
scanner is not supported by the device, otherwise the following values are possible:

• ok - The front scanner is OK.
• fading - The front scanner performance is degraded.
• inoperative - The front scanner is inoperative.
• unknown - Status of the front scanner cannot be determined with the device in its current state.

default: null

check/backImageScanner
Specifies the status of the image scanner that captures images of the back of the media items. This may be null in
Common.Status if the physical device has no back scanner or the capability to report the status of the back
scanner is not supported by the device, otherwise the following values are possible:

• ok - The back scanner is OK.
• fading - The back scanner performance is degraded.
• inoperative - The back scanner is inoperative.
• unknown - Status of the back scanner cannot be determined with the device in its current state.

default: null

185

Properties

check/mICRReader
Specifies the status of the MICR code line reader. This may be null in Common.Status if the physical device has
no MICR code line reader or the capability to report the status of the MICR code line reader is not supported by
the device, otherwise the following values are possible:

• ok - The MICR code line reader is OK.
• fading - The MICR code line reader performance is degraded.
• inoperative - The MICR code line reader is inoperative.
• unknown - Status of the MICR code line reader cannot be determined with the device in its current

state.
default: null

check/stacker
Supplies the state of the stacker (also known as an escrow). The stacker is where the media items are held while
the application decides what to do with them. This may be null in Common.Status if the physical device has no
stacker or the capability to report the status of the stacker is not supported by the device, otherwise the following
values are possible:

• empty - The stacker is empty.
• notEmpty - The stacker is not empty.
• full - The stacker is full. This state is set if the number of media items on the stacker has

reached maxMediaOnStacker or some physical limit has been reached.
• inoperative - The stacker is inoperative.
• unknown - Due to a hardware error or other condition, the state of the stacker cannot be determined.

default: null

check/rebuncher
Supplies the state of the re-buncher (return stacker). The re-buncher is where media items are re-bunched ready
for return to the customer. This may be null in Common.Status if the physical device has no re-buncher or the
capability to report the status of the re-buncher is not supported by the device, otherwise the following values are
possible:

• empty - The re-buncher is empty.
• notEmpty - The re-buncher is not empty.
• full - The re-buncher is full. This state is set if the number of media items on the re-buncher

has reached its physical limit.
• inoperative - The re-buncher is inoperative.
• unknown - Due to a hardware error or other condition, the state of the re-buncher cannot be determined.

default: null

check/mediaFeeder
Supplies the state of the media feeder. This value indicates if there are items on the media feeder waiting for
processing via the Check.GetNextItem command. If null, the device has no media feeder or the capability to
report the status of the media feeder is not supported by the device. This value can be one of the following
values:

• empty - The media feeder is empty.
• notEmpty - The media feeder is not empty.
• inoperative - The media feeder is inoperative.
• unknown - Due to a hardware error or other condition, the state of the media feeder cannot be

determined.
default: null

check/positions
Specifies the status of the input, output and refused positions. This may be null in Common.StatusChangedEvent
if no position states have changed.
Property value constraints:
minProperties: 1
default: null

186

Properties

check/positions/input
Specifies the status of the input position. This may be null in Common.StatusChangedEvent if no states have
changed for the position.
default: null

check/positions/input/shutter
Specifies the state of the shutter. This property is null in Common.Status if the physical device has no shutter or
shutter state reporting is not supported, otherwise the following values are possible:

• closed - The shutter is operational and is closed.
• open - The shutter is operational and is open.
• jammed - The shutter is jammed and is not operational.
• unknown - Due to a hardware error or other condition, the state of the shutter cannot be determined.

default: null

check/positions/input/positionStatus
The status of the position. This property is null in Common.Status if the physical device is not capable of
reporting whether or not items are at the position, otherwise the following values are possible:

• empty - The position is empty.
• notEmpty - The position is not empty.
• unknown - Due to a hardware error or other condition, the state of the position cannot be determined.

default: null

check/positions/input/transport
Specifies the state of the transport mechanism. The transport is defined as any area leading to or from the
position. This property is null in Common.Status if the physical device has no transport or transport state
reporting is not supported, otherwise the following values are possible:

• ok - The transport is in a good state.
• inoperative - The transport is inoperative due to a hardware failure or media jam.
• unknown - Due to a hardware error or other condition, the state of the transport cannot be determined.

default: null

check/positions/input/transportMediaStatus
Returns information regarding items which may be present on the transport. This property is null in
Common.Status if the physical device is not capable of reporting whether or not items are on the transport,
otherwise the following values are possible:

• empty - The transport is empty.
• notEmpty - The transport is not empty.
• unknown - Due to a hardware error or other condition it is not known whether there are items on the

transport.
default: null

check/positions/input/jammedShutterPosition
Returns information regarding the position of the jammed shutter. This property is null in Common.Status if the
physical device has no shutter or the reporting of the position of a jammed shutter is not supported, otherwise the
following values are possible:

• notJammed - The shutter is not jammed.
• open - The shutter is jammed, but fully open.
• partiallyOpen - The shutter is jammed, but partially open.
• closed - The shutter is jammed, but fully closed.
• unknown - The position of the shutter is unknown.

default: null

check/positions/output
Specifies the status of the output position. This may be null in Common.StatusChangedEvent if no states have
changed for the position.
default: null

187

Properties

check/positions/refused
Specifies the status of the refused position. This may be null in Common.StatusChangedEvent if no states have
changed for the position.
default: null

mixedMedia
Status information for XFS4IoT services implementing the MixedMedia interface. This will be null if the
MixedMedia interface is not supported.
default: null

mixedMedia/modes
Specifies the state of the transaction modes supported by the Service.
Property value constraints:
minProperties: 1

mixedMedia/modes/cashAccept
Specifies whether transactions can accept cash. This property may be null if no change required or its state has
not changed in Common.StatusChangedEvent.
default: null

mixedMedia/modes/checkAccept
Specifies whether transactions can accept checks. This property may be null if no change required or its state has
not changed in Common.StatusChangedEvent.
default: null

keyManagement
Status information for XFS4IoT services implementing the KeyManagement interface. This will be null if the
KeyManagement interface is not supported.
default: null

keyManagement/encryptionState
Specifies the state of the encryption module. This may be null in Common.StatusChangedEvent if unchanged.
default: null

keyManagement/certificateState
Specifies the state of the public verification or encryption key in the PIN certificate modules. This may be null in
Common.StatusChangedEvent if unchanged.
default: null

keyboard
Status information for XFS4IoT services implementing the Keyboard interface. This will be null if the Keyboard
interface is not supported.
default: null

keyboard/autoBeepMode
Specifies whether automatic beep tone on key press is active or not. Active and inactive key beeping is reported
independently.

keyboard/autoBeepMode/activeAvailable
Specifies whether an automatic tone will be generated for all active keys. This may be null in
Common.StatusChangedEvent if unchanged.
default: null

keyboard/autoBeepMode/inactiveAvailable
Specifies whether an automatic tone will be generated for all inactive keys. This may be null in
Common.StatusChangedEvent if unchanged.
default: null

188

Properties

textTerminal
Status information for XFS4IoT services implementing the TextTerminal interface. This will be null if the
TextTerminal interface is not supported.
default: null

textTerminal/keyboard
Specifies the state of the keyboard in the text terminal unit. This property will be null in Common.Status if the
keyboard is not available, otherwise one of the following values:

• on - The keyboard is activated.
• off - The keyboard is not activated.

default: null

textTerminal/keyLock
Specifies the state of the keyboard lock of the text terminal unit. This property will be null in Common.Status if
the keyboard lock switch is not available, otherwise one of the following values:

• on - The keyboard lock switch is activated.
• off - The keyboard lock switch is not activated.

default: null

textTerminal/displaySizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that can be
displayed). This property will be null in Common.StatusChangedEvent if unchanged.
Property value constraints:
minimum: 0
default: null

textTerminal/displaySizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be displayed). This
property will be null in Common.StatusChangedEvent if unchanged.
Property value constraints:
minimum: 0
default: null

printer
Status information for XFS4IoT services implementing the Printer interface. This will be null if the Printer
interface is not supported.
default: null

printer/media
Specifies the state of the print media (i.e. receipt, statement, passbook, etc.) as one of the following values. This
property will be null in Common.Status for journal printers or if the capability to report the state of the print
media is not supported by the device:

• unknown - The state of the print media cannot be determined with the device in its current state.
• present - Media is in the print position, on the stacker or on the transport (i.e. a passbook in the

parking station is not considered to be present). On devices with continuous paper supplies, this value is
set when paper is under the print head. On devices with no supply or individual sheet supplies, this
value is set when paper/media is successfully inserted/loaded.

• notPresent - Media is not in the print position or on the stacker.
• jammed - Media is jammed in the device.
• entering - Media is at the entry/exit slot of the device.
• retracted - Media was retracted during the last command which controlled media.

default: null

189

Properties

printer/paper
Specifies the state of paper supplies as one of the following values. Each individual supply state will be null in
Common.Status if not applicable:

• unknown - Status cannot be determined with device in its current state.
• full - The paper supply is full.
• low - The paper supply is low.
• out - The paper supply is empty.
• jammed - The paper supply is jammed.

default: null

printer/paper/upper
The state of the upper paper supply.
default: null

printer/paper/lower
The state of the lower paper supply.
default: null

printer/paper/external
The state of the external paper supply.
default: null

printer/paper/aux
The state of the auxiliary paper supply.
default: null

printer/paper/aux2
The state of the second auxiliary paper supply.
default: null

printer/paper/park
The state of the parking station paper supply.
default: null

printer/paper/vendorSpecificPaperSupply (example name)
The state of the additional vendor specific paper supplies.
default: null

printer/toner
Specifies the state of the toner or ink supply or the state of the ribbon. The property will be null in
Common.Status if the capability is not supported by device, otherwise one of the following:

• unknown - Status of toner or ink supply or the ribbon cannot be determined with device in its current
state.

• full - The toner or ink supply is full or the ribbon is OK.
• low - The toner or ink supply is low or the print contrast with a ribbon is weak.
• out - The toner or ink supply is empty or the print contrast with a ribbon is not sufficient any more.

default: null

printer/ink
Specifies the status of the stamping ink in the printer. The property will be null in Common.Status if the
capability is not supported by device, otherwise one of the following:

• unknown - Status of the stamping ink supply cannot be determined with device in its current state.
• full - Ink supply in device is full.
• low - Ink supply in device is low.
• out - Ink supply in device is empty.

default: null

190

Properties

printer/lamp
Specifies the status of the printer imaging lamp. The property will be null in Common.Status if the capability is
not supported by device, otherwise one of the following:

• unknown - Status of the imaging lamp cannot be determined with device in its current state.
• ok - The lamp is OK.
• fading - The lamp should be changed.
• inop - The lamp is inoperative.

default: null

printer/retractBins
An array of bin state objects. If no retain bins are supported, the property will be null.
default: null

printer/retractBins/state
Specifies the state of the printer retract bin as one of the following. This may be null in
Common.StatusChangedEvent if unchanged.

• ok - The retract bin of the printer is in a healthy state.
• full - The retract bin of the printer is full.
• unknown - Status cannot be determined with device in its current state.
• high - The retract bin of the printer is nearly full.
• missing - The retract bin is missing.

default: null

printer/retractBins/count
The number of media retracted to this bin. This value is persistent; it may be reset to 0 by the Printer.ResetCount
command. This may be null in Common.StatusChangedEvent if unchanged.
Property value constraints:
minimum: 0
default: null

printer/mediaOnStacker
The number of media on stacker; applicable only to printers with stacking capability therefore null if not
applicable.
Property value constraints:
minimum: 0
default: null

printer/paperType
Specifies the type of paper loaded as one of the following. Only applicable properties are reported. This may be
null in Common.StatusChangedEvent if unchanged.

• unknown - No paper is loaded, reporting of this paper type is not supported or the paper type cannot be
determined.

• single - The paper can be printed on only one side.
• dual - The paper can be printed on both sides.

default: null

printer/paperType/upper
The upper paper supply paper type.
default: null

printer/paperType/lower
The lower paper supply paper type.
default: null

printer/paperType/external
The external paper supply paper type.
default: null

191

Properties

printer/paperType/aux
The auxililliary paper supply paper type.
default: null

printer/paperType/aux2
The second auxililliary paper supply paper type.
default: null

printer/paperType/park
The parking station paper supply paper type.
default: null

printer/paperType/exampleProperty1 (example name)
The additional vendor specific paper types.
default: null

printer/blackMarkMode
Specifies the status of the black mark detection and associated functionality. The property is null if not
supported.

• unknown - The status of the black mark detection cannot be determined.
• on - Black mark detection and associated functionality is switched on.
• off - Black mark detection and associated functionality is switched off.

default: null

barcodeReader
Status information for XFS4IoT services implementing the Barcode Reader interface. This will be null if the
Barcode Reader interface is not supported.
default: null

barcodeReader/scanner
Specifies the scanner status (laser, camera or other technology) as one of the following:

• on - Scanner is enabled for reading.
• off - Scanner is disabled.
• inoperative - Scanner is inoperative due to a hardware error.
• unknown - Scanner status cannot be determined.

biometric
Status information for XFS4IoT services implementing the Biometrics interface. This will be null if the
Biometrics interface is not supported.
default: null

biometric/subject
Specifies the state of the subject to be scanned (e.g. finger, palm, retina, etc) as one of the following values:

• present - The subject to be scanned is on the scanning position.
• notPresent - The subject to be scanned is not on the scanning position.
• unknown - The subject to be scanned cannot be determined with the device in its current state (e.g. the

value of device is noDevice, powerOff, offline, or hwError).
This property is null if the physical device does not support the ability to report whether or not a subject is on the
scanning position.
default: null

biometric/capture
Indicates whether scanned biometric data has been captured using the Biometric.Read and is currently stored and
ready for comparison. This will be set to false when scanned data is cleared using the Biometric.Clear. This may
be null in Common.StatusChangedEvent if unchanged.
default: null

192

Properties

biometric/dataPersistence
Specifies the current data persistence mode. The data persistence mode controls how biometric data that has been
captured using the Biometric.Read will be handled. This property is null if the property persistenceModes is null
or both properties persist and clear are false. The following values are possible:

• persist - Biometric data captured using the Biometric.Read can persist until all sessions are closed,
the device is power failed or rebooted, or the Biometric.Readis requested again. This captured biometric
data can also be explicitly cleared using the Biometric.Clear or Biometric.Reset.

• clear - Captured biometric data will not persist. Once the data has been either returned in the
Biometric.Reador used by the Biometric.Match, then the data is cleared from the device.

default: null

biometric/remainingStorage
Specifies how much of the reserved storage specified by the capability templateStorage is remaining for the
storage of templates in bytes. if null, this property is not supported.
Property value constraints:
minimum: 0
default: null

camera
Status information for XFS4IoT services implementing the Camera interface. This will be null if the Camera
interface is not supported.
default: null

camera/media
Specifies the state of the recording media of the cameras as one of the following. For a device which stores
pictures on a hard disk drive or other general-purpose storage, the relevant property will be null. This property
may be null in Common.StatusChangedEvent if unchanged.

• ok - The media is in a good state.
• high - The media is almost full (threshold).
• full - The media is full.
• unknown - Due to a hardware error or other condition, the state of the media cannot be determined.

default: null

camera/media/room
Specifies the state of the recording media of the camera that monitors the whole self-service area.
default: null

camera/media/person
Specifies the state of the recording media of the camera that monitors the person standing in front of the self-
service machine.
default: null

camera/media/exitSlot
Specifies the state of the recording media of the camera that monitors the exit slot(s) of the self-service machine.
default: null

camera/media/vendorSpecificCameraMedia (example name)
Allows vendor specific cameras to be reported.
default: null

camera/cameras
Specifies the state of the cameras as one of the following. The relevant property will be null if not supported and
this property may be null in Common.StatusChangedEvent if unchanged.

• ok - The camera is in a good state.
• inoperative - The camera is inoperative.
• unknown - Due to a hardware error or other condition, the state of the camera cannot be determined.

default: null

193

Properties

camera/cameras/room
Specifies the state of the camera that monitors the whole self-service area.
default: null

camera/cameras/person
Specifies the state of the camera that monitors the person standing in front of the self-service machine.
default: null

camera/cameras/exitSlot
Specifies the state of the camera that monitors the exit slot(s) of the self-service machine.
default: null

camera/pictures
Specifies the number of pictures stored on the recording media of the cameras. For a device which stores pictures
on a hard disk drive or other general-purpose storage, the value of the relevant camera's property is 0. Properties
may be null in Common.StatusChangedEvent if unchanged.
default: null

camera/pictures/room
Specifies the number of pictures stored on the recording media of the room camera.
Property value constraints:
minimum: 0
default: null

camera/pictures/person
Specifies the number of pictures stored on the recording media of the person camera.
Property value constraints:
minimum: 0
default: null

camera/pictures/exitSlot
Specifies the number of pictures stored on the recording media of the exit slot camera.
Property value constraints:
minimum: 0
default: null

camera/pictures/vendorSpecificCameraPictures (example name)
Allows vendor specific cameras to be reported.
Property value constraints:
minimum: 0
default: null

lights
Status information for XFS4IoT services implementing the Lights interface. This will be null if the Lights
interface is not supported.
default: null

lights/cardReader
Card Reader Light. This property is null if not applicable.
default: null

194

Properties

lights/cardReader/position
The light position. Can be used for devices which have multiple input and output positions. This may be one of
the following values:

• left - The left position.
• right - The right position.
• center - The center position.
• top - The top position.
• bottom - The bottom position.
• front - The front position.
• rear - The rear position.
• default - The default position.

lights/cardReader/flashRate
The light flash rate. This may be null in Common.StatusChangedEvent if unchanged, otherwise one of the
following values:

• off - The light is turned off.
• slow - The light is flashing slowly.
• medium - The light is flashing medium frequency.
• quick - The light is flashing quickly.
• continuous - The light is continuous (steady).

default: null

lights/cardReader/color
The light color. This may be null in Common.StatusChangedEvent if unchanged, otherwise one of the following
values:

• red - The light is red.
• green - The light is green.
• yellow - The light is yellow.
• blue - The light is blue.
• cyan - The light is cyan.
• magenta - The light is magenta.
• white - The light is white.

default: null

lights/cardReader/direction
The light direction, The value can be null if not required. One of the following values:

• entry - The light is indicating entry.
• exit - The light is indicating exit.

default: null

lights/pinPad
Pin Pad Light. This property is null if not applicable.
default: null

lights/notesDispenser
Notes Dispenser Light. This property is null if not applicable.
default: null

lights/coinDispenser
Coin Dispenser Light. This property is null if not applicable.
default: null

lights/receiptPrinter
Receipt Printer Light. This property is null if not applicable.
default: null

195

Properties

lights/passbookPrinter
Passbook Printer Light. This property is null if not applicable.
default: null

lights/envelopeDepository
Envelope Depository Light. This property is null if not applicable.
default: null

lights/checkUnit
Check Unit Light. This property is null if not applicable.
default: null

lights/billAcceptor
Bill Acceptor Light. This property is null if not applicable.
default: null

lights/envelopeDispenser
Envelope Dispenser Light. This property is null if not applicable.
default: null

lights/documentPrinter
Document Printer Light. This property is null if not applicable.
default: null

lights/coinAcceptor
Coin Acceptor Light. This property is null if not applicable.
default: null

lights/scanner
Scanner Light. This property is null if not applicable.
default: null

lights/contactless
Contactless Reader Light. This property is null if not applicable.
default: null

lights/cardReader2
Card Reader 2 Light. This property is null if not applicable.
default: null

lights/notesDispenser2
Notes Dispenser 2 Light. This property is null if not applicable.
default: null

lights/billAcceptor2
Bill Acceptor 2 Light. This property is null if not applicable.
default: null

lights/statusGood
Status Indicator light - Good. This property is null if not applicable.
default: null

lights/statusWarning
Status Indicator light - Warning. This property is null if not applicable.
default: null

lights/statusBad
Status Indicator light - Bad. This property is null if not applicable.
default: null

196

Properties

lights/statusSupervisor
Status Indicator light - Supervisor. This property is null if not applicable.
default: null

lights/statusInService
Status Indicator light - In Service. This property is null if not applicable.
default: null

lights/fasciaLight
Fascia Light. This property is null if not applicable.
default: null

lights/vendorSpecificLight (example name)
Additional vendor specific lights.
default: null

auxiliaries
Status information for XFS4IoT services implementing the Auxiliaries interface. This will be null if the
Auxiliaries interface is not supported.
default: null

auxiliaries/operatorSwitch
Specifies the state of the Operator switch.

• run - The switch is in run mode.
• maintenance - The switch is in maintenance mode.
• supervisor - The switch is in supervisor mode.

This property is null if not applicable.
default: null

auxiliaries/tamperSensor
Specifies the state of the Tamper sensor.

• off - There is no indication of a tampering attempt.
• on - There has been a tampering attempt.

This property is null if not applicable.
default: null

auxiliaries/internalTamperSensor
Specifies the state of the Internal Tamper Sensor for the internal alarm. This sensor indicates whether the internal
alarm has been tampered with (such as a burglar attempt). Specified as one of the following:

• off - There is no indication of a tampering attempt.
• on - There has been a tampering attempt.

This property is null if not applicable.
default: null

auxiliaries/seismicSensor
Specifies the state of the Seismic Sensor. This sensor indicates whether the terminal has been shaken (e.g.
burglar attempt or seismic activity). Specified as one of the following:

• off - The seismic activity has not been high enough to trigger the sensor.
• on - The seismic or other activity has triggered the sensor.

This property is null if not applicable.
default: null

197

Properties

auxiliaries/heatSensor
Specifies the state of the Heat Sensor. This sensor is triggered by excessive heat (fire) near the terminal.
Specified as one of the following:

• off - The heat has not been high enough to trigger the sensor.
• on - The heat has been high enough to trigger the sensor.

This property is null if not applicable.
default: null

auxiliaries/proximitySensor
Specifies the state of the Proximity Sensor. This sensor is triggered by movements around the terminal. Specified
as one of the following:

• present - The sensor is showing that there is someone present at the terminal.
• notPresent - The sensor can not sense any people around the terminal.

This property is null if not applicable.
default: null

auxiliaries/ambientLightSensor
Specifies the state of the Ambient Light Sensor. This sensor indicates the level of ambient light around the
terminal. Interpretation of this value is vendor-specific and therefore it is not guaranteed to report a consistent
actual ambient light level across different vendor hardware. Specified as one of the following:

• veryDark - The level of light is very dark.
• dark - The level of light is dark.
• mediumLight - The level of light is medium light.
• light - The level of light is light.
• veryLight - The level of light is very light.

This property is null if not applicable.
default: null

auxiliaries/enhancedAudioSensor
Specifies the presence or absence of a consumer’s headphone connected to the Audio Jack. Specified as one of
the following:

• present - There is a headset connected.
• notPresent - There is no headset connected.

This property is null if not applicable.
default: null

auxiliaries/bootSwitchSensor
Specifies the state of the Boot Switch Sensor. This sensor is triggered whenever the terminal is about to be
rebooted or shutdown due to a delayed effect switch. Specified as one of the following:

• off - The sensor has not been triggered.
• on - The terminal is about to be rebooted or shutdown.

This property is null if not applicable.
default: null

auxiliaries/consumerDisplaySensor
Specifies the state of the Consumer Display. Specified as one of the following:

• off - The Consumer Display is switched off.
• on - The Consumer Display is in a good state and is turned on.
• displayError - The Consumer Display is in an error state.

This property is null if not applicable.
default: null

198

Properties

auxiliaries/operatorCallButtonSensor
Specifies the state of the Operator Call Button as one of the following:

• off - The Operator Call Button is released (not pressed).
• on - The Operator Call Button is being pressed.

This property is null if not applicable.
default: null

auxiliaries/handsetSensor
Specifies the state of the Handset, which is a device similar to a telephone receiver. Specified as one of the
following:

• onTheHook - The Handset is on the hook.
• offTheHook - The Handset is off the hook.

This property is null if not applicable.
default: null

auxiliaries/headsetMicrophoneSensor
Specifies the presence or absence of a consumer’s headset microphone connected to the Microphone Jack.
Specified as one of the following:

• present - There is a headset microphone connected.
• notPresent - There is no headset microphone connected.

This property is null if not applicable.
default: null

auxiliaries/fasciaMicrophoneSensor
Specifies the state of the fascia microphone as one of the following:

• off - The Fascia Microphone is turned off.
• on - The Fascia Microphone is turned on.

This property is null if not applicable.
default: null

auxiliaries/safeDoor
Specifies the state of the Safe Doors. Safe Doors are doors that open up for secure hardware, such as the note
dispenser, the security device, etc. Specified as one of the following:

• closed - The Safe Doors are closed.
• open - At least one of the Safe Doors is open.
• locked - All Safe Doors are closed and locked.
• bolted - All Safe Doors are closed, locked and bolted.
• tampered - At least one of the Safe Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/vandalShield
Specifies the state of the Vandal Shield. The Vandal Shield is a door that opens up for consumer access to the
terminal. Specified as one of the following:

• closed - The Vandal Shield is closed.
• open - The Vandal Shield is fully open.
• locked - The Vandal Shield is closed and locked.
• service - The Vandal Shield is in service position.
• keyboard - The Vandal Shield position permits access to the keyboard.
• partiallyOpen - The Vandal Shield is partially open.
• jammed - The Vandal Shield is jammed.
• tampered - The Vandal Shield has potentially been tampered with.

This property is null if not applicable.
default: null

199

Properties

auxiliaries/cabinetFrontDoor
Specifies the overall state of the Front Cabinet Doors. The front is defined as the side facing the
customer/consumer. Cabinet Doors are doors that open up for consumables, and hardware that does not have to
be in a secure place. Specified as one of the following:

• closed - All front Cabinet Doors are closed.
• open - At least one of the front Cabinet Doors is open.
• locked - All front Cabinet Doors are closed and locked.
• bolted - All front Cabinet Doors are closed, locked and bolted.
• tampered - At least one of the front Cabinet Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/cabinetRearDoor
Specifies the overall state of the Rear Cabinet Doors. The rear is defined as the side opposite the side facing the
customer/consumer. Cabinet Doors are doors that open up for consumables, and hardware that does not have to
be in a secure place. Specified as one of the following:

• closed - All rear Cabinet Doors are closed.
• open - At least one of the rear Cabinet Doors is open.
• locked - All rear Cabinet Doors are closed and locked.
• bolted - All rear Cabinet Doors are closed, locked and bolted.
• tampered - At least one of the rear Cabinet Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/cabinetLeftDoor
Specifies the overall state of the Left Cabinet Doors. The left is defined as the side to the left as seen by the
customer/consumer. Cabinet Doors are doors that open up for consumables, and hardware that does not have to
be in a secure place. Specified as one of the following:

• closed - All left Cabinet Doors are closed.
• open - At least one of the left Cabinet Doors is open.
• locked - All left Cabinet Doors are closed and locked.
• bolted - All left Cabinet Doors are closed, locked and bolted.
• tampered - At least one of the left Cabinet Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/cabinetRightDoor
Specifies the overall state of the Right Cabinet Doors. The right is defined as the side to the right as seen by the
customer/consumer. Cabinet Doors are doors that open up for consumables, and hardware that does not have to
be in a secure place. Specified as one of the following:

• closed - All right Cabinet Doors are closed.
• open - At least one of the right Cabinet Doors is open.
• locked - All right Cabinet Doors are closed and locked.
• bolted - All right Cabinet Doors are closed, locked and bolted.
• tampered - At least one of the right Cabinet Doors has potentially been tampered with.

This property is null if not applicable.
default: null

auxiliaries/openClosedIndicator
Specifies the state of the Open/Closed Indicator as one of the following:

• closed - The terminal is closed for a consumer.
• open - The terminal is open to be used by a consumer.

This property is null if not applicable.
default: null

200

Properties

auxiliaries/audio
Specifies the state of the Audio Indicator. This property is null if not applicable.
default: null

auxiliaries/audio/rate
Specifies the state of the Audio Indicator as one of the following values. This may be null in
Common.StatusChangedEvent if unchanged.

• on - Turn on the Audio Indicator.
• off - Turn off the Audio Indicator.
• continuous - Turn the Audio Indicator to continuous.

This property is null if not applicable.
default: null

auxiliaries/audio/signal
Specifies the Audio sound as one of the following values. This may be null in Common.StatusChangedEvent if
unchanged.

• keypress - Sound a key click signal.
• exclamation - Sound an exclamation signal.
• warning - Sound a warning signal.
• error - Sound an error signal.
• critical - Sound a critical error signal.

This property is null if not applicable.
default: null

auxiliaries/heating
Specifies the state of the internal heating as one of the following:

• off - The internal heating is turned off.
• on - The internal heating is turned on.

This property is null if not applicable.
default: null

auxiliaries/consumerDisplayBacklight
Specifies the Consumer Display Backlight as one of the following:

• off - The Consumer Display Backlight is turned off.
• on - Consumer Display Backlight is turned on.

This property is null if not applicable.
default: null

auxiliaries/signageDisplay
Specifies the state of the Signage Display. The Signage Display is a lighted banner or marquee that can be used
to display information or an advertisement. Any dynamic data displayed must be loaded by a means external to
the Service. Specified as one of the following:

• off - The Signage Display is turned off.
• on - The Signage Display is turned on.

This property is null if not applicable.
default: null

201

Properties

auxiliaries/volume
Specifies the value of the Volume Control. The value of Volume Control is defined in an interval from 1 to 1000
where 1 is the lowest volume level and 1000 is the highest volume level. The interval is defined in logarithmic
steps, e.g. a volume control on a radio. Note: The Volume Control property is vendor-specific and therefore it is
not possible to guarantee a consistent actual volume level across different vendor hardware. This property is null
if not applicable.
Property value constraints:
minimum: 1
maximum: 1000
default: null

auxiliaries/UPS
Specifies the state of the Uninterruptible Power Supply. This property is null if not applicable. Properties
contained in this property may be null in Common.StatusChangedEvent if unchanged.
default: null

auxiliaries/UPS/low
The charge level of the UPS is low.
default: null

auxiliaries/UPS/engaged
The UPS is engaged.
default: null

auxiliaries/UPS/powering
The UPS is powering the system.
default: null

auxiliaries/UPS/recovered
The UPS was engaged when the main power went off.
default: null

auxiliaries/audibleAlarm
Species the state of the Audible Alarm device as one of the following:

• off - The Alarm is turned off.
• on - The Alarm is turned on.

This property is null if not applicable.
default: null

202

Properties

auxiliaries/enhancedAudioControl
Specifies the state of the Enhanced Audio Controller. The Enhanced Audio Controller controls how private and
public audio are broadcast when the headset is inserted into/removed from the audio jack and when the handset
is off-hook/on-hook. In the following, Privacy Device is used to refer to either the headset or handset. The
Enhanced Audio Controller state is specified as one of the following:

• publicAudioManual - The Enhanced Audio Controller is in manual mode and is in the
public state (i.e. audio will be played through speakers). Activating a Privacy Device (headset connected/handset
off-hook) will have no impact, i.e. Output will remain through the speakers & no audio will be directed to the
Privacy Device.

• publicAudioAuto - The Enhanced Audio Controller is in auto mode and is in the public
state (i.e. audio will be played through speakers). When a Privacy Device is activated, the device will go to the
private state.

• publicAudioSemiAuto - The Enhanced Audio Controller is in semi-auto mode and is in
the public state (i.e. audio will be played through speakers). When a Privacy Device is activated, the device will
go to the private state.

• privateAudioManual - The Enhanced Audio Controller is in manual mode and is in the
private state (i.e. audio will be played only through a connected Privacy Device). In private mode, no audio is
transmitted through the speakers.

• privateAudioAuto - The Enhanced Audio Controller is in auto mode and is in the private
state (i.e. audio will be played only through a connected Privacy Device). In private mode, no audio is
transmitted through the speakers. When a Privacy Device is deactivated (headset disconnected/handset on-hook),
the device will go to the public state. Where there is more than one Privacy Device, the device will go to the
public state only when all Privacy Devices have been deactivated.

• privateAudioSemiAuto - The Enhanced Audio Controller is in semi-auto mode and is in
the private state (i.e. audio will be played only through a connected Privacy Device). In private mode, no audio is
transmitted through the speakers. When a Privacy Device is deactivated, the device will remain in the private
state.
This property is null if not applicable.
default: null

203

Properties

auxiliaries/enhancedMicrophoneControl
Specifies the state of the Enhanced Microphone Controller. The Enhanced Microphone Controller controls how
private and public audio input are transmitted when the headset is inserted into/removed from the audio jack and
when the handset is off-hook/on-hook. In the following, Privacy Device is used to refer to either the headset or
handset. The Enhanced Microphone Controller state is specified as one of the following values:

• publicAudioManual - The Enhanced Microphone Controller is in manual mode and is in the public
state (i.e. the microphone in the fascia is active). Activating a Privacy Device (headset connected/handset off-
hook) will have no impact, i.e. input will remain through the fascia microphone and any microphone associated
with the Privacy Device will not be active.

• publicAudioAuto - The Enhanced Microphone Controller is in auto mode and is in the public state
(i.e. the microphone in the fascia is active). When a Privacy Device with a microphone is activated, the device
will go to the private state.

• publicAudioSemiAuto - The Enhanced Microphone Controller is in semi-auto mode and is in the
public

state (i.e. the microphone in the fascia is active). When a Privacy Device with a microphone is activated, the
device will go to the private state.

• privateAudioManual - The Enhanced Microphone Controller is in manual mode and is in the private
state (i.e. audio input will be via a microphone in the Privacy Device). In private mode, no audio input is
transmitted through the fascia microphone.

• privateAudioAuto - The Enhanced Microphone Controller is in auto mode and is in the private
state (i.e. audio input will be via a microphone in the Privacy Device). In private mode, no audio input is
transmitted through the fascia microphone. When a Privacy Device with a microphone is deactivated (headset
disconnected/handset on-hook), the device will go to the public state. Where there is more than one Privacy
Device with a microphone, the device will go to the public state only when all such Privacy Devices have been
deactivated.

• privateAudioSemiAuto - The Enhanced Microphone Controller is in semi-auto mode and is in the
private state (i.e. audio input will be via a microphone in the Privacy Device). In private mode, no audio is
transmitted through the fascia microphone. When a Privacy Device with a microphone is deactivated, the device
will remain in the private state.
This property is null if not applicable.
default: null

auxiliaries/microphoneVolume
Specifies the value of the Microphone Volume Control. The value of Volume Control is defined in an interval
from 1 to 1000 where 1 is the lowest volume level and 1000 is the highest volume level. The interval is defined
in logarithmic steps, e.g. a volume control on a radio. Note: The Microphone Volume Control property is
vendor-specific and therefore it is not possible to guarantee a consistent actual volume level across different
vendor hardware. This property is null if not applicable.
Property value constraints:
minimum: 1
maximum: 1000
default: null

vendorMode
Status information for XFS4IoT services implementing the VendorMode interface. This will be null if the
VendorMode interface is not supported.
default: null

vendorMode/device
Specifies the status of the Vendor Mode Service. This property may be null in events if the status did not change,
otherwise will be one of the following values:

• online - The Vendor Mode service is available.
• offline - The Vendor Mode service is not available.

default: null

204

Properties

vendorMode/service
Specifies the service state. This property may be null in events if the state did not change, otherwise will be one
of the following values:

• enterPending - Vendor Mode enter request pending.
• active - Vendor Mode active.
• exitPending - Vendor Mode exit request pending.
• inactive - Vendor Mode inactive.

default: null

vendorApplication
Status information for XFS4IoT services implementing the Vendor Application interface. This will be null in
Common.Status if the interface is not supported.
default: null

vendorApplication/accessLevel
Reports the current access level as one of the following values:

• notActive - The application is not active.
• basic - The application is active for the basic access level.
• intermediate - The application is active for the intermediate access level.
• full - The application is active for the full access level.

205

4.2.2 Common.ErrorEvent
This event reports that an error has occurred. In most cases, this is in addition to being reported via the error code
that is returned as the command completion.

In order to supply the maximum information, these events should be sent as soon as an error is detected. In
particular, if an error is detected during the processing of a command, then the event should be sent before the
command completion message.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "eventId": "hardware", string 🗸🗸
 "action": "reset", string, null
 "vendorDescription": "An error occurred in position B." string, null
}

Properties

eventId
Specifies the type of error. Following values are possible:

• hardware - The error is a hardware error.
• software - The error is a software error.
• user - The error is a user error.
• fraudAttempt - Some devices are capable of identifying a malicious physical attack which attempts

to defraud valuable information or media. In this circumstance, this is returned to indicate a fraud attempt has
occurred.

action
The action required to manage the error. This can be null if no action is required. Possible values are:

• reset - Reset device to attempt recovery using a Reset command, but should not be used
excessively due to the potential risk of damage to the device. Intervention is not required, although if repeated
attempts are unsuccessful then maintenance may be reported.

• softwareError - A software error occurred. Contact software vendor.
• configuration - A configuration error occurred. Check configuration.
• clear - Recovery is not possible. A manual intervention for clearing the device is required. This

value is typically returned when a hardware error has occurred which banking personnel may be able to clear
without calling for technical maintenance, e.g. 'replace paper', or 'remove cards from retain bin'.

• maintenance - Recovery is not possible. A technical maintenance intervention is required.
This value is only used for hardware errors and fraud attempts. This value is typically returned when a hardware
error or fraud attempt has occurred which requires field engineer specific maintenance activity. A Reset
command may be used to attempt recovery after intervention, but should not be used excessively due to the
potential risk of damage to the device. Vendor Application may be required to recover the device.

• suspend - Device will attempt auto recovery and will advise any further action required via a
Common.StatusChangedEvent or another Common.ErrorEvent.
default: null

vendorDescription
A vendor-specific description of the error. May be null if not applicable.
default: null

206

4.2.3 Common.NonceClearedEvent
This event reports that the end to end security nonce value has been cleared on the device. This could be because
the nonce was explicitly cleared with Common.ClearCommandNonce, automatically cleared by a timeout, or
cleared by actions documented for each device.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "reasonDescription": "Nonce cleared by timeout" string, null
}

Properties

reasonDescription
Optional text describing why the nonce was cleared. The value of this text should not be relied on.
default: null

207

5. Card Reader Interface
This chapter defines the Card Reader interface functionality and messages.

This interface allows for the operation of the following categories of card readers:

• Motorized card reader/writer
• Swipe card reader (writing facilities only partially included)
• Dip card reader
• Latched dip card reader
• Contactless chip card readers
• Permanent chip card readers (each chip is accessed through a unique service)

Some motorized card reader/writers have storage units from which cards can be dispensed. Some have storage units
in which a card can temporarily be parked to enable another card to be moved into the card reader.

The following tracks/chips and the corresponding international standards are taken into account in this document:

• Track 1 - ISO 7811
• Track 2 - ISO 7811
• Track 3 - ISO 7811 / ISO 4909
• Cash Transfer Card Track 1 - (JIS I: 8 bits/char) Japan
• Cash Transfer Card Track 3 - (JIS I: 8 bits/char) Japan
• Front Track 1 - (JIS II) Japan
• Watermark - Sweden
• Chip (contacted) - ISO 7816
• Chip (contactless) - ISO 10536, ISO 14443 and ISO 18092

In addition to the pure reading of the tracks mentioned above, security boxes can be used via this service to check
the data of writable tracks for manipulation. These boxes (such as CIM or MM) are sensor-equipped devices that
are able to check some other information on the card and compare it with the track data.

When the service controls a permanently connected chip card, unsupportedCommand will be returned to all
commands except Common.Status, Common.Capabilities, CardReader.ChipPower, CardReader.ChipIO and
CardReader.Reset.

The following defines the roles and responsibilities of an application within EMV: A distinction needs to be made
between EMV Contact support and EMV Contactless support.

When defining an EMV Contact implementation:

• EMV Level 2 interaction is handled by the client or above.
• EMV Level 1 interaction is handled by the device.

All EMV status information that is defined as a Level 1 responsibility in the EMV specification should be handled
by the service.

EMVCo grants EMV Level 1 Approvals to contact IFMs and EMVCo Level 2 Approvals to Application Kernels.

When defining an EMV Contactless implementation, the responsibilities will depend on the type of EMV
contactless product being implemented.

There are different EMVCo defined product types. They can be found in the EMVCo Type Approval - Contactless
Product - Administrative Process document [Ref. cardreader-1]. In this specification when referring to the
Contactless Product Type, Intelligent Card Reader, the following must be included and handled by the device:

• An EMVCo Approved Level 1 Contactless PCD
• Entry Point and POS System Architecture according to Book A and B
• EMV Kernels according to Book C1 to C7 (minimum one kernel needs to be supported)

The Network, Consumer and Merchant Interfaces will be managed by the client or above.

208

5.1 General Information

5.1.1 References

ID Description

cardreader-
1

EMVCo Terminal Type Approval Contactless Product Administrative Process 2.9

cardreader-
2

EMVCo Integrated Circuit Card Specifications for Payment Systems Version 4.3

cardreader-
3

EMVCo Contactless Specifications for Payment Systems, Version 2.4

cardreader-
4

ISO 8583:1987 Bank card originated messages — Interchange message specifications — Content
for financial transactions

cardreader-
5

ISO 4217

5.1.2 Intelligent Contactless Card Reader
In relation to contactless transactions, the terminology used in this specification is based on the EMV Contactless
Specifications for Payment Systems. See References.

There are a number of types of payment systems (or EMV) compliant contactless card readers, from the Intelligent
Card Reader where the reader device handles most of the transaction processing and only returns the result, to a
transparent card reader where the contactless card reader device provides a generic communication channel to the
card without having any in-built transaction processing capabilities.

A contactless payment system transaction can be performed in two different ways, magnetic stripe emulation where
the data returned from the chip is formatted as if it was read from the magnetic stripe, and EMV-like where, in a
similar way to a contact EMV transaction, the chip returns a full set of BER-TLV (Basic Encoding Rules-Tag
Length Value) data. Each payment system defines when each type, or profile, is used for a transaction, but it is
usually dependent on both the configuration of the terminal and contactless card being tapped.

This specification will use “magnetic stripe emulation” and “EMV-like” to identify the two profiles of contactless
transactions.

Support for a generic contactless communication channel to the card is provided via the CardReader.ChipIO
command. This is suitable for use with a transparent contactless card reader or with an intelligent contactless card
reader device operating in a pass through mode.

The CardReader.ReadRawData command can be used with an intelligent contactless card reader device to provide
magnetic track emulation transactions. Only magnetic track emulation transactions can be supported using this
command.

When using an intelligent contactless card reader to support both EMV-like and magnetic track emulation
transactions a number of commands are required. The CardReader.EMVClessConfigure command allows the
exchange of data to configure the reader for card acceptance and the CardReader.EMVClessPerformTransaction
command enables the reader and performs the transaction with the card when it is tapped. In most cases all the
transaction steps involving the card are completed within the initial card tap. A sequence diagram showing the
expected command sequences, as well as the cardholder and client actions when performing a contactless card
based transaction.

Some contactless payment systems allow a 2nd tap of the contactless card. For example a 2nd tap can be used to
process authorization data received from the host. In the case of issuer update data this second tap is performed via
the CardReader.EMVClessIssuerUpdate command. A sequence diagram showing the expected CardReader
command sequences, as well as the cardholder and client actions. The CardReader.EMVClessQueryApplications
and CardReader.EMVClessConfigure commands specified later in this document refer to the EMV terminology
“Application Identifier (AID) - Kernel Combinations”. A detailed explanation can be found in Refs. [cardreader-2]
and [cardreader-3].

This document refers to BER-TLV tags. These are defined by each individual payment systems and contain the data
exchanged between the client, contactless card and an intelligent contactless card reader. They are used to configure

http://www.iso.org/

209

and prepare the intelligent contactless card reader for a transaction and are also part of the data that is returned by
the reader on completion of a card tap.

Based on the applicable payment system application is expected to know which tags are required to be configured,
what values to use for the tags and how to interpret the tags returned. Intelligent readers are expected to know the
BER-TLV tag definitions supported per payment system application. The tags provided in this document are
examples of the types of tags applicable to each command. They are not intended to be a definite list.

5.1.3 Intelligent Contactless Card Reader Sequence Diagrams
This section illustrates the sequence diagrams of EMV-like contactless intelligent card reader transactions.

210

Single Tap Transaction Without Issuer Update Processing

211

Double Tap Transaction With Issuer Update Processing

212

Card Removed Before Completion

213

5.2 Command Messages

5.2.1 CardReader.QueryIFMIdentifier
This command is used to retrieve the complete list of registration authority Interface Module (IFM) identifiers. The
primary registration authority is EMVCo but other organizations are also supported for historical or local country
requirements.

New registration authorities may be added in the future so applications should be able to handle the return of any
additional properties included in ifmIDs.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "ifmIdentifiers": { object, null
 "emv": "Example IFM Identifier", string
 "europay": See ifmIdentifiers/emv string
 }
}

Properties

ifmIdentifiers
An array of the IFM identifiers supported by the Service or null if none are supported.
default: null

ifmIdentifiers/emv (example name)
Specifies a single IFM identifier supported by the Service. The property name is the IFM authority, the property
value is the IFM identifier of the chip card reader (or IFM) as assigned by the specified authority. The following
IFM authorities are available:

• emv - The Level 1 Type Approval IFM identifier assigned by EMVCo.
• europay - The Level 1 Type Approval IFM identifier assigned by Europay.
• visa - The Level 1 Type Approval IFM identifier assigned by VISA.
• giecb - The IFM identifier assigned by GIE Cartes Bancaires.

Property name constraints:
pattern: ^emv$|^europay$|^visa$|^giecb$

Event Messages
None

214

5.2.2 CardReader.EMVClessQueryApplications
This command is used to retrieve the supported payment system applications available within an intelligent
contactless card unit. The payment system application can either be identified by an AID or by the AID in
combination with a Kernel Identifier. The Kernel Identifier has been introduced by the EMVCo specifications; see
[Ref. cardreader-3].

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "appData": [{ array (object), null
 "aid": "oAAAAAMQEA==", string 🗸🗸
 "kernelIdentifier": "Ag==" string, null
 }]
}

Properties

appData
An array of application data objects which specifies a supported application identifier (AID) and associated
Kernel Identifier.
Property value constraints:
minItems: 1
default: null

appData/aid
Contains the Base64 encoded payment system application identifier (AID) supported by the intelligent
contactless card unit.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

appData/kernelIdentifier
Contains the Base64 encoded Kernel Identifier associated with the aid. This data may be null if the reader does
not support Kernel Identifiers for example in the case of legacy approved contactless readers.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

215

5.2.3 CardReader.ReadRawData
For motor driven card readers, the card unit checks whether a card has been inserted. If so, all specified tracks are
read immediately. If reading the chip is requested, the chip will be contacted and reset and the ATR (Answer To
Reset) data will be read. When this command completes the chip will be in contacted position. This command can
also be used for an explicit cold reset of a previously contacted chip.

This command should only be used for user cards and should not be used for permanently connected chips.

If no card has been inserted, and for all other categories of card readers, the card unit waits for the period of time
specified in the call for a card to be either inserted or pulled through. The next step is trying to read all tracks
specified.

The CardReader.InsertCardEvent will be generated when there is no card in the card reader and the device is ready
to accept a card.

For non-motorized Card Readers which read track data on card exit, the invalidData completion code is returned
when a call to this command is made to read both track data and chip data.

If the card unit is a latched dip unit then the device will latch the card when the chip card will be read, i.e. chip is
specified (see below). The card will remain latched until a call to CardReader.Move is made.

For contactless chip card readers a collision of two or more card signals may happen. In this case, if the device is
not able to pick the strongest signal, the cardCollision error will be returned.

Command Message

Payload (version 2.0) Type Required
{
 "track1": false, boolean
 "track2": false, boolean
 "track3": false, boolean
 "chip": false, boolean
 "security": false, boolean
 "fluxInactive": false, boolean
 "watermark": false, boolean
 "memoryChip": false, boolean
 "track1Front": false, boolean
 "frontImage": false, boolean
 "backImage": false, boolean
 "track1JIS": false, boolean
 "track3JIS": false, boolean
 "ddi": false boolean
}

Properties

track1
Track 1 of the magnetic stripe will be read.
default: false

track2
Track 2 of the magnetic stripe will be read.
default: false

216

Properties

track3
Track 3 of the magnetic stripe will be read.
default: false

chip
The chip will be read.
default: false

security
A security check will be performed.
default: false

fluxInactive
If the Flux Sensor is programmable it will be disabled in order to allow chip data to be read on cards which have
no magnetic stripes.
default: false

watermark
The Swedish Watermark track will be read.
default: false

memoryChip
The memory chip will be read.
default: false

track1Front
Track 1 data is read from the magnetic stripe located on the front of the card. In some countries this track is
known as JIS II track.
default: false

frontImage
The front image of the card will be read in Base64 PNG format.
default: false

backImage
The back image of the card will be read in Base64 PNG format.
default: false

track1JIS
Track 1 of Japanese cash transfer card will be read. In some countries this track is known as JIS I track 1
(8bits/char).
default: false

track3JIS
Track 3 of Japanese cash transfer card will be read. In some countries this track is known as JIS I track 3
(8bits/char).
default: false

ddi
Dynamic Digital Identification data of the magnetic stripe will be read.
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaJam", string, null
 "track1": { object, null

217

Payload (version 2.0) Type Required
 "status": "dataMissing", string, null
 "data": "QmFzZTY0IGVuY29kZWQg ..." string, null
 },
 "track2": See track1 properties object, null
 "track3": See track1 properties object, null
 "chip": [{ array (object), null
 "status": See track1/status, string, null
 "data": See track1/data string, null
 }],
 "security": { object, null
 "status": See track1/status, string, null
 "data": "readLevel1" string, null
 },
 "watermark": See track1 properties object, null
 "memoryChip": { object, null
 "status": See track1/status, string, null
 "protocol": "chipT0", string 🗸🗸
 "data": "O2gAUACFyEARAJAC" string, null
 },
 "track1Front": See track1 properties object, null
 "frontImage": "wCAAAQgwMDAwMDAwMA==", string, null
 "backImage": "wCAAAQgwMDAwMDAwMA==", string, null
 "track1JIS": See track1 properties object, null
 "track3JIS": See track1 properties object, null
 "ddi": See track1 properties object, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• mediaJam - The card is jammed. Operator intervention is required.
• shutterFail - The open of the shutter failed due to manipulation or hardware error. Operator

intervention is required.
• noMedia - The card was removed before completion of the read action (the event

CardReader.MediaInsertedEvent has been generated). For motor driven devices, the read is disabled;
i.e. another command has to be issued to enable the reader for card entry.

• invalidMedia - No track or chip found; card may have been inserted or pulled through the wrong
way.

• cardTooShort - The card that was inserted is too short. When this error occurs the card remains at the
exit slot.

• cardTooLong - The card that was inserted is too long. When this error occurs the card remains at the
exit slot.

• securityFail - The security module failed reading the card's security and no other data source was
requested.

• cardCollision - There was an unresolved collision of two or more contactless card signals.
default: null

218

Properties

track1
Contains the data read from track 1. The property is null if not requested.
default: null

track1/status
The status values applicable to all data sources. This property is null if the data is OK.
Possible values are:

• dataMissing - The track/chip/memory chip is blank.
• dataInvalid - The data contained on the track/chip/memory chip is invalid. This will typically be

returned when data reports badReadLevel or dataInvalid.
• dataTooLong - The data contained on the track/chip/memory chip is too long.
• dataTooShort - The data contained on the track/chip/memory chip is too short.
• dataSourceNotSupported - The data source to read from is not supported by the Service.
• dataSourceMissing - The data source to read from is missing on the card, or is unable to be read due

to a hardware problem, or the module has not been initialized. For example, this will be returned on a
request to read a Memory Card and the customer has entered a magnetic card without associated
memory chip. This will also be reported when data reports noData, notInitialized or hardwareError.
This will also be reported when the image reader could not create a BMP file due to the state of the
image reader or due to a failure.

default: null

track1/data
Base64 encoded representation of the data. This property is null if not read.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

track2
Contains the data read from track 2. The property is null if not requested.
default: null

track3
Contains the data read from track 3. The property is null if not requested.
default: null

chip
Contains the ATR data read from the chip. For contactless chip card readers, multiple identification information
can be returned if the card reader detects more than one chip. Each chip identification information is returned as
an individual data array element. The property is null if not requested.
Property value constraints:
minProperties: 1
minItems: 1
default: null

security
Contains the data returned by the security module (i.e. MM, CIM86). If the check could not be executed, status
and data indicate the cause of the security check failure; the errorCode will only be securityFail if no other data
source is requested. The property is null if not requested.
default: null

219

Properties

security/data
The security data can be one of the following: This property is null if there is no security data on the card.

• readLevel1 - The security data readability level is 1.
• readLevel2 - The security data readability level is 2.
• readLevel3 - The security data readability level is 3.
• readLevel4 - The security data readability level is 4.
• readLevel5 - The security data readability level is 5.
• badReadLevel - The security data reading quality is not acceptable.
• dataInvalid - The validation of the security data with the specific data on the magnetic stripe was not

successful.
• hardwareError - The security module could not be used because of a hardware error.
• notInitialized - The security module could not be used because it was not initialized (e.g. CIM key

is not loaded).
default: null

watermark
Contains the data read from the Swedish Watermark track. The property is null if not requested.
default: null

memoryChip
Memory Card Identification data read from the memory chip. The property is null if not requested.
default: null

memoryChip/protocol
The memory card protocol used to communicate with the card. It can be one of the following:

• chipT0 - The card reader has used the T=0 protocol.
• chipT1 - The card reader has used the T=1 protocol.
• chipTypeAPart3 - The card reader has used the ISO 14443 (Part3) Type A contactless chip card

protocol.
• chipTypeAPart4 - The card reader has used the ISO 14443 (Part4) Type A contactless chip card

protocol.
• chipTypeB - The card reader has used the ISO 14443 Type B contactless chip card protocol.
• chipTypeNFC - The card reader has used the ISO 18092 (106/212/424kbps) contactless chip card

protocol.

memoryChip/data
Contains the data read from the memory chip in Base64. This property is null if not read.
default: null

track1Front
Contains the data read from the front track 1. In some countries this track is known as JIS II track. This property
is null if not read.
default: null

frontImage
Base64 encoded representation of the BMP image file for the front of the card.
The property is null if not requested or not read.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

220

Properties

backImage
Base64 encoded representation of the BMP image file for the back of the card.
The property is null if not requested or not read.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

track1JIS
Contains the data read from JIS I track 1 (8bits/char). The property is null if not requested.
default: null

track3JIS
Contains the data read from JIS I track 3 (8bits/char). The property is null if not requested.
default: null

ddi
Contains the dynamic digital identification data read from magnetic stripe. The property is null if not requested.
default: null

Event Messages

• CardReader.InsertCardEvent
• CardReader.MediaInsertedEvent
• CardReader.InvalidMediaEvent
• CardReader.TrackDetectedEvent

221

5.2.4 CardReader.WriteRawData
For motor-driven card readers, the ID card unit checks whether a card has been inserted. If so, the data is written to
the tracks.

If no card has been inserted, and for all other categories of devices, the ID card unit waits for the application
specified timeout for a card to be either inserted or pulled through. The next step is writing the data to the respective
tracks.

The CardReader.InsertCardEvent event will be generated when there is no card in the card reader and the device is
ready to accept a card.

The application must pass the magnetic stripe data in ASCII without any sentinels, encoded in Base64 (See
CardReader.ReadRawData). If the data passed in is too long the invalidData error code will be returned.

This procedure is followed by data verification.

If power fails during a write the outcome of the operation will be vendor specific, there is no guarantee that the
write will have succeeded.

Command Message

Payload (version 2.0) Type Required
{
 "track1": { object, null
 "data": "QmFzZTY0IGVuY29kZWQg ...", string 🗸🗸
 "writeMethod": "loco" string, null
 },
 "track2": See track1 properties object, null
 "track3": See track1 properties object, null
 "track1Front": See track1 properties object, null
 "track1JIS": See track1 properties object, null
 "track3JIS": See track1 properties object, null
 "additonalProperties": See track1 properties object, null
}

Properties

track1
Specifies data is to be written to track 1. This property is null if not applicable.
default: null

track1/data
Base64 encoded representation of the data
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

track1/writeMethod
Indicates whether a low coercivity or high coercivity magnetic stripe is to be written. If this property is null, the
service will determine whether low or high coercivity is to be used.
Specifies as one of the following:

• loco - Write using low coercivity.
• hico - Write using high coercivity.

default: null

222

Properties

track2
Specifies data is to be written to track 2. This property is null if not applicable.
default: null

track3
Specifies data is to be written to track 3. This property is null if not applicable.
default: null

track1Front
Specifies data is to be written to the front track 1. In some countries this track is known as JIS II track. This
property is null if not applicable.
default: null

track1JIS
Specifies data is to be written to JIS I track 1 (8bits/char). This property is null if not applicable.
default: null

track3JIS
Specifies data is to be written to JIS I track 3 (8bits/char). This property is null if not applicable.
default: null

additonalProperties
Specifies data is to be written to vendor specific track. This property is null if not applicable.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaJam" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• mediaJam - The card is jammed. Operator intervention is required.
• shutterFail - The open of the shutter failed due to manipulation or hardware error. Operator

intervention is required.
• noMedia - The card was removed before completion of the write action (the event

CardReader.MediaInsertedEvent has been generated). For motor driven devices, the write is disabled;
i.e. another command has to be issued to enable the reader for card entry.

• invalidMedia - No track found; card may have been inserted or pulled through the wrong way.
• writeMethod - The writeMethod value is inconsistent with device capabilities.
• cardTooShort - The card that was inserted is too short. When this error occurs the card remains at the

exit slot.
• cardTooLong - The card that was inserted is too long. When this error occurs the card remains at the

exit slot.
default: null

Event Messages

• CardReader.InsertCardEvent
• CardReader.MediaInsertedEvent
• CardReader.InvalidMediaEvent

223

5.2.5 CardReader.Move
This command is only applicable to motorized and latched dip card readers.

If after a successful completion event the card is at the exit position, the card will be accessible to the user. A
CardReader.MediaRemovedEvent is generated to inform the application when the card is taken.

Motorized card readers

Motorized card readers can physically move cards from or to the transport or exit positions or a storage unit. The
default operation is to move a card in the transport position to the exit position.

If the card is being moved from the exit position to the exit position, these are valid behaviors:

1. The card does not move as the card reader can detect the card is already in the correct position.
2. The card is moved back into the card reader then moved back to the exit to ensure the card is in the correct

position.

Latched dip card readers

Latched dips card readers can logically move cards from the transport position to the exit position by unlatching the
card reader. That is, the card will not physically move but will be accessible to the user.

Command Message

Payload (version 2.0) Type Required
{
 "from": "unit1", string
 "to": "exit" string
}

Properties

from
Specifies where the card should be moved from as one of the following:

• exit - The card will be moved from the exit position.
• transport - The card will be moved from the transport position. This is the only value applicable to

latched dip card readers.
• <storage unit identifier> - The card will be moved from the storage unit with matching

identifier. The storage unit type must be either dispense or park.
Property value constraints:
pattern: ^exit$|^transport$|^unit[0-9A-Za-z]+$
default: "transport"

to
Specifies where the card should be moved to as one of the following:

• exit - The card will be moved to the exit. This is the only value applicable to latched dip card readers.
• transport - The card will be moved to the transport just behind the exit slot.
• <storage unit identifier> - The card will be moved to the storage unit with matching identifier.

The storage unit type must be either retain or park.
Property value constraints:
pattern: ^exit$|^transport$|^unit[0-9A-Za-z]+$
default: "exit"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaJam" string, null
}

224

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• mediaJam - The card is jammed. Operator intervention is required.
• shutterFail - The open of the shutter failed due to manipulation or hardware error. Operator

intervention is required.
• noMedia - No card is in the requested from position.
• occupied - A card already occupies the requested to position.
• full - The to position is full. The card is still in the device.
• mediaRetained - The card has been retained during attempts to move it to the exit position. The

device is clear and can be used.
default: null

Event Messages
None

225

5.2.6 CardReader.SetKey
This command is used for setting the DES key that is necessary for operating a CIM86 module. The command must
be executed before the first read command is issued to the card reader.

Command Message

Payload (version 2.0) Type Required
{
 "keyValue": "QmFzZTY0IGVuY29kZWQg ..." string 🗸🗸
}

Properties

keyValue
Contains the Base64 encoded payment containing the CIM86 DES key. This key is supplied by the vendor of the
CIM86 module.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidKey" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidKey - The key does not fit to the security module.
default: null

Event Messages
None

226

5.2.7 CardReader.ChipIO
This command is used to communicate with the chip. Transparent data is sent from the application to the chip and
the response of the chip is returned transparently to the application.

The identification information e.g. ATR of the chip must be obtained before issuing this command. The
identification information for a user card or the Memory Card Identification (when available) must initially be
obtained using CardReader.ReadRawData. The identification information for subsequent resets of a user card can
be obtained using either CardReader.ReadRawData or CardReader.ChipPower. The ATR for permanent connected
chips is always obtained through CardReader.ChipPower.

For contactless chip card readers, applications need to specify which chip to contact with, as part of chipData, if
more than one chip has been detected and multiple identification data has been returned by the
CardReader.ReadRawData command.

For contactless chip card readers a collision of two or more card signals may happen. In this case, if the device is
not able to pick the strongest signal, the cardCollision error code will be returned.

Command Message

Payload (version 2.0) Type Required
{
 "chipProtocol": "chipT1", string
 "chipData": "wCAAAQgwMDAwMDAwMA==" string 🗸🗸
}

Properties

chipProtocol
Identifies the protocol that is used to communicate with the chip. Possible values are those described in
CardReader chipProtocols. This property is ignored in communications with Memory Cards. The Service knows
which memory card type is currently inserted and therefore there is no need for the application to manage this.
It can be one of the following:

• chipT0 - Use the T=0 protocol to communicate with the chip.
• chipT1 - Use the T=1 protocol to communicate with the chip.
• chipProtocolNotRequired - The Service will automatically determine the protocol used to

communicate with the chip.
• chipTypeAPart3 - Use the ISO 14443 (Part3) Type A contactless chip card protocol to communicate

with the chip.
• chipTypeAPart4 - Use the ISO 14443 (Part4) Type A contactless chip card protocol to communicate

with the chip.
• chipTypeB - Use the ISO 14443 Type B contactless chip card protocol to communicate with the chip.
• chipTypeNFC - Use the ISO 18092 (106/212/424kbps) contactless chip card protocol to communicate

with the chip.
default: "chipProtocolNotRequired"

chipData
The Base64 encoded data to be sent to the chip.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaJam", string, null
 "chipProtocol": "chipT0", string, null

227

Payload (version 2.0) Type Required
 "chipData": "bGs=" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• mediaJam - The card is jammed. Operator intervention is required.
• noMedia - There is no card inside the device.
• invalidMedia - No chip found; card may have been inserted the wrong way.
• invalidData - An error occurred while communicating with the chip.
• protocolNotSupported - The protocol used was not supported by the Service.
• atrNotObtained - The ATR has not been obtained.
• cardCollision - There was an unresolved collision of two or more contactless card signals.

default: null

chipProtocol
Identifies the protocol that is used to communicate with the chip. This contains the same value as the
corresponding property in the payload. This property is null for Memory Card dialogs.
It can be one of the following:

• chipT0 - The T=0 protocol has been used to communicate with the chip.
• chipT1 - The T=1 protocol has been used to communicate with the chip.
• chipProtocolNotRequired - The Service has automatically determined the protocol used to

communicate with the chip.
• chipTypeAPart3 - The ISO 14443 (Part3) Type A contactless chip card protocol has been used to

communicate with the chip.
• chipTypeAPart4 - The ISO 14443 (Part4) Type A contactless chip card protocol has been used to

communicate with the chip.
• chipTypeB - The ISO 14443 Type B contactless chip card protocol has been used to communicate with

the chip.
• chipTypeNFC - The ISO 18092 (106/212/424kbps) contactless chip card protocol has been used to

communicate with the chip.
default: null

chipData
The Base64 encoded data received from the chip. This property is null if no data received.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

228

5.2.8 CardReader.Reset
This command is used by the client to perform a hardware reset which will attempt to return the card reader device
to a known good state.

If the device is a user card reader:

• Dependent on the command properties, the device will attempt to move a card in transport or exit positions
to the exit or transport positions or a retain storage unit.

• For each card in the device (including parking storage units), a CardReader.MediaDetectedEvent will
indicate the position or state of the card on completion of this command.

• Dependent on device state, it may not be possible to move a card.

If the device is a permanent chip card unit, this command will power-off the chip.

Command Message

Payload (version 2.0) Type Required
{
 "to": "retain", string
 "storageId": "unit4" string, null
}

Properties

to
Specifies the position a card in the transport or exit position should be moved to as one of the following:

• exit - Move the card to the exit position. If the card is already at the exit, it may be moved to ensure it
is in the correct position to be taken.

• retain - Move the card to a retain storage unit.
• currentPosition - Keep the card in its current position. If the card is in the transport, it may be

moved in the transport to verify it is not jammed.
• auto - The service will select the position to which the card will be moved based on device

capabilities, retain storage units available and service specific configuration.
default: "auto"

storageId
If the card is to be moved to a retain storage unit, this indicates the retain storage unit to which the card should
be moved.
If null, the Service will select the retain storage unit based on the number of retain storage units available and
service specific configuration.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaJam" string, null
}

229

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• mediaJam - The card is jammed. Operator intervention is required.
• shutterFail - The device is unable to open and close its shutter.
• retainBinFull - The retain bin is full; no more cards can be retained. The current card is still in the

device.
default: null

Event Messages
None

230

5.2.9 CardReader.ChipPower
This command handles the power actions that can be done on the chip.

For user chips, this command is only used after the chip has been contacted for the first time using the
CardReader.ReadRawData command. For contactless user chips, this command may be used to deactivate the
contactless card communication.

For permanently connected chip cards, this command is the only way to control the chip power.

Command Message

Payload (version 2.0) Type Required
{
 "chipPower": "cold" string 🗸🗸
}

Properties

chipPower
Specifies the action to perform as one of the following:

• cold - The chip is powered on and reset.
• warm - The chip is reset.
• off - The chip is powered off.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "chipPowerNotSupported", string, null
 "chipData": "O2gAUACFyEARAJAC" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• chipPowerNotSupported - The specified action is not supported by the hardware device.
• mediaJam - The card is jammed (only applies to contact user chips). Operator intervention is required.
• noMedia - There is no card inside the device (may not apply for contactless user chips).
• invalidMedia - No chip found; card may have been inserted or pulled through the wrong way.
• invalidData - An error occurred while communicating with the chip.
• atrNotObtained - The ATR has not been obtained (only applies to user chips).

default: null

chipData
The Base64 encoded data received from the chip. This property is null if no data received.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

231

5.2.10 CardReader.EMVClessConfigure
This command is used to configure an intelligent contactless card reader before performing a contactless
transaction. This command sets terminal related data elements, the list of terminal acceptable applications with
associated application specific data and any encryption key data required for offline data authentication.

This command should be used prior to CardReader.EMVClessPerformTransaction. It may be called once on
application start up or when any of the configuration parameters require to be changed. The configuration set by
this command is persistent.

This command should be called with a complete list of acceptable payment system applications as any previous
configurations will be replaced.

Command Message

Payload (version 2.0) Type Required
{
 "terminalData": "wCAAAQgwMDAwMDAwMA==", string 🗸🗸
 "aidData": [{ array (object) 🗸🗸
 "aid": "oAAAAAMQEA==", string 🗸🗸
 "partialSelection": false, boolean
 "transactionType": 0, integer 🗸🗸
 "kernelIdentifier": "Ag==", string, null
 "configData": "nwYHoAAAASFHEQ==" string 🗸🗸
 }],
 "keyData": [{ array (object), null
 "rid": "oAAAAAM=", string 🗸🗸
 "caPublicKey": { object 🗸🗸
 "index": 0, integer 🗸🗸
 "algorithmIndicator": 0, integer 🗸🗸
 "exponent": "AQAB", string 🗸🗸
 "modulus": "Kjyq8qcAWnJB66p3cREs ...", string 🗸🗸
 "checksum": "7hURzscQIKm5BEOzex1f ..." string 🗸🗸
 }
 }]
}

Properties

terminalData
Base64 encoded representation of the BER-TLV formatted data for the terminal e.g. Terminal Type, Transaction
Category Code, Merchant Name & Location etc. Any terminal based data elements referenced in the Payment
Systems Specifications or EMVCo Contactless Payment Systems Specifications Books may be included (see
[Ref. cardreader-1], [Ref. cardreader-2] and [Ref. cardreader-3] for more details).
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

232

Properties

aidData
Specifies the list of acceptable payment system applications. For EMVCo approved contactless card readers each
AID is associated with a Kernel Identifier and a Transaction Type. Legacy approved contactless readers may use
only the AID.
Each AID-Transaction Type or each AID-Kernel-Transaction Type combination will have its own unique set of
configuration data. See [Ref. cardreader-2] and [Ref. cardreader-3] for more details.

aidData/aid
The application identifier to be accepted by the contactless chip card reader. The
CardReader.EMVClessQueryApplications command will return the list of supported application identifiers.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

aidData/partialSelection
If partialSelection is true, partial name selection of the specified AID is enabled. If partialSelection is false,
partial name selection is disabled. A detailed explanation for partial name selection is given in [Ref. cardreader-
2], Section 11.3.5.
default: false

aidData/transactionType
The transaction type supported by the AID. This indicates the type of financial transaction represented by the
first two digits of the ISO 8583:1987 Processing Code [Ref. cardreader-4].
Property value constraints:
minimum: 0

aidData/kernelIdentifier
Base64 encoded representation of the EMVCo defined kernel identifier associated with the aid. This will be
ignored if the reader does not support kernel identifiers. This property is null if not applicable.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

aidData/configData
Base64 encoded representation of the list of BER-TLV formatted configuration data, applicable to the specific
AID-Kernel ID-Transaction Type combination. The appropriate payment systems specifications define the BER-
TLV tags to be configured.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

keyData
Specifies the encryption key information required by an intelligent contactless chip card reader for offline data
authentication. This property is null if not applicable.
default: null

keyData/rid
Specifies the payment system's Registered Identifier (RID). RID is the first 5 bytes of the AID and identifies the
payments system.
Property value constraints:
format: base64

keyData/caPublicKey
CA Public Key information for the specified rid.

keyData/caPublicKey/index
Specifies the CA Public Key Index for the specific rid.
Property value constraints:
minimum: 0

233

Properties

keyData/caPublicKey/algorithmIndicator
Specifies the algorithm used in the calculation of the CA Public Key checksum. A detailed description of secure
hash algorithm values is given in EMV Book 2, Annex B3; see [Ref. cardreader-2]. For example, if the EMV
specification indicates the algorithm is '01', the value of the algorithm is coded as 1.
Property value constraints:
minimum: 0

keyData/caPublicKey/exponent
Base64 encoded representation of the CA Public Key Exponent for the specific RID. This value is represented
by the minimum number of bytes required. A detailed description of public key exponent values is given in
EMV Book 2, Annex B2; see [Ref. cardreader-2]. For example, representing value ‘216 + 1’ requires 3 bytes in
hexadecimal (0x01, 0x00, 0x01), while value ‘3’ is coded as 0x03.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

keyData/caPublicKey/modulus
Base64 encoded representation of the CA Public Key Modulus for the specific RID.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

keyData/caPublicKey/checksum
Base64 encoded representation of the 20 byte checksum value for the CA Public Key.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidTerminalData" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidTerminalData - Input data terminalData was invalid. Contactless chip card reader could not
be configured successfully.

• invalidAidData - Input data aidData was invalid. Contactless chip card reader could not be
configured successfully.

• invalidKeyData - Input data keyData was invalid. Contactless chip card reader could not be
configured successfully.

default: null

Event Messages
None

234

5.2.11 CardReader.EMVClessPerformTransaction
This command is used to enable an intelligent contactless card reader. The transaction will start as soon as the card
tap is detected.

Based on the configuration of the contactless chip card and the reader device, this command could return data
formatted either as magnetic stripe information or as a set of BER-TLV encoded EMV tags.

This command supports magnetic stripe emulation cards and EMV-like contactless cards but cannot be used on
storage contactless cards. The latter must be managed using the CardReader.ReadRawData and CardReader.ChipIO
commands.

For specific payment system's card profiles an intelligent card reader could return a set of EMV tags along with
magnetic stripe formatted data. In this case, two contactless card data structures will be returned, one containing the
magnetic stripe like data and one containing BER-TLV encoded tags.

If no card has been tapped, the contactless chip card reader waits for the period of time specified in the command
call for a card to be tapped.

For intelligent contactless card readers, any in-built audio/visual feedback such as Beep/LEDs, need to be
controlled directly by the reader. These indications should be implemented based on the EMVCo and payment
system's specifications.

Command Message

Payload (version 2.0) Type Required
{
 "data": "XyoCCXiaAxcICJwBAJ8C ..." string, null
}

Properties

data
Base64 encoded representation of the EMV data elements in a BER-TLV format required to perform a
transaction. The types of object that could be included are:

• Transaction Type (9C)
• Amount Authorized (9F02)
• Transaction Date (9A)*
• Transaction Time (9F21)*
• Transaction Currency Code (5F2A)

Individual payment systems could define further data elements.
Tags are not mandatory with this command and this property can therefore be null.
*Tags 9A and 9F21 could be managed internally by the reader. If tags are not supplied, tag values may be used
from the configuration sent previously in the CardReader.EMVClessConfigure command.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noMedia", string, null
 "chip": { object, null
 "txOutcome": "multipleCards", string 🗸🗸
 "cardholderAction": "none", string 🗸🗸
 "dataRead": "fSfILqum6niI6jURWzeo ...", string 🗸🗸

235

Payload (version 2.0) Type Required
 "clessOutcome": { object, null
 "cvm": "onlinePIN", string 🗸🗸
 "alternateInterface": "magneticStripe", string, null
 "receipt": false, boolean
 "uiOutcome": { object, null
 "messageId": 0, integer 🗸🗸
 "status": "notReady", string 🗸🗸
 "holdTime": 0, integer
 "valueDetails": { object, null
 "qualifier": "amount", string 🗸🗸
 "value": "000000012345", string 🗸🗸
 "currencyCode": 826 integer 🗸🗸
 },
 "languagePreferenceData": "en" string, null
 },
 "uiRestart": See chip/clessOutcome/uiOutcome properties object, null
 "fieldOffHoldTime": 0, integer
 "cardRemovalTimeout": 0, integer
 "discretionaryData": "Qnl0ZSBBcnJheSBEYXRh" string, null
 }
 },
 "track1": See chip properties object, null
 "track2": See chip properties object, null
 "track3": See chip properties object, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noMedia - The card was removed before completion of the read operation.
• invalidMedia - No track or chip was found or the card tapped cannot be used with this command

(e.g. contactless storage cards).
• readerNotConfigured - This command was issued before calling CardReader.EMVClessConfigure

command.
default: null

chip
Contains the BER-TLV formatted data read from the chip. This property is set after the contactless transaction
has been completed with EMV mode or mag-stripe mode. This property is null if not applicable.
default: null

236

Properties

chip/txOutcome
If multiple data sources are returned, this property is the same for each one. Specifies the contactless transaction
outcome as one of the following:

• multipleCards - Transaction could not be completed as more than one contactless card was tapped.
• approve - Transaction was approved offline.
• decline - Transaction was declined offline.
• onlineRequest - Transaction was requested for online authorization.
• onlineRequestCompletionRequired - Transaction requested online authorization and will be

completed after a re-tap of the card. Transaction should be completed by issuing the
CardReader.EMVClessIssuerUpdate command.

• tryAgain - Transaction could not be completed due to a card read error. The contactless card could be
tapped again to re-attempt the transaction.

• tryAnotherInterface - Transaction could not be completed over the contactless interface. Another
interface may be suitable for this transaction (for example contact).

• endApplication - Transaction cannot be completed on the contactless card due to an irrecoverable
error.

• confirmationRequired - Transaction was not completed as a result of a requirement to allow entry
of confirmation code on a mobile device. Transaction should be completed by issuing the
CardReader.EMVClessPerformTransaction after a card removal and a re-tap of the card.

Note: The values for outcome have been mapped against the EMV Entry Point Outcome structure values defined
in the EMVCo Contactless Specifications for Payment Systems (Book A and B) [Ref. cardreader-3].

chip/cardholderAction
Specifies the card holder action as one of the following:

• none - Transaction was completed. No further action is required.
• retap - The contactless card should be re-tapped to complete the transaction. This value can be

returned when txOutcome is onlineRequest, onlineRequestCompletionRequired or
confirmationRequired.

• holdCard - The contactless card should not be removed from the field until the transaction is
completed.

chip/dataRead
The Base64 encoded representation of the data read from the chip after a contactless transaction has been
completed successfully. If the member name is chip, the BER-TLV formatted data contains cryptogram tag
(9F26) after a contactless chip transaction has been completed successfully. If the member name is track1, track2
or track3 this contains the data read from the chip, i.e the value returned by the card reader device and no
cryptogram tag (9F26).
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

chip/clessOutcome
The Entry Point Outcome specified in EMVCo Specifications for Contactless Payment Systems (Book A and B)
[Ref. cardreader-3]. This can be null for contactless chip card readers that do not follow EMVCo Entry Point
Specifications.
default: null

chip/clessOutcome/cvm
Specifies the card holder verification method (CVM) to be performed as one of the following:

• onlinePIN - Online PIN should be entered by the card holder.
• confirmationCodeVerified - A confirmation code entry has been successfully done on a mobile

device.
• sign - Application should obtain card holder signature.
• noCVM - No CVM is required for this transaction.
• noCVMPreference - There is no CVM preference, but application can follow the payment system's

rules to process the transaction.

237

Properties

chip/clessOutcome/alternateInterface
This specifies the alternative interface to be used to complete a transaction if applicable as one of the following:

• contact - txOutcome is tryAnotherInterface and the contact chip interface should be used to complete
a transaction.

• magneticStripe - txOutcome is tryAnotherInterface and the magnetic stripe interface should be used
to complete a transaction.

• null - txOutcome is not tryAnotherInterface
default: null

chip/clessOutcome/receipt
Specifies whether a receipt should be printed.
default: false

chip/clessOutcome/uiOutcome
The user interface details required to be displayed to the card holder after processing the outcome of a
contactless transaction. If no user interface details are required, this will be null. Please refer to EMVCo
Contactless Specifications for Payment Systems Book A [Ref. cardreader-3], Section 6.2 for details of the data
within this object.
default: null

chip/clessOutcome/uiOutcome/messageId
Represents the EMVCo defined message identifier that indicates the text string to be displayed, e.g., 0x1B is the
“Authorising Please Wait” message (see EMVCo Contactless Specifications for Payment Systems Book A [Ref.
cardreader-3], Section 9.4).
Property value constraints:
minimum: 0

chip/clessOutcome/uiOutcome/status
Represents the EMVCo defined transaction status value to be indicated through the Beep/LEDs as one of the
following:

• notReady - Contactless card reader is not able to communicate with a card. This status occurs towards
the end of a contactless transaction or if the reader is not powered on.

• idle - Contactless card reader is powered on, but the reader field is not yet active for communication
with a card.

• readyToRead - Contactless card reader is powered on and attempting to initiate communication with a
card.

• processing - Contactless card reader is in the process of reading the card.
• cardReadOk - Contactless card reader was able to read a card successfully.
• processingError - Contactless card reader was not able to process the card successfully.

chip/clessOutcome/uiOutcome/holdTime
Represents the hold time in units of 100 milliseconds for which the application should display the message
before processing the next user interface data.
Property value constraints:
minimum: 0
default: 0

chip/clessOutcome/uiOutcome/valueDetails
Indicates a value associated with a transaction, either an amount or a balance. See [Ref. cardreader-3] for more
details. This property will be null if no amount or balance is applicable.
default: null

chip/clessOutcome/uiOutcome/valueDetails/qualifier
Qualifies value. This data is defined by EMVCo as one of the following:

• amount - value is an Amount.
• balance - value is a Balance.

238

Properties

chip/clessOutcome/uiOutcome/valueDetails/value
Represents the numeric value of the amount or balance (as specified by qualifier) to be displayed where
appropriate. The format of this property is defined by EMVCo.
Property value constraints:
pattern: ^[0-9]{12}$

chip/clessOutcome/uiOutcome/valueDetails/currencyCode
Represents the numeric value of the currency code as defined by ISO 4217 [Ref. cardreader-5].
Property value constraints:
minimum: 0
maximum: 999

chip/clessOutcome/uiOutcome/languagePreferenceData
Represents the language preference (EMV Tag '5F2D') if returned by the card. If not returned, this property
reports null. The application should use this data to display all messages in the specified language until the
transaction concludes.
Property value constraints:
pattern: ^[a-z]{2}
default: null

chip/clessOutcome/uiRestart
The user interface details required to be displayed to the card holder when a transaction needs to be completed
with a re-tap. If no user interface details are required, this will be null.
default: null

chip/clessOutcome/fieldOffHoldTime
The application should wait for this specific hold time in units of 100 milliseconds, before re-enabling the
contactless card reader by issuing either the CardReader.EMVClessPerformTransaction command or the
CardReader.EMVClessIssuerUpdate command depending on the value of txOutcome. For intelligent contactless
card readers, the completion of this command ensures that the contactless chip card reader field is automatically
turned off, so there is no need for the application to disable the field.
Property value constraints:
minimum: 0
default: 0

chip/clessOutcome/cardRemovalTimeout
Specifies a timeout value in units of 100 milliseconds for prompting the user to remove the card.
Property value constraints:
minimum: 0
default: 0

chip/clessOutcome/discretionaryData
Base64 encoded representation of the payment system's specific discretionary data read from the chip, in a BER-
TLV format, after a contactless transaction has been completed. If discretionary data is not present, this will be
null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]*={0,2}$
format: base64
default: null

track1
Contains the chip returned data formatted in as track 1. This property is set after the contactless transaction has
been completed with mag-stripe mode. This property is null if not applicable.
default: null

track2
Contains the chip returned data formatted in as track 2. This property is set after the contactless transaction has
been completed with mag-stripe mode. This property is null if not applicable.
default: null

239

Properties

track3
Contains the chip returned data formatted in as track 3. This property is set after the contactless transaction has
been completed with mag-stripe mode. This property is null if not applicable.
default: null

Event Messages

• CardReader.EMVClessReadStatusEvent

240

5.2.12 CardReader.EMVClessIssuerUpdate
This command performs the post authorization processing on payment systems contactless cards.

Before an online authorized transaction is considered complete, further chip processing may be requested by the
issuer. This is only required when the authorization response includes issuer update data; either issuer scripts or
issuer authentication data.

The command enables the contactless card reader and waits for the customer to re-tap their card.

The contactless chip card reader waits for the period of time specified in the command request for a card to be
tapped.

Command Message

Payload (version 2.0) Type Required
{
 "data": "XyoCCXiaAxcICJwBAJ8C ..." string 🗸🗸
}

Properties

data
Base64 encoded representation of the EMV data elements in a BER-TLV format received from the authorization
response that are required to complete the transaction processing. The types of object that could be listed in data
are:

• Authorization Code (if present)
• Issuer Authentication Data (if present)
• Issuer Scripts or proprietary payment system's data elements (if present) and any other data elements if

required.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noMedia", string, null
 "chip": { object, null
 "txOutcome": "multipleCards", string 🗸🗸
 "dataRead": "fSfILqum6niI6jURWzeo ...", string 🗸🗸
 "clessOutcome": { object, null
 "cvm": "onlinePIN", string 🗸🗸
 "alternateInterface": "magneticStripe", string, null
 "receipt": false, boolean
 "uiOutcome": { object, null
 "messageId": 0, integer 🗸🗸
 "status": "notReady", string 🗸🗸
 "holdTime": 0, integer
 "valueDetails": { object, null
 "qualifier": "amount", string 🗸🗸

241

Payload (version 2.0) Type Required
 "value": "000000012345", string 🗸🗸
 "currencyCode": 826 integer 🗸🗸
 },
 "languagePreferenceData": "en" string, null
 },
 "uiRestart": See chip/clessOutcome/uiOutcome properties object, null
 "fieldOffHoldTime": 0, integer
 "cardRemovalTimeout": 0, integer
 "discretionaryData": "Qnl0ZSBBcnJheSBEYXRh" string, null
 }
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noMedia - The card was removed before completion of the read action.
• invalidMedia - No track or chip found or card tapped cannot be used with this command (e.g.

contactless storage cards or a different card than what was used to complete the
CardReader.EMVClessPerformTransaction command).

• transactionNotInitiated - This command was issued before calling the
CardReader.EMVClessPerformTransaction command.

default: null

chip
Contains the BER-TLV formatted data read from the chip. This will be null if no data has been returned.
default: null

chip/txOutcome
If multiple data sources are returned, this property is the same for each one. Specifies the contactless transaction
outcome as one of the following:

• multipleCards - Transaction could not be completed as more than one contactless card was tapped.
• approve - Transaction was approved offline.
• decline - Transaction was declined offline.
• tryAgain - Transaction could not be completed due to a card read error. The contactless card could be

tapped again to re-attempt the transaction.
• tryAnotherInterface - Transaction could not be completed over the contactless interface. Another

interface may be suitable for this transaction (for example contact).
Note: The values for outcome have been mapped against the EMV Entry Point Outcome structure values defined
in the EMVCo Contactless Specifications for Payment Systems (Book A and B) [Ref. cardreader-3].

chip/dataRead
The Base64 encoded representation of the data read from the chip after a contactless transaction has been
completed successfully. The BER-TLV formatted data contains cryptogram tag (9F26) after a contactless chip
transaction has been completed successfully.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

242

Properties

chip/clessOutcome
The Entry Point Outcome specified in EMVCo Specifications for Contactless Payment Systems (Book A and B)
[Ref. cardreader-3]. This can be null for contactless chip card readers that do not follow EMVCo Entry Point
Specifications.
default: null

chip/clessOutcome/cvm
Specifies the card holder verification method (CVM) to be performed as one of the following:

• onlinePIN - Online PIN should be entered by the card holder.
• confirmationCodeVerified - A confirmation code entry has been successfully done on a mobile

device.
• sign - Application should obtain card holder signature.
• noCVM - No CVM is required for this transaction.
• noCVMPreference - There is no CVM preference, but application can follow the payment system's

rules to process the transaction.

chip/clessOutcome/alternateInterface
This specifies the alternative interface to be used to complete a transaction if applicable as one of the following:

• contact - txOutcome is tryAnotherInterface and the contact chip interface should be used to complete
a transaction.

• magneticStripe - txOutcome is tryAnotherInterface and the magnetic stripe interface should be used
to complete a transaction.

• null - txOutcome is not tryAnotherInterface
default: null

chip/clessOutcome/receipt
Specifies whether a receipt should be printed.
default: false

chip/clessOutcome/uiOutcome
The user interface details required to be displayed to the card holder after processing the outcome of a
contactless transaction. If no user interface details are required, this will be null. Please refer to EMVCo
Contactless Specifications for Payment Systems Book A [Ref. cardreader-3], Section 6.2 for details of the data
within this object.
default: null

chip/clessOutcome/uiOutcome/messageId
Represents the EMVCo defined message identifier that indicates the text string to be displayed, e.g., 0x1B is the
“Authorising Please Wait” message (see EMVCo Contactless Specifications for Payment Systems Book A [Ref.
cardreader-3], Section 9.4).
Property value constraints:
minimum: 0

chip/clessOutcome/uiOutcome/status
Represents the EMVCo defined transaction status value to be indicated through the Beep/LEDs as one of the
following:

• notReady - Contactless card reader is not able to communicate with a card. This status occurs towards
the end of a contactless transaction or if the reader is not powered on.

• idle - Contactless card reader is powered on, but the reader field is not yet active for communication
with a card.

• readyToRead - Contactless card reader is powered on and attempting to initiate communication with a
card.

• processing - Contactless card reader is in the process of reading the card.
• cardReadOk - Contactless card reader was able to read a card successfully.
• processingError - Contactless card reader was not able to process the card successfully.

243

Properties

chip/clessOutcome/uiOutcome/holdTime
Represents the hold time in units of 100 milliseconds for which the application should display the message
before processing the next user interface data.
Property value constraints:
minimum: 0
default: 0

chip/clessOutcome/uiOutcome/valueDetails
Indicates a value associated with a transaction, either an amount or a balance. See [Ref. cardreader-3] for more
details. This property will be null if no amount or balance is applicable.
default: null

chip/clessOutcome/uiOutcome/valueDetails/qualifier
Qualifies value. This data is defined by EMVCo as one of the following:

• amount - value is an Amount.
• balance - value is a Balance.

chip/clessOutcome/uiOutcome/valueDetails/value
Represents the numeric value of the amount or balance (as specified by qualifier) to be displayed where
appropriate. The format of this property is defined by EMVCo.
Property value constraints:
pattern: ^[0-9]{12}$

chip/clessOutcome/uiOutcome/valueDetails/currencyCode
Represents the numeric value of the currency code as defined by ISO 4217 [Ref. cardreader-5].
Property value constraints:
minimum: 0
maximum: 999

chip/clessOutcome/uiOutcome/languagePreferenceData
Represents the language preference (EMV Tag '5F2D') if returned by the card. If not returned, this property
reports null. The application should use this data to display all messages in the specified language until the
transaction concludes.
Property value constraints:
pattern: ^[a-z]{2}
default: null

chip/clessOutcome/uiRestart
The user interface details required to be displayed to the card holder when a transaction needs to be completed
with a re-tap. If no user interface details are required, this will be null.
default: null

chip/clessOutcome/fieldOffHoldTime
The application should wait for this specific hold time in units of 100 milliseconds, before re-enabling the
contactless card reader by issuing either the CardReader.EMVClessPerformTransaction command or the
CardReader.EMVClessIssuerUpdate command depending on the value of txOutcome. For intelligent contactless
card readers, the completion of this command ensures that the contactless chip card reader field is automatically
turned off, so there is no need for the application to disable the field.
Property value constraints:
minimum: 0
default: 0

chip/clessOutcome/cardRemovalTimeout
Specifies a timeout value in units of 100 milliseconds for prompting the user to remove the card.
Property value constraints:
minimum: 0
default: 0

244

Properties

chip/clessOutcome/discretionaryData
Base64 encoded representation of the payment system's specific discretionary data read from the chip, in a BER-
TLV format, after a contactless transaction has been completed. If discretionary data is not present, this will be
null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]*={0,2}$
format: base64
default: null

Event Messages

• CardReader.EMVClessReadStatusEvent

245

5.3 Event Messages

5.3.1 CardReader.InsertCardEvent
This event notifies the application when the device is ready for the user to insert a card.

Event Message

Payload (version 2.0)
This message does not define any properties.

246

5.3.2 CardReader.MediaInsertedEvent
This event specifies that a card was inserted into the device.

Event Message

Payload (version 2.0)
This message does not define any properties.

247

5.3.3 CardReader.InvalidMediaEvent
This event specifies that the media the user is attempting to insert is not a valid card or it is a card but it is in the
wrong orientation.

Event Message

Payload (version 2.0)
This message does not define any properties.

248

5.3.4 CardReader.TrackDetectedEvent
This event notifies the application what track data the inserted card has, before the reading of the data has
completed. This event will be posted once when tracks are detected during card insertion.

Event Message

Payload (version 2.0) Type Required
{
 "track1": true, boolean
 "track2": false, boolean
 "track3": false, boolean
 "watermark": false, boolean
 "frontTrack1": false boolean
}

Properties

track1
The card has track 1.
default: false

track2
The card has track 2.
default: false

track3
The card has track 3.
default: false

watermark
The card has the Swedish watermark track.
default: false

frontTrack1
The card has front track 1.
default: false

249

5.3.5 CardReader.EMVClessReadStatusEvent
This notifies that the communication (i.e. the commands exchanged linked to the tap) between the card and the
intelligent contactless card reader are complete. The application can use this event to display intermediate
messages, progress of card read, audio signals or anything else that might be required. The intelligent contactless
card reader will continue the processing and the result of the processing will be returned in the output of the
CardReader.EMVClessPerformTransaction command.

Event Message

Payload (version 2.0) Type Required
{
 "messageId": 0, integer 🗸🗸
 "status": "notReady", string 🗸🗸
 "holdTime": 0, integer
 "valueDetails": { object, null
 "qualifier": "amount", string 🗸🗸
 "value": "000000012345", string 🗸🗸
 "currencyCode": 826 integer 🗸🗸
 },
 "languagePreferenceData": "en" string, null
}

Properties

messageId
Represents the EMVCo defined message identifier that indicates the text string to be displayed, e.g., 0x1B is the
“Authorising Please Wait” message (see EMVCo Contactless Specifications for Payment Systems Book A [Ref.
cardreader-3], Section 9.4).
Property value constraints:
minimum: 0

status
Represents the EMVCo defined transaction status value to be indicated through the Beep/LEDs as one of the
following:

• notReady - Contactless card reader is not able to communicate with a card. This status occurs towards
the end of a contactless transaction or if the reader is not powered on.

• idle - Contactless card reader is powered on, but the reader field is not yet active for communication
with a card.

• readyToRead - Contactless card reader is powered on and attempting to initiate communication with a
card.

• processing - Contactless card reader is in the process of reading the card.
• cardReadOk - Contactless card reader was able to read a card successfully.
• processingError - Contactless card reader was not able to process the card successfully.

holdTime
Represents the hold time in units of 100 milliseconds for which the application should display the message
before processing the next user interface data.
Property value constraints:
minimum: 0
default: 0

250

Properties

valueDetails
Indicates a value associated with a transaction, either an amount or a balance. See [Ref. cardreader-3] for more
details. This property will be null if no amount or balance is applicable.
default: null

valueDetails/qualifier
Qualifies value. This data is defined by EMVCo as one of the following:

• amount - value is an Amount.
• balance - value is a Balance.

valueDetails/value
Represents the numeric value of the amount or balance (as specified by qualifier) to be displayed where
appropriate. The format of this property is defined by EMVCo.
Property value constraints:
pattern: ^[0-9]{12}$

valueDetails/currencyCode
Represents the numeric value of the currency code as defined by ISO 4217 [Ref. cardreader-5].
Property value constraints:
minimum: 0
maximum: 999

languagePreferenceData
Represents the language preference (EMV Tag '5F2D') if returned by the card. If not returned, this property
reports null. The application should use this data to display all messages in the specified language until the
transaction concludes.
Property value constraints:
pattern: ^[a-z]{2}
default: null

251

5.4 Unsolicited Messages

5.4.1 CardReader.MediaRemovedEvent
This unsolicited event indicates the card was manually removed by the user either during processing of a command
which requires the card to be present or the card is removed from the exit position.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

252

5.4.2 CardReader.CardActionEvent
This event specifies where a card has been moved to by either the automatic power on or power off action of the
device.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "to": "unit1", string 🗸🗸
 "from": "transport" string 🗸🗸
}

Properties

to
Position where the card was moved to. Possible values are:

• exit - The card was moved to the exit position.
• transport - The card was moved to the transport position.
• <storage unit identifier> - The card was moved to the storage unit with matching identifier.

The storage unit type must be retain.
Property value constraints:
pattern: ^exit$|^transport$|^unit[0-9A-Za-z]+$

from
Position where the card was moved from. Possible values are:

• unknown - The position of the card cannot be determined.
• exit - The card was in the exit position.
• transport - The card was in the transport position.
• <storage unit identifier> - The card was in a storage unit with matching identifier. The storage

unit type must be park.
Property value constraints:
pattern: ^unknown$|^exit$|^transport$|^unit[0-9A-Za-z]+$

253

5.4.3 CardReader.MediaDetectedEvent
This is generated if media is detected during a CardReader.Reset. The event payload informs the application of the
position or state of a card on the completion of the CardReader.Reset command. For devices with park storage
units, there will be one event for each card found.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "unit1" string 🗸🗸
}

Properties

position
Specifies a card position or jammed state as one of the following:

• exit - A card is at the exit position.
• transport - A card is in the transport position.
• <storage unit identifier> - A card is in the identified retain or park storage unit.
• jammed - A card is jammed in the device.

Property value constraints:
pattern: ^exit$|^transport$|^jammed$|^unit[0-9A-Za-z]+$

254

6. Cash Management Interface
This chapter defines the Cash Management interface functionality and messages.

This specification describes the functionality of an XFS4IoT compliant Cash Management interface. It defines the
Service-specific commands that can be issued to the Service using the WebSocket endpoint.

This interface is to be used together with Storage, Cash Dispenser and/or Cash Acceptor interfaces to handle
management of storage units, cash counts and banknote information.

6.1 General Information

6.1.1 References

ID Description

cashmanagement-1 ISO 4217

6.1.2 Note Classification
Cash items are classified by the XFS4IoT specification according to the following definitions. Local requirements
or device capability define which of these classifications are supported - see Common.Capabilities classifications.
A cash item can only be classified as one of the following:

1. Not recognized (level 1 in XFS 3.x), defined as unrecognized in XFS4IoT.
2. Recognized counterfeit item (level 2 in XFS 3.x), defined as counterfeit in XFS4IoT.
3. Suspected counterfeit item (level 3 in XFS 3.x), defined as suspect in XFS4IoT.
4. Inked, defined as inked in XFS4IoT. Inked-stained banknotes are typically items which have been stained

by anti-theft devices.
5. Genuine note (level 4 in XFS 3.x). Genuine items are further classified as follows:
• Fit for recycling, defined as fit in XFS4IoT
• Unfit for recycling, defined as unfit in XFS4IoT

Once classified as such, how items are handled may depend on local requirements or legislative note handling
standards that may exist in various countries and economic regions. This can be used to support note handling
functionality which includes:

1. Whether counterfeit or suspect items allowed to be returned to the customer during a Cash In transaction
2. The ability to remove counterfeit notes from circulation.
3. Reporting of recognized, counterfeit and suspected counterfeit notes.
4. Creating and reporting of note signatures in order to allow back-tracing of notes.

A note's classification can be changed based on the item's serial number, currency and value by specifying a
classification list - see CashManagement.SetClassificationList. A classification list can be used to re-classify a
matching item to a lower level, including classifying a genuine note as unfit for dispensing. Once reclassified, the
note will be automatically handled according to the local country specific note handling standard or legislation for
the note's new note classification, including any note retention rules. Any reclassification will result in the normal
events and behavior, for example a CashManagement.InfoAvailableEvent will reflect the note's reclassification.
Reclassification can be used to make dynamic changes to note handling procedures without a software upgrade,
enabling functionality such as taking older notes out of circulation or handling of counterfeit notes on a local basis
(commonly known as a blacklist).

Reclassification cannot be used to change a note's classification to a level which makes it more likely to be
accepted, for example, a note recognized as counterfeit by the device cannot be reclassified as genuine. In addition,
it is not possible to re-classify a counterfeit note as unrecognized. No particular use case has been identified for
reclassifying suspect or genuine items as unrecognized, but there is no reason to restrict this reclassification.

Classification lists can be specified using CashManagement.SetClassificationList and retrieved using
CashManagement.GetClassificationList.

The classification list functionality can use a mask to specify serial numbers. The mask is defined as follows: A '?'
character (0x003F) is the wildcard used to match a single Unicode character, and a '*' character (0x002A) is the
wildcard used to match one or more Unicode characters.

http://www.iso.org/

255

For example, "S8H9??16?4" would represent a match for the serial numbers "S8H9231654" and "S8H9761684". A
mask of "HD90*2" would be used in order to match serial numbers that begin with "HD90" and end with "2", for
example "HD9028882", "HD9083276112". Note that the mask can only use one asterisk, and if a real character is
required then it must be preceded by a backslash, for example: '\\' for a backslash, '*' for an asterisk or '\?' for a
question mark. Note that this flexibility means that it is possible to overlap definitions, for example "HD90*" and
"HD902*" would both match on the serial number HD9028882".

256

6.2 Command Messages

6.2.1 CashManagement.GetBankNoteTypes
This command is used to obtain information about the banknote types that can be detected by the banknote reader
or are supported by the configuration.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "items": { object, null
 "type20USD1": { object
 "cashItem": { object 🗸🗸
 "noteID": 25, integer 🗸🗸
 "currency": "USD", string 🗸🗸
 "value": 20.00, number 🗸🗸
 "release": 1 integer
 },
 "enabled": true boolean
 },
 "type10GBP2": See items/type20USD1 properties object
 }
}

Properties

items
An object listing which cash items the device is capable of handling and whether the cash items are enabled for
acceptance. May be null if empty.
default: null

items/type20USD1 (example name)
Specifies a cash item supported by the device and whether it is enabled for acceptance.
Property name constraints:
pattern: ^type[0-9A-Z]+$

items/type20USD1/cashItem
An object containing information about a single cash item supported by the device.

items/type20USD1/cashItem/noteID
Assigned by the Service. A unique number identifying a single cash item. Each unique combination of the other
properties will have a different noteID. Can be used for migration of usNoteID from XFS 3.x.
Property value constraints:
minimum: 1

257

Properties

items/type20USD1/cashItem/currency
ISO 4217 currency identifier [Ref. cashmanagement-1].
Property value constraints:
pattern: ^[A-Z]{3}$

items/type20USD1/cashItem/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
Property value constraints:
minimum: 0

items/type20USD1/cashItem/release
The release of the cash item. The higher this number is, the newer the release.
If 0 or not reported, there is only one release of that cash item or the device is not capable of distinguishing
different release of the item, for example in a simple cash dispenser.
An example of how this can be used is being able to sort different releases of the same denomination note to
different storage units to take older notes out of circulation.
This value is device, banknote reader and currency description configuration data dependent, therefore a release
number of the same cash item will not necessarily have the same value in different systems and any such usage
would be specific to a specific device's configuration.
Property value constraints:
minimum: 0
default: 0

items/type20USD1/enabled
If true the banknote reader will accept this note type during a cash-in operations. If false the banknote reader will
refuse this note type unless it must be retained by note classification rules.
default: true

Event Messages
None

258

6.2.2 CashManagement.GetTellerInfo
This command only applies to Teller devices. It allows the application to obtain counts for each currency assigned
to the teller. These counts represent the total amount of currency dispensed by the teller in all transactions.

This command also enables the application to obtain the position assigned to each teller. The teller information is
persistent.

Command Message

Payload (version 2.0) Type Required
{
 "tellerID": 0, integer, null
 "currency": "USD" string, null
}

Properties

tellerID
Identification of the teller. If invalid the error invalidTellerId is reported. If null, all tellers are reported.
Property value constraints:
minimum: 0
default: null

currency
ISO 4217 format currency identifier [Ref. cashmanagement-1]. If null, all currencies are reported for tellerID.
Property value constraints:
pattern: ^[A-Z]{3}$
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidCurrency", string, null
 "tellerDetails": [{ array (object), null
 "tellerID": 104, integer 🗸🗸
 "inputPosition": "inDefault", string
 "outputPosition": "outDefault", string
 "tellerTotals": { object 🗸🗸
 "EUR": { object
 "itemsReceived": 1405.00, number
 "itemsDispensed": 1405.00, number
 "coinsReceived": 0.05, number
 "coinsDispensed": 0.05, number
 "cashBoxReceived": 1407.15, number
 "cashBoxDispensed": 1407.15 number
 },
 "GBP": See tellerDetails/tellerTotals/EUR properties object
 }

259

Payload (version 2.0) Type Required
 }]
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• invalidCurrency - Specified currency not currently available.
• invalidTellerId - Invalid teller ID.

default: null

tellerDetails
Array of teller detail objects. May be null if no teller defined.
default: null

tellerDetails/tellerID
Identification of the teller.
Property value constraints:
minimum: 0

tellerDetails/inputPosition
Supplies the input position as one of the following values. Supported positions are reported in
Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.

default: "inDefault"

tellerDetails/outputPosition
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

tellerDetails/tellerTotals
List of teller total objects. There is one object per currency.

tellerDetails/tellerTotals/EUR (example name)
The property name is the ISO 4217 currency identifier [Ref. cashmanagement-1].
Property name constraints:
pattern: ^[A-Z]{3}$

260

Properties

tellerDetails/tellerTotals/EUR/itemsReceived
The total absolute value of items (other than coins) of the specified currency accepted. The amount is expressed
as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/itemsDispensed
The total absolute value of items (other than coins) of the specified currency dispensed. The amount is expressed
as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/coinsReceived
The total absolute value of coin currency accepted. The amount is expressed as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/coinsDispensed
The total absolute value of coin currency dispensed. The amount is expressed as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/cashBoxReceived
The total absolute value of cash box currency accepted. The amount is expressed as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/cashBoxDispensed
The total absolute value of cash box currency dispensed. The amount is expressed as a floating point value.
Property value constraints:
minimum: 0
default: 0

Event Messages
None

261

6.2.3 CashManagement.SetTellerInfo
This command allows the application to initialize counts for each currency assigned to the teller. The values set by
this command are persistent. This command only applies to Teller ATMs.

Command Message

Payload (version 2.0) Type Required
{
 "action": "create", string 🗸🗸
 "tellerDetails": { object 🗸🗸
 "tellerID": 104, integer 🗸🗸
 "inputPosition": "inDefault", string
 "outputPosition": "outDefault", string
 "tellerTotals": { object 🗸🗸
 "EUR": { object
 "itemsReceived": 1405.00, number
 "itemsDispensed": 1405.00, number
 "coinsReceived": 0.05, number
 "coinsDispensed": 0.05, number
 "cashBoxReceived": 1407.15, number
 "cashBoxDispensed": 1407.15 number
 },
 "GBP": See tellerDetails/tellerTotals/EUR properties object
 }
 }
}

Properties

action
The action to be performed. Following values are possible:

• create - A teller is to be added.
• modify - Information about an existing teller is to be modified.
• delete - A teller is to be removed.

tellerDetails
Teller details object.

tellerDetails/tellerID
Identification of the teller.
Property value constraints:
minimum: 0

262

Properties

tellerDetails/inputPosition
Supplies the input position as one of the following values. Supported positions are reported in
Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.

default: "inDefault"

tellerDetails/outputPosition
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

tellerDetails/tellerTotals
List of teller total objects. There is one object per currency.

tellerDetails/tellerTotals/EUR (example name)
The property name is the ISO 4217 currency identifier [Ref. cashmanagement-1].
Property name constraints:
pattern: ^[A-Z]{3}$

tellerDetails/tellerTotals/EUR/itemsReceived
The total absolute value of items (other than coins) of the specified currency accepted. The amount is expressed
as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/itemsDispensed
The total absolute value of items (other than coins) of the specified currency dispensed. The amount is expressed
as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/coinsReceived
The total absolute value of coin currency accepted. The amount is expressed as a floating point value.
Property value constraints:
minimum: 0
default: 0

263

Properties

tellerDetails/tellerTotals/EUR/coinsDispensed
The total absolute value of coin currency dispensed. The amount is expressed as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/cashBoxReceived
The total absolute value of cash box currency accepted. The amount is expressed as a floating point value.
Property value constraints:
minimum: 0
default: 0

tellerDetails/tellerTotals/EUR/cashBoxDispensed
The total absolute value of cash box currency dispensed. The amount is expressed as a floating point value.
Property value constraints:
minimum: 0
default: 0

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidCurrency" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• invalidCurrency - The specified currency is not currently available.
• invalidTellerId - The teller ID is invalid.
• unsupportedPosition - The position specified is not supported.
• exchangeActive - The target teller is currently in the middle of an exchange operation.

default: null

Event Messages
None

264

6.2.4 CashManagement.GetItemInfo
This command is used to get information about detected items. It can be used to get information about individual
items, all items of a certain classification, or all items that have information available. This information is available
from the point where the first CashManagement.InfoAvailableEvent is generated until a transaction or
replenishment command is executed including the following:

• CashAcceptor.CashInStart
• CashAcceptor.CashIn
• CashAcceptor.CashInEnd
• CashAcceptor.CashInRollback
• CashAcceptor.CreateSignature
• CashAcceptor.Replenish
• CashAcceptor.CashUnitCount
• CashAcceptor.Deplete
• CashManagement.Retract
• CashManagement.Reset
• CashManagement.OpenShutter
• CashManagement.CloseShutter
• CashManagement.CalibrateCashUnit
• CashDispenser.Dispense
• CashDispenser.Present
• CashDispenser.Reject
• CashDispenser.Count
• CashDispenser.TestCashUnits
• Storage.StartExchange
• Storage.EndExchange

In addition, since the item information is not cumulative and can be replaced by any command that can move notes,
it is recommended that applications that are interested in the available information should query for it following the
CashManagement.InfoAvailableEvent but before any other command is executed.

Command Message

Payload (version 2.0) Type Required
{
 "items": { object, null
 "level": "fit", string 🗸🗸
 "index": 1 integer, null
 },
 "itemInfoType": { object, null
 "serialNumber": true, boolean
 "signature": true, boolean
 "image": true boolean
 }
}

Properties

items
Specifies which item or items to return information for. If null, all information on all items is returned.
default: null

265

Properties

items/level
Specifies the item's classification. Following values are possible:

• unrecognized - The item is not recognized.
• counterfeit - The item is recognized as counterfeit.
• suspect - The item is recognized as suspected counterfeit.
• fit - The item is genuine and fit for recycling.
• unfit - The item is genuine but not fit for recycling.
• inked - The item is genuine but ink stained.

items/index
Specifies the zero based index for the item information required. If null, all items of the specified level will be
returned.
Property value constraints:
minimum: 0
default: null

itemInfoType
Specifies the type of information required. If null, all available information will be returned.
default: null

itemInfoType/serialNumber
Request the serial number of the item.
default: true

itemInfoType/signature
Request the signature of the item.
default: true

itemInfoType/image
Request the image of the item.
default: true

Completion Message

Payload (version 2.0) Type Required
{
 "itemsList": [{ array (object), null
 "noteType": "type20USD1", string, null
 "orientation": "frontTop", string, null
 "signature": "MAA5ADgANwA2ADUANAAz ...", string, null
 "level": "fit", string 🗸🗸
 "serialNumber": "AB12345YG", string, null
 "image": "MAA5ADgANwA2ADUANAAz ...", string, null
 "onClassificationList": "onClassificationList", string, null
 "itemLocation": "unit1" string
 }]
}

Properties

itemsList
Array of objects listing the item information. May be null, if empty.
default: null

266

Properties

itemsList/noteType
A cash item as reported by CashManagement.GetBankNoteTypes. This is null if the item was not identified as a
cash item.
Property value constraints:
pattern: ^type[0-9A-Z]+$
default: null

itemsList/orientation
Specifies the note orientation. This property is null if the hardware is not capable to determine the orientation
The following values are possible:

• frontTop - If note is inserted wide side as the leading edge, the note was inserted with the front image
facing up and the top edge of the note was inserted first. If the note is inserted short side as the leading
edge, the note was inserted with the front image face up and the left edge was inserted first.

• frontBottom - If note is inserted wide side as the leading edge, the note was inserted with the front
image facing up and the bottom edge of the note was inserted first. If the note is inserted short side as
the leading edge, the note was inserted with the front image face up and the right edge was inserted
first.

• backTop - If note is inserted wide side as the leading edge, the note was inserted with the back image
facing up and the top edge of the note was inserted first. If the note is inserted short side as the leading
edge, the note was inserted with the back image face up and the left edge was inserted first.

• backBottom - If note is inserted wide side as the leading edge, the note was inserted with the back
image facing up and the bottom edge of the note was inserted first. If the note is inserted short side as
the leading edge, the note was inserted with the back image face up and the right edge was inserted first.

• unknown - The orientation for the inserted note cannot be determined.
default: null

itemsList/signature
Base64 encoded vendor specific signature data. If no signature is available or has not been requested then this is
null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

itemsList/level
Specifies the item's classification. Following values are possible:

• unrecognized - The item is not recognized.
• counterfeit - The item is recognized as counterfeit.
• suspect - The item is recognized as suspected counterfeit.
• fit - The item is genuine and fit for recycling.
• unfit - The item is genuine but not fit for recycling.
• inked - The item is genuine but ink stained.

itemsList/serialNumber
This property contains the serial number of the item as a string. A '?' character is used to represent any serial
number character that cannot be recognized. If no serial number is available or has not been requested then this
is null.
default: null

itemsList/image
Base64 encoded binary image data. If the Service does not support this function or the image has not been
requested then this is null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

267

Properties

itemsList/onClassificationList
Specifies if the item is on the classification list. If the classification list reporting capability is not supported this
property will be null. Following values are possible:

• onClassificationList - The serial number of the items is on the classification list.
• notOnClassificationList - The serial number of the items is not on the classification list.
• classificationListUnknown - It is unknown if the serial number of the item is on the classification

list.
default: null

itemsList/itemLocation
Specifies the location of the item. Following values are possible:

• customer - The item has been presented to the customer.
• unknown - The item location is unknown, for example, it may have been removed manually.
• stacker - The item is in the intermediate stacker.
• output - The item is at the output position. The items have not been in customer access.
• transport - The item is in an intermediate location in the device.
• deviceUnknown - The item is in the device but its location is unknown.
• <storage unit identifier> - The item is in a storage unit with matching

identifier.
Property value constraints:
pattern:
^customer$|^unknown$|^stacker$|^output$|^transport$|^deviceUnknown$|^unit[0-9A-Za-
z]+$
default: "unknown"

Event Messages
None

268

6.2.5 CashManagement.GetClassificationList
This command is used to retrieve the entire note classification information pre-set inside the device or set via the
CashManagement.SetClassificationList command. This provides the functionality to blacklist notes and allows
additional flexibility, for example to specify that notes can be taken out of circulation by specifying them as unfit.
Any items not returned in this list will be handled according to normal classification rules.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "version": "Version 1.2", string, null
 "classificationElements": [{ array (object), null
 "serialNumber": "AB1234D", string 🗸🗸
 "currency": "USD", string 🗸🗸
 "value": 20.00, number 🗸🗸
 "level": "fit" string 🗸🗸
 }]
}

Properties

version
This is an application defined string that sets the version identifier of the classification list. This property can be
null if it has no version identifier.
default: null

classificationElements
Array of objects defining the classification list. May be null if empty.
default: null

classificationElements/serialNumber
This string defines the serial number or a mask of serial numbers of one element with the defined currency and
value. For a definition of the mask see Note Classification.

classificationElements/currency
ISO 4217 currency identifier [Ref. cashmanagement-1].
Property value constraints:
pattern: ^[A-Z]{3}$

classificationElements/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
Property value constraints:
minimum: 0

269

Properties

classificationElements/level
Specifies the item's classification. Following values are possible:

• unrecognized - The item is not recognized.
• counterfeit - The item is recognized as counterfeit.
• suspect - The item is recognized as suspected counterfeit.
• fit - The item is genuine and fit for recycling.
• unfit - The item is genuine but not fit for recycling.
• inked - The item is genuine but ink stained.

Event Messages
None

270

6.2.6 CashManagement.SetClassificationList
This command is used to specify the entire note classification list. Any items not specified in this list will be
handled according to normal classification rules. This information is persistent. Information set by this command
overrides any existing classification list. If a note is reclassified, it is handled as though it was a note of the new
classification. For example, a fit note reclassified as unfit would be treated as though it were unfit, which may mean
that the note is not dispensed. Reclassification cannot be used to change a note’s classification to a higher level, for
example, a note recognized as counterfeit by the device cannot be reclassified as genuine. In addition, it is not
possible to re-classify a counterfeit note as unrecognized. If two or more classification elements specify overlapping
note definitions, but different level values then the first one takes priority.

Command Message

Payload (version 2.0) Type Required
{
 "version": "Version 1.2", string, null
 "classificationElements": [{ array (object) 🗸🗸
 "serialNumber": "AB1234D", string 🗸🗸
 "currency": "USD", string 🗸🗸
 "value": 20.00, number 🗸🗸
 "level": "fit" string 🗸🗸
 }]
}

Properties

version
This is an application defined string that sets the version identifier of the classification list. This property can be
null if it has no version identifier.
default: null

classificationElements
Array of objects defining the classification list.

classificationElements/serialNumber
This string defines the serial number or a mask of serial numbers of one element with the defined currency and
value. For a definition of the mask see Note Classification.

classificationElements/currency
ISO 4217 currency identifier [Ref. cashmanagement-1].
Property value constraints:
pattern: ^[A-Z]{3}$

classificationElements/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
Property value constraints:
minimum: 0

271

Properties

classificationElements/level
Specifies the item's classification. Following values are possible:

• unrecognized - The item is not recognized.
• counterfeit - The item is recognized as counterfeit.
• suspect - The item is recognized as suspected counterfeit.
• fit - The item is genuine and fit for recycling.
• unfit - The item is genuine but not fit for recycling.
• inked - The item is genuine but ink stained.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

272

6.2.7 CashManagement.CloseShutter
This command closes the shutter.

Command Message

Payload (version 2.0) Type Required
{
 "position": "inLeft" string
}

Properties

position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "unsupportedPosition" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• unsupportedPosition - The position specified is not supported.
• shutterClosed - Shutter was already closed.
• exchangeActive - The device is in an exchange state.
• shutterNotClosed - Shutter failed to close.
• tooManyItems - There were too many items inserted for the shutter to close.
• foreignItemsDetected - Foreign items have been detected in the input position. The shutter

is open.
default: null

273

Event Messages
None

274

6.2.8 CashManagement.OpenShutter
This command opens the shutter.

In cases where multiple bunches are to be returned under explicit shutter control and the first bunch has already
been presented and taken and the output position is empty, this command moves the next bunch to the output
position before opening the shutter. This does not apply if the output position is not empty, for example if items had
been re-inserted or dropped back into the output position as the shutter closed.

Command Message

Payload (version 2.0) Type Required
{
 "position": "inLeft" string
}

Properties

position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "unsupportedPosition" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• unsupportedPosition - The position specified is not supported.
• shutterNotOpen - Shutter failed to open.
• shutterOpen - Shutter was already open.
• exchangeActive - The device is in an exchange state.
• foreignItemsDetected - Foreign items have been detected in the input position.

default: null

275

Event Messages
None

276

6.2.9 CashManagement.Retract
This command retracts items from an output position or internal areas within the device. Retracted items will be
moved to either a retract bin, a reject bin, cash-in/recycle storage units, the transport or an intermediate stacker area.
If items from internal areas within the device are preventing items at an output position from being retracted then
the items from the internal areas will be retracted first. When the items are retracted from an output position the
shutter is closed automatically, even if shutterControl is false.

This command terminates a running cash-in transaction. The cash-in transaction is terminated even if this command
does not complete successfully.

Command Message

Payload (version 2.0) Type Required
{
 "location": { object, null
 "outputPosition": "outDefault", string
 "retractArea": "retract", string 🗸🗸
 "index": 1 integer, null
 }
}

Properties

location
Specifies where items are to be retracted from and where they are to be retracted to.
default: null

location/outputPosition
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

location/retractArea
This value specifies the area to which the items are to be retracted. Following values are possible:

• retract - Retract the items to a retract storage unit.
• transport - Retract the items to the transport.
• stacker - Retract the items to the intermediate stacker area.
• reject - Retract the items to a reject storage unit.
• itemCassette - Retract the items to the storage units which would be used during a Cash In

transaction including recycling storage units.
• cashIn - Retract the items to the storage units which would be used during a Cash In transaction but

not including recycling storage units.

277

Properties

location/index
If retractArea is set to retract this property defines the position inside the retract storage units into which the
cash is to be retracted. index starts with a value of 1 for the first retract position and increments by one for each
subsequent position. If there are several retract storage units (of type retractCassette in Storage.GetStorage),
index would be incremented from the first position of the first retract storage unit to the last position of the last
retract storage unit. The maximum value of index is the sum of maximum of each retract storage unit. If
retractArea is not set to retract the value of this property is ignored and may be null.
Property value constraints:
minimum: 1
default: null

Completion Message

Payload (version 2.0) Type Require
d

{
 "errorCode": "cashUnitError", string, null
 "storage": { object,

null

 "unit1": { object,
null

 "retractOperations": 15, integer,
null

 "deposited": { object,
null

 "unrecognized": 5, integer,
null

 "type20USD1": { object,
null

 "fit": 15, integer,
null

 "unfit": 0, integer,
null

 "suspect": 0, integer,
null

 "counterfeit": 0, integer,
null

 "inked": 0 integer,
null

 },
 "type50USD1": See storage/unit1/deposited/type20USD1
properties

object,
null

 },
 "retracted": See storage/unit1/deposited properties object,

null

 "rejected": See storage/unit1/deposited properties object,
null

 "distributed": See storage/unit1/deposited properties object,
null

278

Payload (version 2.0) Type Require
d

 "transport": See storage/unit1/deposited properties object,
null

 },
 "unit2": See storage/unit1 properties object,

null

 },
 "transport": See storage/unit1/deposited properties object,

null

 "stacker": See storage/unit1/deposited properties object,
null

}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• cashUnitError - A problem occurred with a storage unit. A
Storage.StorageErrorEvent will be sent with the details.

• noItems - There were no items to retract.
• exchangeActive - The device is in an exchange state.
• shutterNotClosed - The shutter failed to close.
• itemsTaken - Items were present at the output position at the start of the operation, but were

removed before the operation was complete - some or all of the items were not retracted.
• invalidRetractPosition - The index is not supported.
• notRetractArea - The retract area specified in retractArea is not supported.
• foreignItemsDetected - Foreign items have been detected inside the input position.
• positionNotEmpty - The retract area specified in retractArea is not empty so the retract operation is

not possible.
• incompleteRetract - Some or all of the items were not retracted for a reason not covered by other

error codes. The detail will be reported with the Dispenser.IncompleteRetractEvent.
default: null

storage
Object containing the storage units which have had items inserted during the associated operation or transaction.
Only storage units whose contents have been modified are included.
default: null

storage/unit1 (example name)
List of items moved to this storage unit by this transaction or command. The property name is the same as
reported by Storage.GetStorage.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

storage/unit1/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

279

Properties

storage/unit1/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

storage/unit1/deposited/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

storage/unit1/deposited/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

280

Properties

storage/unit1/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

storage/unit1/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

storage/unit1/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

transport
List of items moved to transport by this transaction or command.
default: null

stacker
List of items moved to stacker by this transaction or command.
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.NoteErrorEvent
• CashManagement.InfoAvailableEvent
• CashManagement.IncompleteRetractEvent

281

6.2.10 CashManagement.Reset
This command is used by the application to perform a hardware reset which will attempt to return the device to a
known good state. This command does not override a lock obtained on another application or connection.

If a cash-in transaction is active or exchange is active then this command will end the transaction or exchange state
as appropriate, even if this command does not complete successfully.

Persistent values, such as counts and configuration information are not cleared by this command.

The device will attempt to move any items found anywhere within the device to the position specified within the
command parameters. This may not always be possible because of hardware problems. If the application does not
wish to specify a storage unit or position it can set target to null. In this case the Device will determine where to
move any items found.

When end-to-end (E2E) security is being enforced by a device, if this command would result in notes being moved
to a position where they would be accessible, this command will be blocked from executing. The exact definition of
'accessible' is hardware dependent but, for example, any position outside the safe, or any position where a attacker
could access the cash should mean the command is blocked. Any attempt to execute the command will complete
with the completion code unsupportedCommand. This is required because there is currently no E2E security
defined for this command, and if the command were permitted it would be possible to extract cash and bypass E2E
security.

If items are found inside the device one or more CashManagement.MediaDetectedEvents will be generated to
inform the application where the items have actually been moved to.

The shutterControl property will determine whether the shutter is controlled implicitly by this command or whether
the application must explicitly open and close the shutter using the CashManagement.OpenShutter,
CashManagement.CloseShutter or CashAcceptor.PresentMedia commands. If shutterControl is false then this
command does not operate the shutter in any way, the application is responsible for all shutter control. If
shutterControl is true then this command operates the shutter as necessary so that the shutter is closed after the
command completes successfully and any items returned to the customer have been removed.

The presentControl property will determine whether or not it is necessary to call the CashAcceptor.PresentMedia
command in order to move items to the output position. If presentControl is true then all items are moved
immediately to the correct output position for removal (a CashManagement.OpenShutter command will be needed
in the case of explicit shutter control). If presentControl is false then items are not returned immediately and must
be presented to the correct output position for removal using the CashAcceptor.PresentMedia command.

If requested, items are returned in a single bunch or multiple bunches in the same way as described for the
CashAcceptor.CashIn command.

If performing a Mixed Media transaction and media items are to be moved to a storage unit or units, the requested
unit(s) must support types appropriate to the media being stored.

Command Message

Payload (version 2.0) Type Required
{
 "position": { object, null
 "target": "singleUnit", string 🗸🗸
 "unit": "unit4", string, null
 "index": 1 integer, null
 }
}

282

Properties

position
Defines where items are to be or have been moved to as one of the following:

• A single storage unit, further specified by unit.
• Internal areas of the device. If the retract area is used, the index property has to be provided.
• An output position.

This may be null:
• On command data if the Service is to detrermine where items are to be moved
• On completion or events if no items were moved

default: null

position/target
This property specifies the target where items are to be moved to. Following values are possible:

• singleUnit - Move the items to a single storage unit defined by unit.
• retract - Move the items to a retract storage unit.
• transport - Move the items to the transport.
• stacker - Move the items to the intermediate stacker area.
• reject - Move the items to a reject storage unit.
• itemCassette - Move the items to the storage units which would be used during a Cash In transaction

including recycling storage units.
• cashIn - Move the items to the storage units which would be used during a Cash In transaction but not

including recycling storage units.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

position/unit
If target is set to singleUnit, this property specifies the object name (as stated by the Storage.GetStorage
command) of the single unit to be used for the storage of any items found.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

position/index
If target is set to retract this property defines the position inside the retract storage units into which the cash is to
be retracted. index starts with a value of 1 for the first retract position and increments by one for each subsequent
position. If there are several retract storage units (of type retractCassette in Storage.GetStorage), index would be
incremented from the first position of the first retract storage unit to the last position of the last retract storage
unit. The maximum value of index is the sum of maximum of each retract storage unit. If retractArea is not set to
retract the value of this property is ignored.
Property value constraints:
minimum: 1
default: null

Completion Message

Payload (version 2.0) Type Require
d

{
 "errorCode": "cashUnitError", string, null

283

Payload (version 2.0) Type Require
d

 "storage": { object,
null

 "unit1": { object,
null

 "retractOperations": 15, integer,
null

 "deposited": { object,
null

 "unrecognized": 5, integer,
null

 "type20USD1": { object,
null

 "fit": 15, integer,
null

 "unfit": 0, integer,
null

 "suspect": 0, integer,
null

 "counterfeit": 0, integer,
null

 "inked": 0 integer,
null

 },
 "type50USD1": See storage/unit1/deposited/type20USD1
properties

object,
null

 },
 "retracted": See storage/unit1/deposited properties object,

null

 "rejected": See storage/unit1/deposited properties object,
null

 "distributed": See storage/unit1/deposited properties object,
null

 "transport": See storage/unit1/deposited properties object,
null

 },
 "unit2": See storage/unit1 properties object,

null

 },
 "transport": See storage/unit1/deposited properties object,

null

 "stacker": See storage/unit1/deposited properties object,
null

}

284

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• cashUnitError - There is a problem with a storage unit. A
Storage.StorageErrorEvent will be posted with the details.

• unsupportedPosition - The output position specified is not supported.
• invalidCashUnit - The storage unit number specified is not valid.
• invalidRetractPosition - The index is not supported.
• notRetractArea - The retract area specified in retractArea is not supported.
• positionNotEmpty - The retract area specified in retractArea is not empty so the moving of items

was not possible.
• foreignItemsDetected - Foreign items have been detected in the input position.
• incompleteRetract - Some or all of the items were not retracted for a reason not covered by other

error codes. The detail will be reported with the Dispenser.IncompleteRetractEvent.
default: null

storage
Object containing the storage units which have had items inserted during the associated operation or transaction.
Only storage units whose contents have been modified are included.
default: null

storage/unit1 (example name)
List of items moved to this storage unit by this transaction or command. The property name is the same as
reported by Storage.GetStorage.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

storage/unit1/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

storage/unit1/deposited/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

storage/unit1/deposited/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

285

Properties

storage/unit1/deposited/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

storage/unit1/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

storage/unit1/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

storage/unit1/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

transport
List of items moved to transport by this transaction or command.
default: null

stacker
List of items moved to stacker by this transaction or command.
default: null

286

Event Messages

• Storage.StorageErrorEvent
• CashManagement.InfoAvailableEvent

287

6.2.11 CashManagement.CalibrateCashUnit
This command will cause a vendor dependent sequence of hardware events which will calibrate one storage unit.
This is necessary if a new type of bank note is put into the storage unit as the command enables the device to obtain
the measures of the new bank notes.

This command cannot be used to calibrate storage units which have been locked by the application. An error code
will be returned and a Storage.StorageErrorEvent generated.

Command Message

Payload (version 2.0) Type Required
{
 "unit": "unit1", string 🗸🗸
 "numOfBills": 40, integer, null
 "position": { object, null
 "target": "singleUnit", string 🗸🗸
 "unit": "unit4", string, null
 "index": 1 integer, null
 }
}

Properties

unit
The object name of the storage unit as stated by the Storage.GetStorage command.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

numOfBills
The number of bills to be dispensed during the calibration process. If null, the Service may decide how many
bills are required. This may also be ignored if the device always dispenses a default number of bills.
Property value constraints:
minimum: 1
default: null

position
Defines where items are to be or have been moved to as one of the following:

• A single storage unit, further specified by unit.
• Internal areas of the device. If the retract area is used, the index property has to be provided.
• An output position.

This may be null:
• On command data if the Service is to detrermine where items are to be moved
• On completion or events if no items were moved

default: null

288

Properties

position/target
This property specifies the target where items are to be moved to. Following values are possible:

• singleUnit - Move the items to a single storage unit defined by unit.
• retract - Move the items to a retract storage unit.
• transport - Move the items to the transport.
• stacker - Move the items to the intermediate stacker area.
• reject - Move the items to a reject storage unit.
• itemCassette - Move the items to the storage units which would be used during a Cash In transaction

including recycling storage units.
• cashIn - Move the items to the storage units which would be used during a Cash In transaction but not

including recycling storage units.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

position/unit
If target is set to singleUnit, this property specifies the object name (as stated by the Storage.GetStorage
command) of the single unit to be used for the storage of any items found.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

position/index
If target is set to retract this property defines the position inside the retract storage units into which the cash is to
be retracted. index starts with a value of 1 for the first retract position and increments by one for each subsequent
position. If there are several retract storage units (of type retractCassette in Storage.GetStorage), index would be
incremented from the first position of the first retract storage unit to the last position of the last retract storage
unit. The maximum value of index is the sum of maximum of each retract storage unit. If retractArea is not set to
retract the value of this property is ignored.
Property value constraints:
minimum: 1
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cashUnitError", string, null
 "result": { object, null
 "unit": "unit1", string 🗸🗸
 "numOfBills": 20, integer
 "position": { object, null
 "target": "singleUnit", string 🗸🗸
 "unit": "unit4", string, null
 "index": 1 integer, null
 }

289

Payload (version 2.0) Type Required
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• cashUnitError - A storage unit caused an error. A
Storage.StorageErrorEvent will be sent with the details.

• unsupportedPosition - The position specified is not valid.
• exchangeActive - The device is in an exchange state.
• invalidCashUnit - The storage unit number specified is not valid.

default: null

result
The result of the command, detailing where items were moved from and to. May be null if no items were moved.
default: null

result/unit
The object name of the storage unit which has been calibrated as stated by Storage.GetStorage.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

result/numOfBills
Number of items that were actually dispensed during the calibration process. This value may be different from
that passed in using the input structure if the device always dispenses a default number of bills. When bills are
presented to an output position this is the count of notes presented to the output position, any other notes rejected
during the calibration process are not included in this count as they will be accounted for within the storage unit
counts.
Property value constraints:
minimum: 0
default: 0

result/position
Defines where items are to be or have been moved to as one of the following:

• A single storage unit, further specified by unit.
• Internal areas of the device. If the retract area is used, the index property has to be provided.
• An output position.

This may be null:
• On command data if the Service is to detrermine where items are to be moved
• On completion or events if no items were moved

default: null

290

Properties

result/position/target
This property specifies the target where items are to be moved to. Following values are possible:

• singleUnit - Move the items to a single storage unit defined by unit.
• retract - Move the items to a retract storage unit.
• transport - Move the items to the transport.
• stacker - Move the items to the intermediate stacker area.
• reject - Move the items to a reject storage unit.
• itemCassette - Move the items to the storage units which would be used during a Cash In transaction

including recycling storage units.
• cashIn - Move the items to the storage units which would be used during a Cash In transaction but not

including recycling storage units.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

result/position/unit
If target is set to singleUnit, this property specifies the object name (as stated by the Storage.GetStorage
command) of the single unit to be used for the storage of any items found.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

result/position/index
If target is set to retract this property defines the position inside the retract storage units into which the cash is to
be retracted. index starts with a value of 1 for the first retract position and increments by one for each subsequent
position. If there are several retract storage units (of type retractCassette in Storage.GetStorage), index would be
incremented from the first position of the first retract storage unit to the last position of the last retract storage
unit. The maximum value of index is the sum of maximum of each retract storage unit. If retractArea is not set to
retract the value of this property is ignored.
Property value constraints:
minimum: 1
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.NoteErrorEvent
• CashManagement.InfoAvailableEvent

291

6.3 Event Messages

6.3.1 CashManagement.NoteErrorEvent
This event specifies the reason for a note detection error during the execution of a command.

Event Message

Payload (version 2.0) Type Required
{
 "reason": "doubleNote" string 🗸🗸
}

Properties

reason
The reason for the notes detection error. Following values are possible:

• doubleNote - A double note has been detected.
• longNote - A long note has been detected.
• skewedNote - A skewed note has been detected.
• incorrectCount - An item counting error has occurred.
• notesTooClose - Notes have been detected as being too close.
• otherNoteError - An item error not covered by the other values has been detected.
• shortNote - A short note has been detected.

292

6.3.2 CashManagement.InfoAvailableEvent
This event is generated when information is available for items detected during the cash processing operation.

Event Message

Payload (version 2.0) Type Required
{
 "itemInfoSummary": [{ array (object) 🗸🗸
 "level": "fit", string 🗸🗸
 "numOfItems": 2 integer 🗸🗸
 }]
}

Properties

itemInfoSummary
Array of itemInfoSummary objects, one object for every level.

itemInfoSummary/level
Specifies the item's classification. Following values are possible:

• unrecognized - The item is not recognized.
• counterfeit - The item is recognized as counterfeit.
• suspect - The item is recognized as suspected counterfeit.
• fit - The item is genuine and fit for recycling.
• unfit - The item is genuine but not fit for recycling.
• inked - The item is genuine but ink stained.

itemInfoSummary/numOfItems
Number of items classified as level which have information available.
Property value constraints:
minimum: 1

293

6.3.3 CashManagement.IncompleteRetractEvent
This event is generated when an attempt to retract items has completed with an error and not all of the items have
been retracted.

Event Message

Payload (version 2.0) Type Requir
ed

{
 "itemNumberList": { object,

null

 "unit1": { object,
null

 "retractOperations": 15, integer,
null

 "deposited": { object,
null

 "unrecognized": 5, integer,
null

 "type20USD1": { object,
null

 "fit": 15, integer,
null

 "unfit": 0, integer,
null

 "suspect": 0, integer,
null

 "counterfeit": 0, integer,
null

 "inked": 0 integer,
null

 },
 "type50USD1": See
itemNumberList/unit1/deposited/type20USD1 properties

object,
null

 },
 "retracted": See itemNumberList/unit1/deposited properties object,

null

 "rejected": See itemNumberList/unit1/deposited properties object,
null

 "distributed": See itemNumberList/unit1/deposited properties object,
null

 "transport": See itemNumberList/unit1/deposited properties object,
null

 },
 "unit2": See itemNumberList/unit1 properties object,

null

 },
 "reason": "retractFailure" string 🗸🗸
}

294

Properties

itemNumberList
Object containing the storage units which have had items inserted during the associated operation or transaction.
Only storage units whose contents have been modified are included.
default: null

itemNumberList/unit1 (example name)
List of items moved to this storage unit by this transaction or command. The property name is the same as
reported by Storage.GetStorage.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

itemNumberList/unit1/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

itemNumberList/unit1/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

itemNumberList/unit1/deposited/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

itemNumberList/unit1/deposited/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

itemNumberList/unit1/deposited/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

itemNumberList/unit1/deposited/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

itemNumberList/unit1/deposited/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

295

Properties

itemNumberList/unit1/deposited/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

itemNumberList/unit1/deposited/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

itemNumberList/unit1/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

itemNumberList/unit1/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

itemNumberList/unit1/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

itemNumberList/unit1/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

reason
The reason for not having retracted items. Following values are possible:

• retractFailure - The retract has partially failed for a reason not covered by the other reasons
listed in this event, for example failing to pick an item to be retracted.

• retractAreaFull - The storage area specified in the command payload has become full during the
retract operation.

• foreignItemsDetected - Foreign items have been detected.
• invalidBunch - An invalid bunch of items has been detected, e.g. it is too large or could not be

processed.

296

6.4 Unsolicited Messages

6.4.1 CashManagement.TellerInfoChangedEvent
This event is generated when the counts assigned to a teller have changed. This event is only returned as a result of
a CashManagement.SetTellerInfo command.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "tellerID": 0 integer 🗸🗸
}

Properties

tellerID
Integer holding the ID of the teller whose counts have changed.
Property value constraints:
minimum: 0

297

6.4.2 CashManagement.ItemsTakenEvent
This specifies that items presented to the user have been taken. This event may be generated at any time

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "inLeft", string 🗸🗸
 "additionalBunches": "1" string
}

Properties

position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

additionalBunches
Specifies how many more bunches will be required to present the request. Following values are possible:

• <number> - The number of additional bunches to be presented.
• unknown - More than one additional bunch is required but the precise number is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]*$
default: "0"

298

6.4.3 CashManagement.ItemsInsertedEvent
This specifies that items have been inserted into the position by the user. This event may be generated at any time.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "inLeft" string 🗸🗸
}

Properties

position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

299

6.4.4 CashManagement.ItemsPresentedEvent
This specifies that items have been presented to the user, and the shutter has been opened to allow the user to take
the items.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "inLeft", string 🗸🗸
 "additionalBunches": "1" string
}

Properties

position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

additionalBunches
Specifies how many more bunches will be required to present the request. Following values are possible:

• <number> - The number of additional bunches to be presented.
• unknown - More than one additional bunch is required but the precise number is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]*$
default: "0"

300

6.4.5 CashManagement.MediaDetectedEvent
This is generated if media is detected during a CashManagement.Reset command. The payload specifies the
position of the media on completion of the command. If the device has been unable to successfully move the items
found then target will be null.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "target": "singleUnit", string 🗸🗸
 "unit": "unit4", string, null
 "index": 1 integer, null
}

Properties

target
This property specifies the target where items are to be moved to. Following values are possible:

• singleUnit - Move the items to a single storage unit defined by unit.
• retract - Move the items to a retract storage unit.
• transport - Move the items to the transport.
• stacker - Move the items to the intermediate stacker area.
• reject - Move the items to a reject storage unit.
• itemCassette - Move the items to the storage units which would be used during a Cash In transaction

including recycling storage units.
• cashIn - Move the items to the storage units which would be used during a Cash In transaction but not

including recycling storage units.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

unit
If target is set to singleUnit, this property specifies the object name (as stated by the Storage.GetStorage
command) of the single unit to be used for the storage of any items found.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

index
If target is set to retract this property defines the position inside the retract storage units into which the cash is to
be retracted. index starts with a value of 1 for the first retract position and increments by one for each subsequent
position. If there are several retract storage units (of type retractCassette in Storage.GetStorage), index would be
incremented from the first position of the first retract storage unit to the last position of the last retract storage
unit. The maximum value of index is the sum of maximum of each retract storage unit. If retractArea is not set to
retract the value of this property is ignored.
Property value constraints:
minimum: 1
default: null

301

6.4.6 CashManagement.ShutterStatusChangedEvent
Within the limitations of the hardware sensors this event is generated whenever the status of a shutter changes. The
shutter status can change because of an explicit, implicit or manual operation depending on how the shutter is
operated.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "inLeft", string 🗸🗸
 "shutter": "closed" string 🗸🗸
}

Properties

position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

shutter
Specifies the state of the shutter. Following values are possible:

• closed - The shutter is fully closed.
• open - The shutter is opened.
• jammed - The shutter is jammed.
• unknown - Due to a hardware error or other condition, the state of the shutter cannot be determined.

302

7. Cash Dispenser Interface
This chapter defines the Cash Dispenser interface functionality and messages.

This specification describes the functionality of an XFS4IoT compliant Cash Dispenser interface. It defines the
service-specific commands that can be issued to the service using the WebSocket endpoint.

Persistent values are maintained through power failures, open sessions, close sessions and system resets.

This specification covers the dispensing of items. An "item" is defined as any media that can be dispensed and
includes coupons, documents, bills and coins.

7.1 General Information

7.1.1 References

ID Description

cashdispenser-1 ISO 4217

http://www.iso.org/

303

7.2 Command Messages

7.2.1 CashDispenser.GetMixTypes
This command is used to obtain a list of supported mix algorithms and available house mix tables.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "mixes": { object, null
 "mix1": { object
 "type": "algorithm", string 🗸🗸
 "algorithm": "minimumBills", string, null
 "name": "Minimum Bills" string, null
 },
 "mixIndividual": See mixes/mix1 properties object
 }
}

Properties

mixes
Object containing mix specifications including mix tables and pre-defined algorithms. The property name of
each mix can be used as the mix in the CashDispenser.Dispense and CashDispenser.Denominate commands.
Mix tables are defined by CashDispenser.SetMixTable. A mix table's definition can be queried using its property
name as input to CashDispenser.GetMixTable. Can be null if empty.
default: null

mixes/mix1 (example name)
An object containing a single mix specification. The property name is assigned by the Service.
Property name constraints:
pattern: ^mix[0-9A-Za-z]+$

mixes/mix1/type
Specifies the mix type as one of the following:

• individual - the mix is not calculated by the Service, completely specified by the application.
• algorithm - the mix is calculated using one of the algorithms specified by algorithm.
• table - the mix is calculated using a mix table - see

CashDispenser.GetMixTable.

304

Properties

mixes/mix1/algorithm
If type is algorithm, specifies the algorithm type as one of the following. There are three pre-defined algorithms,
additional vendor-defined algorithms can also be defined. null if the mix is not an algorithm.

• minimumBills - Select a mix requiring the minimum possible number of items.
• equalEmptying - The denomination is selected based upon criteria which ensure that over the course

of its operation the storage units will empty as far as possible at the same rate and will therefore go low and then
empty at approximately the same time.

• maxCashUnits - The denomination is selected based upon criteria which ensures the maximum
number of storage units are used.

• <vendor-defined mix> - A vendor defined mix algorithm.
Property value constraints:
pattern: ^minimumBills$|^equalEmptying$|^maxCashUnits$|^[A-Za-z0-9]*$
default: null

mixes/mix1/name
Name of the table or algorithm used. May be null if not defined.
default: null

Event Messages
None

305

7.2.2 CashDispenser.GetMixTable
This command is used to obtain the specified house mix table. Mix tables can be set using
CashDispenser.SetMixTable.

Command Message

Payload (version 2.0) Type Required
{
 "mix": "mixTable21" string 🗸🗸
}

Properties

mix
A house mix table as defined by one of the mixes reported by CashDispenser.GetMixTypes.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidMix", string, null
 "mixNumber": 21, integer, null
 "name": "House mix 21", string, null
 "mixRows": [{ array (object) 🗸🗸
 "amount": 0.30, number 🗸🗸
 "mix": [{ array (object) 🗸🗸
 "value": 0.05, number 🗸🗸
 "count": 6 integer 🗸🗸
 }]
 }]
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• invalidMix - The mix property does not correspond to a defined mix table.
default: null

mixNumber
Number identifying the house mix table (optional).
Property value constraints:
minimum: 1
default: null

name
Name of the house mix table. Null if not defined.
default: null

mixRows
Array of rows of the mix table.

306

Properties

mixRows/amount
Absolute value of the amount denominated by this mix row.
Property value constraints:
minimum: 0

mixRows/mix
The items used to create amount. Each element in this array defines the quantity of a given item used to create
the mix. An example showing how 0.30 can be broken down would be:
[
 {
 "value": 0.05,
 "count": 2
 },
 {
 "value": 0.10,
 "count": 2
 }
]

mixRows/mix/value
The absolute value of a single cash item.
Property value constraints:
minimum: 0

mixRows/mix/count
The number of items of value contained in the mix.
Property value constraints:
minimum: 1

Event Messages
None

307

7.2.3 CashDispenser.GetPresentStatus
This command is used to obtain the status of the most recent attempt to dispense and/or present items to the
customer from a specified output position. The items may have been dispensed and/or presented as a result of the
CashDispenser.Present or CashDispenser.Dispense command. This status is not updated as a result of any other
command that can dispense/present items.

This value is persistent and is valid until the next time an attempt is made to present or dispense items to the
customer, including across power cycles.

The denominations reported by this command may not accurately reflect the operation if the storage units have
been re-configured, e.g., if the values associated with a storage unit are changed, or new storage units are
configured.

If end-to-end security is supported then this value is not cleared if a CashDispenser.Dispense with an invalid token
is received. If a dispense token is invalid the dispense will fail with an invalidToken error, and the command will
continue to report the existing status. This is to stop an attacker being able to reset the present status and conceal the
last present result.

If end-to-end security is supported by the hardware, the present status will be protected by a security token. If end-
to-end security is not supported then it's not possible to guarantee that the present status hasn't been altered,
possibly by an attacker trying to hide the fact that cash was presented. To avoid this risk the client must always call
this command and validate the security token.

If end-to-end security is being used the caller must pass in a nonce value. This value will be included in the security
token that is returned. The caller must check that the original nonce value matches the token - if they do not match
then the token is invalid.

Command Message

Payload (version 2.0) Type Required
{
 "position": "outDefault", string
 "nonce": "646169ECDD0E440C2CECC8DDD7C27C22" string, null
}

Properties

position
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

nonce
A nonce value to be used when creating the end-to-end security token in the response. If no token is requested
this property should be null. See the generic end-to-end security documentation for more details.
Property value constraints:
pattern: ^[0-9A-F]{32}$|^[0-9]*$
default: null

308

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "unsupportedPosition", string, null
 "denomination": { object, null
 "currencies": { object 🗸🗸
 "EUR": 10.00, number
 "USD": See denomination/currencies/EUR number
 },
 "values": { object 🗸🗸
 "unit1": 5, integer
 "unit2": See denomination/values/unit1 integer
 },
 "cashBox": { object, null
 "currencies": See denomination/currencies properties object
 }
 },
 "presentState": "presented", string 🗸🗸
 "token": "NONCE=1414,TOKENFORMAT=1,TOKENLENGTH ..." string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• unsupportedPosition - The specified output position is not supported.
default: null

denomination
Denomination structure which contains the amount dispensed from the specified output position and the number
of items dispensed from each storage unit. This is cumulative across a series of CashDispenser.Dispense calls
that add additional items to the stacker.
May be null where no items were dispensed.
default: null

denomination/currencies
List of currency and amount combinations for denomination requests or output. There will be one entry for each
currency in the denomination.

denomination/currencies/EUR (example name)
The absolute amount to be or which has been denominated or dispensed of the currency. The property name is
the ISO 4217 currency identifier [Ref. cashdispenser-1]. The property value can include a decimal point to
specify fractions of the currency, for example coins.
Property name constraints:
pattern: ^[A-Z]{3}$
Property value constraints:
minimum: 0.001

309

Properties

denomination/values
This list specifies the number of items to take or which have been taken from the storage units. If specified in a
request, the output denomination must include these items.
The property name is storage unit object name as stated by the Storage.GetStorage command. The value of the
entry is the number of items to take from that unit.

denomination/values/unit1 (example name)
The number of items have been dispensed from the specified storage unit to meet the request.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
Property value constraints:
minimum: 1

denomination/cashBox
Only applies to Teller Dispensers. Amount to be paid from the teller's cash box.
default: null

presentState
Supplies the status of the last dispense or present operation. Following values are possible:

• presented - The items were presented. This status is set as soon as the customer has access to the
items.

• notPresented - The customer has not had access to the items.
• unknown - It is not known if the customer had access to the items.

token
The present status token that protects the present status. Only provided if the command message contained the
nonce property. See end-to-end security for more information.
An example is
NONCE=1414,TOKENFORMAT=1,TOKENLENGTH=0268,DISPENSEID=CB735612FD6141213C2827FB5A6A4F
4846D7A7347B15434916FEA6AC16F3D2F2,DISPENSED1=50.00EUR,PRESENTED1=YES,PRESENTEDAMOU
NT1=50.00EUR,RETRACTED1=NO,HMACSHA256=55D123E9EE64F0CC3D1CD4F953348B441E521BBACCD69
98C6F51D645D71E6C83
default: null

Event Messages
None

310

7.2.4 CashDispenser.Denominate
This command provides a denomination which specifies the number of items which are required from each storage
unit in order to satisfy a given request and can be used to validate that any request supplied by the application can
be dispensed. Requests are validated against the number of items and availability of each requested storage unit.

The request contains one of the following items:

• A service mix where the amount to be denominated is provided and the Service determines the mix of
items to meet the request. The algorithm or mix table used to determine the mix is specified and may
include a partial list of items from specific storage units which must be included in the denomination. A
partial mix must be specified if items of no currency value are to be included such as coupons or
documents.

• An application mix where the number of items from each storage unit in the denomination is pre-
determined and the request confirms whether it is possible to dispense that mix of items.

Multiple currencies may be specified using currencies.

If cashBox is true, then if the entire request cannot be satisfied by the Service, the denomination may include an
amount to be supplied from the teller's cash box.

Command Message

Payload (version 2.0) Type Require
d

{
 "request": { object 🗸🗸
 "denomination": { object 🗸🗸
 "app": { object,

null

 "currencies": { object 🗸🗸
 "EUR": 10.00, number
 "USD": See request/denomination/app/currencies/EUR number
 },
 "counts": { object 🗸🗸
 "unit1": 5, integer
 "unit2": See request/denomination/app/counts/unit1 integer
 },
 "cashBox": { object,

null

 "currencies": See request/denomination/app/currencies
properties

object

 }
 },
 "service": { object,

null

 "currencies": See request/denomination/app/currencies
properties

object 🗸🗸

 "partial": See request/denomination/app/counts properties object,
null

 "mix": "mix1", string 🗸🗸
 "cashBox": See request/denomination/app/cashBox
properties

object,
null

311

Payload (version 2.0) Type Require
d

 }
 },
 "tellerID": 0 integer,

null

 }
}

Properties

request
The request to be denominated.

request/denomination
The items to be denominated or dispensed as appropriate. The mix of items is either determined by the Service
or the Application.
Property value constraints:
minProperties: 1
maxProperties: 1

request/denomination/app
Specifies a denomination request where the application determines the mix of items based on the inputs.
default: null

request/denomination/app/currencies
List of currency and amount combinations for denomination requests or output. There will be one entry for each
currency in the denomination.

request/denomination/app/currencies/EUR (example name)
The absolute amount to be or which has been denominated or dispensed of the currency. The property name is
the ISO 4217 currency identifier [Ref. cashdispenser-1]. The property value can include a decimal point to
specify fractions of the currency, for example coins.
Property name constraints:
pattern: ^[A-Z]{3}$
Property value constraints:
minimum: 0.001

request/denomination/app/counts
This list specifies the number of items to take or which have been taken from the storage units. If specified in a
request, the output denomination must include these items.
The property name is storage unit object name as stated by the Storage.GetStorage command. The value of the
entry is the number of items to take from that unit.

request/denomination/app/counts/unit1 (example name)
The number of items have been dispensed from the specified storage unit to meet the request.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
Property value constraints:
minimum: 1

request/denomination/app/cashBox
Only applies to Teller Dispensers. Amount to be paid from the teller's cash box.
default: null

request/denomination/service
Specifies a denomination request where the Service is to determine the mix of items based on the inputs. The
mix may require specific items to be included using partial.
default: null

312

Properties

request/denomination/service/partial
This list specifies items which must be included in a denominate or dispense request. Mixes may only be valid if
they contain at least these specified items. This may be null if there are no minimum requirements.
The property name is storage unit object name as stated by the Storage.GetStorage command. The value of the
entry is the number of items to take from that unit.
default: null

request/denomination/service/mix
Mix algorithm or house mix table to be used as defined by mixes reported by CashDispenser.GetMixTypes.
Property value constraints:
pattern: ^mix[0-9A-Za-z]+$

request/tellerID
Only applies to Teller Dispensers, null if not applicable. Identification of teller.
Property value constraints:
minimum: 0
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidCurrency", string, null
 "result": { object, null
 "currencies": { object 🗸🗸
 "EUR": 10.00, number
 "USD": See result/currencies/EUR number
 },
 "values": { object 🗸🗸
 "unit1": 5, integer
 "unit2": See result/values/unit1 integer
 },
 "cashBox": { object, null
 "currencies": See result/currencies properties object
 }
 }
}

313

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• invalidCurrency - There are no storage units in the device of the currency specified in the request.
• invalidTellerID - Invalid teller ID. This error will never be generated by a Self-Service device.
• cashUnitError - There is a problem with a storage unit. A

Storage.StorageErrorEvent will be posted with the details.
• invalidDenomination - No mix is specified and the sum of the values for counts and

cashBox does not match the non-zero currencies specified.
• invalidMixNumber - Unknown mix algorithm.
• noCurrencyMix - The storage units specified in the request were not all of the same currency

and this device does not support multiple currencies.
• notDispensable - The amount is not dispensable by the device. This error code is also returned

if a unit is specified in the counts list which is not a dispensing storage unit, e.g., a retract/reject storage unit.
• tooManyItems - The request requires too many items to be dispensed.
• exchangeActive - The device is in an exchange state (see

Storage.StartExchange).
• noCashBoxPresent - Cash box amount needed, however teller is not assigned a cash box.
• amountNotInMixTable - A mix table is being used to determine the denomination but the amount

specified in the request is not in the mix table.
default: null

result
Specifies the denomination if successful. May be null where a denomination could not be determined.
default: null

result/currencies
List of currency and amount combinations for denomination requests or output. There will be one entry for each
currency in the denomination.

result/currencies/EUR (example name)
The absolute amount to be or which has been denominated or dispensed of the currency. The property name is
the ISO 4217 currency identifier [Ref. cashdispenser-1]. The property value can include a decimal point to
specify fractions of the currency, for example coins.
Property name constraints:
pattern: ^[A-Z]{3}$
Property value constraints:
minimum: 0.001

result/values
This list specifies the number of items to take or which have been taken from the storage units. If specified in a
request, the output denomination must include these items.
The property name is storage unit object name as stated by the Storage.GetStorage command. The value of the
entry is the number of items to take from that unit.

result/values/unit1 (example name)
The number of items have been dispensed from the specified storage unit to meet the request.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
Property value constraints:
minimum: 1

result/cashBox
Only applies to Teller Dispensers. Amount to be paid from the teller's cash box.
default: null

314

Event Messages

• Storage.StorageErrorEvent

315

7.2.5 CashDispenser.Dispense
This command dispenses items from the storage units. See CashDispenser.Denominate for a description of how the
denomination may be specified. The items are moved to the intermediate stacker if the device has one, and a
CashDispenser.Present command is used to present the items to the user. If the device does not have an
intermediate stacker the items will be presented to the user using this command. The position property in the
command data specifies which output position the items are intended to be presented to, and applies whether or not
the items are actually presented by this command as items may need to be stacked in a particular position ready for
presentation at the intended output position.

If cashBox is true and the entire denomination cannot be satisfied, a partial denomination will be returned with the
remaining amount to be supplied from the teller's cash box.

If the device is a Teller CashDispenser, position can be set to outDefault. If this is the case the tellerID is used to
perform the dispense operation to the assigned teller position.

Note that a genuine note can be dispensed, but is not necessarily presented to the customer, e.g., a note can be
skewed, or can be unfit for dispensing.

The values in the completion message report the amount dispensed and the number of items dispensed from each
storage unit.

If the dispensed amount cannot be presented in one bunch of items, but the device can automatically split it into
multiple bunches, this will be denoted by the bunches property in the completion message. If it is set to "unknown"
or a value larger than "1" multiple presents will be necessary. If the value is set to "1" the dispensed amount can be
presented in one present operation.

The process of dispensing and presenting cash may be protected by end-to-end security. This means that the
hardware will generate a command nonce (returned by Common.GetCommandNonce) and the caller must use this
to create a security token that authorizes dispensing the cash.

It is possible to do multiple dispense and present operations in a row using the same dispense token, as long as the
total value of cash doesn't exceed the value authorized by the token.

The device will track the command nonce and E2E token used during dispense operations. Only one token can be
used with the current nonce - once a dispense command is called with a token then that token will be remembered,
and it will not be possible to perform a dispense command with a different token until the original nonce and token
are cleared.

The device will track the total value of cash that has been dispensed and presented using the current token. The
device will block any attempt to dispense or present more cash than authorized by the current token.

Once the value of cash that has been dispensed and presented reaches the value of the token, the command nonce
stored in the device will be cleared. This has the effect of making any existing tokens invalid so that they can't be
used again. No more cash can be dispensed until a new command nonce is read and a new token is generated.

The command nonce may be cleared for other reasons too, for example after a power failure or after a fixed time.
Any tokens using the old command nonce value will become invalid when the command nonce is cleared.

Command Message

Payload (version 2.0) Type Requir
ed

{
 "denomination": { object 🗸🗸
 "denomination": { object 🗸🗸
 "app": { object,

null

 "currencies": { object 🗸🗸
 "EUR": 10.00, number
 "USD": See denomination/denomination/app/currencies/EUR number
 },

316

Payload (version 2.0) Type Requir
ed

 "counts": { object 🗸🗸
 "unit1": 5, integer
 "unit2": See denomination/denomination/app/counts/unit1 integer
 },
 "cashBox": { object,

null

 "currencies": See
denomination/denomination/app/currencies properties

object

 }
 },
 "service": { object,

null

 "currencies": See denomination/denomination/app/currencies
properties

object 🗸🗸

 "partial": See denomination/denomination/app/counts
properties

object,
null

 "mix": "mix1", string 🗸🗸
 "cashBox": See denomination/denomination/app/cashBox
properties

object,
null

 }
 },
 "tellerID": 0 integer,

null

 },
 "position": "outDefault", string
 "token": "NONCE=254611E63B2531576314E86527338D61, ..." string,

null

}

Properties

denomination
Denomination object describing the contents of the dispense operation.

denomination/denomination
The items to be denominated or dispensed as appropriate. The mix of items is either determined by the Service
or the Application.
Property value constraints:
minProperties: 1
maxProperties: 1

denomination/denomination/app
Specifies a denomination request where the application determines the mix of items based on the inputs.
default: null

denomination/denomination/app/currencies
List of currency and amount combinations for denomination requests or output. There will be one entry for each
currency in the denomination.

317

Properties

denomination/denomination/app/currencies/EUR (example name)
The absolute amount to be or which has been denominated or dispensed of the currency. The property name is
the ISO 4217 currency identifier [Ref. cashdispenser-1]. The property value can include a decimal point to
specify fractions of the currency, for example coins.
Property name constraints:
pattern: ^[A-Z]{3}$
Property value constraints:
minimum: 0.001

denomination/denomination/app/counts
This list specifies the number of items to take or which have been taken from the storage units. If specified in a
request, the output denomination must include these items.
The property name is storage unit object name as stated by the Storage.GetStorage command. The value of the
entry is the number of items to take from that unit.

denomination/denomination/app/counts/unit1 (example name)
The number of items have been dispensed from the specified storage unit to meet the request.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
Property value constraints:
minimum: 1

denomination/denomination/app/cashBox
Only applies to Teller Dispensers. Amount to be paid from the teller's cash box.
default: null

denomination/denomination/service
Specifies a denomination request where the Service is to determine the mix of items based on the inputs. The
mix may require specific items to be included using partial.
default: null

denomination/denomination/service/partial
This list specifies items which must be included in a denominate or dispense request. Mixes may only be valid if
they contain at least these specified items. This may be null if there are no minimum requirements.
The property name is storage unit object name as stated by the Storage.GetStorage command. The value of the
entry is the number of items to take from that unit.
default: null

denomination/denomination/service/mix
Mix algorithm or house mix table to be used as defined by mixes reported by CashDispenser.GetMixTypes.
Property value constraints:
pattern: ^mix[0-9A-Za-z]+$

denomination/tellerID
Only applies to Teller Dispensers, null if not applicable. Identification of teller.
Property value constraints:
minimum: 0
default: null

318

Properties

position
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

token
The dispense token that authorizes the dispense operation, as created by the authorizing host. See the section on
end-to-end security for more information.
The same token may be used multiple times with multiple calls to the CashDispenser.Dispense and
CashDispenser.Present commands, as long as the total value stacked does not exceed the value given in the
token. The hardware will track the total value of the cash and will raise an invalidToken error for any attempt to
dispense or present more cash than authorized by the token.
The token contains a nonce returned by Common.GetCommandNonce which must match the nonce stored in the
hardware. The nonce value stored in the hardware will be cleared automatically at various times, meaning that all
tokens will become invalid.
The hardware will also track the token being used and block any attempt to use multiple tokens with the same
nonce. The same token must be used for all calls to dispense, until the nonce is cleared and a new nonce and
token is created. Any attempt to use a different token will trigger an invalidToken error.
For maximum security the client should also explicitly clear the command nonce (and hence invalidate and
existing tokens,) with the Common.ClearCommandNonce command as soon as it's finished using the current
token.
The dispense token will follow the standard token format, and will contain the standard keys plus the following
key:
DISPENSE1: The maximum value to be dispensed. This will be a number string that may contain a fractional
part. The decimal character will be ".". The value, including the fractional part, will be defined by the ISO 4217
currency identifier [Ref. cashdispenser-1]. The number will be followed by the ISO 4217 currency code. The
currency code will be upper case.
For example, "123.45EUR" will be €123 and 45 cents.
The "DISPENSE" key may appear multiple times with a number suffix. For example, DISPENSE1,
DISPENSE2, DISPENSE3. The number will start at 1 and increment. Each key can only be given once. Each
key must have a value in a different currency. For example, DISPENSE1=100.00EUR,DISPENSE2=200.00USD
The actual amount dispensed will be given by the denomination. The value in the token MUST be greater or
equal to the amount in the denomination property. If the Token has a lower value, or the Token is invalid for any
reason, then the command will fail with an invalid data error code.
Example token is as follows:
NONCE=254611E63B2531576314E86527338D61,TOKENFORMAT=1,TOKENLENGTH=0164,DISPENSE1=50.
00EUR,HMACSHA256=CB735612FD6141213C2827FB5A6A4F4846D7A7347B15434916FEA6AC16F3D2F2
default: null

Completion Message

Payload (version 2.0) Type Require
d

{
 "errorCode": "invalidCurrency", string,

null

319

Payload (version 2.0) Type Require
d

 "denomination": { object,
null

 "currencies": { object 🗸🗸
 "EUR": 10.00, number
 "USD": See denomination/currencies/EUR number
 },
 "values": { object 🗸🗸
 "unit1": 5, integer
 "unit2": See denomination/values/unit1 integer
 },
 "cashBox": { object,

null

 "currencies": See denomination/currencies properties object
 }
 },
 "bunches": "1", string
 "storage": { object,

null

 "in": { object,
null

 "unit1": { object,
null

 "retractOperations": 15, integer,
null

 "deposited": { object,
null

 "unrecognized": 5, integer,
null

 "type20USD1": { object,
null

 "fit": 15, integer,
null

 "unfit": 0, integer,
null

 "suspect": 0, integer,
null

 "counterfeit": 0, integer,
null

 "inked": 0 integer,
null

 },
 "type50USD1": See storage/in/unit1/deposited/type20USD1
properties

object,
null

 },

320

Payload (version 2.0) Type Require
d

 "retracted": See storage/in/unit1/deposited properties object,
null

 "rejected": See storage/in/unit1/deposited properties object,
null

 "distributed": See storage/in/unit1/deposited properties object,
null

 "transport": See storage/in/unit1/deposited properties object,
null

 },
 "unit2": See storage/in/unit1 properties object,

null

 },
 "out": { object 🗸🗸
 "unit3": { object,

null

 "presented": See storage/in/unit1/deposited properties object,
null

 "rejected": See storage/in/unit1/deposited properties object,
null

 "distributed": See storage/in/unit1/deposited properties object,
null

 "unknown": See storage/in/unit1/deposited properties object,
null

 "stacked": See storage/in/unit1/deposited properties object,
null

 "diverted": See storage/in/unit1/deposited properties object,
null

 "transport": See storage/in/unit1/deposited properties object,
null

 },
 "unit4": See storage/out/unit3 properties object,

null

 }
 }
}

321

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• invalidCurrency - There are no storage units in the device of the currency specified in the request.
• invalidTellerID - Invalid teller ID. This error will never be generated by a Self-Service device.
• cashUnitError - There is a problem with a storage unit. A

Storage.StorageErrorEvent will be posted with the details.
• invalidDenomination - No mix is specified and the sum of the values for counts and

cashBox does not match the non-zero currencies specified.
• invalidMixNumber - Unknown mix algorithm.
• noCurrencyMix - The storage units specified in the request were not all of the same currency

and this device does not support multiple currencies.
• notDispensable - The amount is not dispensable by the device. This error code is also returned

if a unit is specified in the counts list which is not a dispensing storage unit, e.g., a retract/reject storage unit.
• tooManyItems - The request requires too many items to be dispensed.
• exchangeActive - The device is in an exchange state (see

Storage.StartExchange).
• noCashBoxPresent - Cash box amount needed, however teller is not assigned a cash box.
• amountNotInMixTable - A mix table is being used to determine the denomination but the amount

specified in the request is not in the mix table.
• unsupportedPosition - The specified output position is not supported.
• itemsLeft - Items have been left in the transport or exit slot as a result of a prior

dispense, present or recycler cash-in operation.
• shutterOpen - The Service cannot dispense items with an open output shutter.
• safeDoorOpen - The safe door is open. This device requires the safe door to be closed in order to

perform this operation.
(See Common.Status) property.
default: null

denomination
Denomination object describing the contents of the dispense operation.
default: null

denomination/currencies
List of currency and amount combinations for denomination requests or output. There will be one entry for each
currency in the denomination.

denomination/currencies/EUR (example name)
The absolute amount to be or which has been denominated or dispensed of the currency. The property name is
the ISO 4217 currency identifier [Ref. cashdispenser-1]. The property value can include a decimal point to
specify fractions of the currency, for example coins.
Property name constraints:
pattern: ^[A-Z]{3}$
Property value constraints:
minimum: 0.001

denomination/values
This list specifies the number of items to take or which have been taken from the storage units. If specified in a
request, the output denomination must include these items.
The property name is storage unit object name as stated by the Storage.GetStorage command. The value of the
entry is the number of items to take from that unit.

322

Properties

denomination/values/unit1 (example name)
The number of items have been dispensed from the specified storage unit to meet the request.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
Property value constraints:
minimum: 1

denomination/cashBox
Only applies to Teller Dispensers. Amount to be paid from the teller's cash box.
default: null

bunches
Specifies how many bunches will be required to present the request. Following values are possible:

• <number> - The number of bunches to be presented.
• unknown - More than one bunch is required but the precise number is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]*$
default: "1"

storage
Object which lists the storage units which have had items removed or inserted during the associated operation or
transaction. Only storage units whose contents have been modified are included. This property is null if no items
are moved.
default: null

storage/in
Object containing the storage units which have had items inserted during the associated operation or transaction.
Only storage units whose contents have been modified are included.
default: null

storage/in/unit1 (example name)
List of items moved to this storage unit by this transaction or command. The property name is the same as
reported by Storage.GetStorage.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

storage/in/unit1/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/in/unit1/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

storage/in/unit1/deposited/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

323

Properties

storage/in/unit1/deposited/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

storage/in/unit1/deposited/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/in/unit1/deposited/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/in/unit1/deposited/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

storage/in/unit1/deposited/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/in/unit1/deposited/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/in/unit1/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

storage/in/unit1/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

storage/in/unit1/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

324

Properties

storage/in/unit1/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

storage/out
Object containing the storage units which have had items removed during the associated operation or transaction.
Only storage units whose contents have been modified are included.

storage/out/unit3 (example name)
List of items removed from this storage unit by this transaction or command. The property name is the same as
reported by Storage.GetStorage.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

storage/out/unit3/presented
The items dispensed from this storage unit which are or were customer accessible. Will be null if no items were
presented.
default: null

storage/out/unit3/rejected
The items dispensed from this storage unit which were invalid and were diverted to a reject storage unit and were
not customer accessible during the operation. Will be null if no items were rejected.
default: null

storage/out/unit3/distributed
The items dispensed from this storage unit which were moved to a storage unit other than a reject storage unit
and were not customer accessible during the operation. Will be null if no items were distributed.
default: null

storage/out/unit3/unknown
The items dispensed from this storage unit which moved to an unknown position. Will be null if no items were
unknown.
default: null

storage/out/unit3/stacked
The items dispensed from this storage unit which are not customer accessible and are currently stacked awaiting
presentation to the customer. This item list can increase and decrease as items are moved around in the device.
This is not reset if initial is set for this unit by Storage.GetStorage. Will be null if no items were stacked.
default: null

storage/out/unit3/diverted
The items dispensed from this storage unit which are not customer accessible and were diverted to a temporary
location due to being invalid and have not yet been deposited in a storage unit. This item list can increase and
decrease as items are moved around in the device. This is not reset if initial is set for this unit by
Storage.GetStorage. Will be null if no items were diverted.
default: null

storage/out/unit3/transport
The items dispensed from this storage unit which are not customer accessible and which have jammed in the
transport. This item list can increase and decrease as items are moved around in the device. This is not reset if
initial is set for this unit by Storage.GetStorage. Will be null if no items apply.
default: null

Event Messages

• CashDispenser.DelayedDispenseEvent
• CashDispenser.StartDispenseEvent

325

• Storage.StorageErrorEvent
• CashDispenser.IncompleteDispenseEvent
• CashManagement.NoteErrorEvent
• CashManagement.InfoAvailableEvent

326

7.2.6 CashDispenser.Present
This command will move items to the exit position for removal by the user. If a shutter exists, then it will be
implicitly controlled during the present operation, even if shutterControl is false. The shutter will be closed when
the user removes the items or the items are retracted. If the default position is specified the position set in the
CashDispenser.Dispense command which caused these items to be dispensed will be used.

When this command successfully completes the items are in customer access.

If the previous CashDispenser.Dispense command specified that the amount has to be presented in multiple
bunches, the completion message includes details about remaining bunches. The additionalBunches property
specifies whether there are any additional bunches to be dispensed to the customer and the number of outstanding
present operations.

If the dispense operation is protected by end-to-end security then the device will track the total value of cash
presented. Once the value of cash that has been dispensed and presented reaches the value of the token, the
command nonce stored in the device will be cleared. This has the effect of making any existing tokens invalid so
that they can't be used again. No more cash can be dispensed until a new command nonce is read and a new token is
generated.

Command Message

Payload (version 2.0) Type Required
{
 "position": "outDefault" string
}

Properties

position
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "shutterNotOpen", string, null
 "position": { object, null
 "position": "inLeft", string 🗸🗸
 "additionalBunches": "1" string
 }
}

327

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• shutterNotOpen - The shutter did not open when it should have. No items presented.
• shutterOpen - The shutter is open when it should be closed. No items presented.
• noItems - There are no items on the stacker.
• exchangeActive - The device is in an exchange state (see

Storage.StartExchange).
• presentErrorNoItems - There was an error during the present operation - no items were

presented.
• presentErrorItems - There was an error during the present operation - at least some of the

items were presented.
• presentErrorUnknown - There was an error during the present operation - the position of the

items is unknown. Intervention may be required to reconcile the cash amount totals.
• unsupportedPosition - The position specified is not supported.

default: null

position
Provides information about the presented items. May be null if no items were presented.
default: null

position/position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

position/additionalBunches
Specifies how many more bunches will be required to present the request. Following values are possible:

• <number> - The number of additional bunches to be presented.
• unknown - More than one additional bunch is required but the precise number is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]*$
default: "0"

Event Messages

• CashManagement.InfoAvailableEvent

328

7.2.7 CashDispenser.Reject
This command will move items from the intermediate stacker to a reject storage unit. The storage unit's counts are
incremented by the number of items that were or were thought to be present at the time of the Reject or the number
counted by the device during the Reject. Note that the Reject storage unit counts may be unreliable.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cashUnitError" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• cashUnitError - A storage unit caused a problem. A
Storage.StorageErrorEvent will be posted with the details.

• noItems - There were no items to reject.
• exchangeActive - The device is in an exchange state (see

Storage.StartExchange).
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.InfoAvailableEvent

329

7.2.8 CashDispenser.SetMixTable
This command is used to set up the mix table specified by the mixNumber. Mix tables are persistent and are
available to all applications in CashDispenser.Dispense and CashDispenser.Denominate commands. If mix table
specified by the mixNumber already exists then the information is overwritten with the new information.

A mix specifies how a given requested amount is composed of a set of cash items, for example USD 100 could be 5
x USD 20 or 10 x USD 10. A mix table specifies multiple mixes. An amount can be specified multiple times to
include different combinations of cash items, if an amount is specified more than once the Service will attempt to
denominate or dispense the first amount in the table. If this mix is not possible (e.g., because of a storage unit
failure) the Service will search for the first mix which is possible. The Service can only dispense amounts which are
explicitly mentioned in the mix table.

Available mixes are reported by CashDispenser.GetMixTypes and the details of a stored mix table can be queried
using CashDispenser.GetMixTable.

Command Message

Payload (version 2.0) Type Required
{
 "mixNumber": 21, integer, null
 "name": "House mix 21", string, null
 "mixRows": [{ array (object) 🗸🗸
 "amount": 0.30, number 🗸🗸
 "mix": [{ array (object) 🗸🗸
 "value": 0.05, number 🗸🗸
 "count": 6 integer 🗸🗸
 }]
 }]
}

Properties

mixNumber
Number identifying the house mix table (optional).
Property value constraints:
minimum: 1
default: null

name
Name of the house mix table. Null if not defined.
default: null

mixRows
Array of rows of the mix table.

mixRows/amount
Absolute value of the amount denominated by this mix row.
Property value constraints:
minimum: 0

330

Properties

mixRows/mix
The items used to create amount. Each element in this array defines the quantity of a given item used to create
the mix. An example showing how 0.30 can be broken down would be:
[
 {
 "value": 0.05,
 "count": 2
 },
 {
 "value": 0.10,
 "count": 2
 }
]

mixRows/mix/value
The absolute value of a single cash item.
Property value constraints:
minimum: 0

mixRows/mix/count
The number of items of value contained in the mix.
Property value constraints:
minimum: 1

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidMixNumber" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• invalidMixNumber - The mixNumber is invalid.
• invalidMixTable - The contents of at least one of the defined rows of the mix table is incorrect.

default: null

Event Messages
None

331

7.2.9 CashDispenser.TestCashUnits
This command is used to test cash dispense storage units following replenishment. The command payload specifies
where items dispensed as a result of this command should be moved to.

The operation performed to test the storage units is vendor dependent.

All storage units which match the following criteria are tested.

• cashOut is true
• status is ok
• replenishmentStatus is not empty
• appLockOut is false

If the hardware is able to do so tests are continued even if an error occurs while testing one of the storage units. The
command completes with success completion message if the Service successfully manages to test all of the testable
cash units regardless of the outcome of the test. This is the case if all testable storage units could be tested and a
dispense was possible from at least one of the storage units.

A Storage.StorageErrorEvent will be sent for any cashOut unit which cannot be tested or which failed the test. If no
storage units could be tested or no storage units are testable then a cashUnitError code will be returned and
Storage.StorageErrorEvent events generated for every storage unit that encountered a problem.

When end-to-end (E2E) security is being enforced by a device, if this command would result in notes being moved
to a position where they would be accessible, this command will be blocked from executing. The exact definition of
'accessible' is hardware dependent but, for example, any position outside the safe, or any position where a attacker
could access the cash should mean the command is blocked. Any attempt to execute the command will complete
with the completion code unsupportedCommand. This is required because there is currently no E2E security
defined for this command, and if the command were permitted it would be possible to extract cash and bypass E2E
security.

Command Message

Payload (version 2.0) Type Required
{
 "target": { object, null
 "target": "singleUnit", string 🗸🗸
 "unit": "unit4", string, null
 "index": 1 integer, null
 }
}

Properties

target
Defines where items are to be or have been moved to as one of the following:

• A single storage unit, further specified by unit.
• Internal areas of the device. If the retract area is used, the index property has to be provided.
• An output position.

This may be null:
• On command data if the Service is to detrermine where items are to be moved
• On completion or events if no items were moved

default: null

332

Properties

target/target
This property specifies the target where items are to be moved to. Following values are possible:

• singleUnit - Move the items to a single storage unit defined by unit.
• retract - Move the items to a retract storage unit.
• transport - Move the items to the transport.
• stacker - Move the items to the intermediate stacker area.
• reject - Move the items to a reject storage unit.
• itemCassette - Move the items to the storage units which would be used during a Cash In transaction

including recycling storage units.
• cashIn - Move the items to the storage units which would be used during a Cash In transaction but not

including recycling storage units.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

target/unit
If target is set to singleUnit, this property specifies the object name (as stated by the Storage.GetStorage
command) of the single unit to be used for the storage of any items found.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

target/index
If target is set to retract this property defines the position inside the retract storage units into which the cash is to
be retracted. index starts with a value of 1 for the first retract position and increments by one for each subsequent
position. If there are several retract storage units (of type retractCassette in Storage.GetStorage), index would be
incremented from the first position of the first retract storage unit to the last position of the last retract storage
unit. The maximum value of index is the sum of maximum of each retract storage unit. If retractArea is not set to
retract the value of this property is ignored.
Property value constraints:
minimum: 1
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cashUnitError" string, null
}

333

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• cashUnitError - A storage unit caused a problem that meant all storage units could not be tested or
no storage units were testable. One or more Storage.StorageErrorEvent events will be posted with the details.

• unsupportedPosition - The position specified is not supported.
• shutterNotOpen - The shutter is not open or did not open when it should have. No items presented.
• shutterOpen - The shutter is open when it should be closed. No items presented.
• invalidCashUnit - The storage unit number specified is not valid.
• exchangeActive - The device is in an exchange state (see

Storage.StartExchange).
• presentErrorNoItems - There was an error during the present operation - no items were presented.
• presentErrorItems - There was an error during the present operation - at least some of the items

were presented.
• presentErrorUnknown - There was an error during the present operation - the position of the items

is unknown. Intervention may be required to reconcile the cash amount totals.
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.NoteErrorEvent
• CashManagement.InfoAvailableEvent

334

7.2.10 CashDispenser.Count
This command empties the specified storage unit(s). All items dispensed from the unit are counted and moved to
the specified output location.

The number of items counted can be different from the number of items dispensed in cases where the Dispenser has
the ability to detect this information. If the Dispenser cannot differentiate between what is dispensed and what is
counted then dispensed will be the same as counted.

Upon successful command execution the storage unit(s) counts are reset.

When end-to-end (E2E) security is being enforced by a device this command will be blocked from executing. Any
attempt to execute the command will complete with the completion code unsupportedData. This is required
because there is currently no E2E security defined for this command, and if the command were permitted it would
be possible to extract cash and bypass E2E security.

Command Message

Payload (version 2.0) Type Required
{
 "unit": "unit1", string, null
 "position": "outDefault" string
}

Properties

unit
Specifies the unit to empty. If this property is null, all units are emptied. Following values are possible:

• <storage unit identifier> - The storage unit to be emptied as
 identifier.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

position
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cashUnitError", string, null
 "countedCashUnits": { object, null
 "unit1": { object
 "dispensed": 100, integer 🗸🗸
 "counted": 100, integer 🗸🗸

335

Payload (version 2.0) Type Required
 "replenishmentStatus": "ok", string, null
 "status": "ok" string, null
 },
 "unit2": See countedCashUnits/unit1 properties object
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• cashUnitError - A storage unit caused a problem. A Storage.StorageErrorEvent will be posted with
the details.

• unsupportedPosition - The position specified is not supported.
• safeDoorOpen - The safe door is open. This device requires the safe door to be closed in order to

perform this operation.
(See Common.Status) property.

• exchangeActive - The device is in an exchange state (see
Storage.StartExchange).
default: null

countedCashUnits
List of counted storage unit objects. Will be null if no units were counted.
default: null

countedCashUnits/unit1 (example name)
Counted storage unit object. Object name is the same as used in Storage.GetStorage.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$

countedCashUnits/unit1/dispensed
The number of items that were dispensed during the emptying of the storage unit.
Property value constraints:
minimum: 1

countedCashUnits/unit1/counted
The number of items that were counted during the emptying of the storage unit.
Property value constraints:
minimum: 1

countedCashUnits/unit1/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in events if not
changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on sensors or counts.
• high - The storage unit is almost full (either sensor based or exceeded the

highThreshold.
• low - The storage unit is almost empty (either sensor based or below the

lowThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has hardwareSensors, this state is not set by counts.
default: null

336

Properties

countedCashUnits/unit1/status
The state of the unit. This property may be null in events if the state did not change, otherwise the following
values are possible:

• ok - The storage unit is in a good state.
• inoperative - The storage unit is inoperative.
• missing - The storage unit is missing.
• notConfigured - The storage unit has not been configured for use.
• manipulated - The storage unit has been inserted (including removal followed by a reinsertion) when

the device was not in the exchange state - see Storage.StartExchange. This storage unit cannot be used. Only
applies to services which support the exchange state.
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.NoteErrorEvent
• CashManagement.InfoAvailableEvent

337

7.2.11 CashDispenser.PrepareDispense
On some hardware it can take a significant amount of time for the CashDispenser to get ready to dispense media.
On this type of hardware this command can be used to improve transaction performance.

If this command is supported then applications can help to improve the time taken to dispense media by issuing this
command as soon as the application knows that a dispense is likely to happen. This command either prepares the
device for the next dispense operation or terminates the dispense preparation if the subsequent dispense operation is
no longer required.

With the exception of the CashDispenser.Denominate and CashDispenser.Dispense commands, which will not stop
the dispense preparation, any mechanical command on CashDispenser or CashAcceptor will automatically stop the
dispense preparation.

If this command is executed and the device is already in the specified action state, then this execution will have no
effect and will complete with a successful completion message.

Command Message

Payload (version 2.0) Type Required
{
 "action": "start" string 🗸🗸
}

Properties

action
A value specifying the type of actions. Following values are possible:

• start - Initiates the action to prepare for the next dispense command. This command does not wait
until the device is ready to dispense before returning a completion, it completes as soon as the preparation has
been initiated.

• stop - Stops the previously activated dispense preparation. For example the motor of the transport
will be stopped. This should be used if for some reason the subsequent dispense operation is no longer required.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "exchangeActive" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• exchangeActive - The device is in an exchange state (see Storage.StartExchange).
default: null

Event Messages
None

338

7.3 Event Messages

7.3.1 CashDispenser.DelayedDispenseEvent
This event is generated if the start of a dispense operation has been delayed.

Event Message

Payload (version 2.0) Type Required
{
 "delay": 0.10 number 🗸🗸
}

Properties

delay
The time in seconds by which the dispense operation will be delayed.

339

7.3.2 CashDispenser.StartDispenseEvent
This event is generated when a delayed dispense operation begins.

Event Message

Payload (version 2.0)
This message does not define any properties.

340

7.3.3 CashDispenser.IncompleteDispenseEvent
This event is generated during CashDispenser.Dispense when it has not been possible to dispense the entire
denomination but part of the requested denomination is on the intermediate stacker or in customer access. Note that
in this case the values in this payload report the amount and number of each denomination that are in customer
access or on the intermediate stacker. CashDispenser.GetPresentStatus can be used to determine whether the items
are in customer access.

Event Message

Payload (version 2.0) Type Required
{
 "currencies": { object 🗸🗸
 "EUR": 10.00, number
 "USD": See currencies/EUR number
 },
 "values": { object 🗸🗸
 "unit1": 5, integer
 "unit2": See values/unit1 integer
 },
 "cashBox": { object, null
 "currencies": See currencies properties object
 }
}

Properties

currencies
List of currency and amount combinations for denomination requests or output. There will be one entry for each
currency in the denomination.

currencies/EUR (example name)
The absolute amount to be or which has been denominated or dispensed of the currency. The property name is
the ISO 4217 currency identifier [Ref. cashdispenser-1]. The property value can include a decimal point to
specify fractions of the currency, for example coins.
Property name constraints:
pattern: ^[A-Z]{3}$
Property value constraints:
minimum: 0.001

values
This list specifies the number of items to take or which have been taken from the storage units. If specified in a
request, the output denomination must include these items.
The property name is storage unit object name as stated by the Storage.GetStorage command. The value of the
entry is the number of items to take from that unit.

values/unit1 (example name)
The number of items have been dispensed from the specified storage unit to meet the request.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
Property value constraints:
minimum: 1

341

Properties

cashBox
Only applies to Teller Dispensers. Amount to be paid from the teller's cash box.
default: null

342

8. Cash Acceptor Interface
This chapter defines the Cash Acceptor interface functionality and messages.

This specification describes the functionality of an XFS4IoT compliant Cash Acceptor interface. It defines the
interface-specific commands that can be issued to the service using the WebSocket endpoint.

Persistent values are maintained through power failures, open sessions, close sessions and system resets.

This specification covers the acceptance of items. An "item" is defined as any media that can be accepted and
includes coupons, documents, bills and coins.

343

8.1 Command Messages

8.1.1 CashAcceptor.GetCashInStatus
This command is used to get information about the status of the currently active cash-in transaction, or in the case
where no cash-in transaction is active the status of the most recently ended cash-in transaction. This value is
persistent and is valid until the next CashAcceptor.CashInStart command.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "status": "unknown", string
 "numOfRefused": 0, integer, null
 "noteNumberList": { object, null
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See noteNumberList/type20USD1 properties object, null
 }
}

Properties

status
Status of the currently active or most recently ended cash-in transaction. The following values are possible:

• ok - The cash-in transaction is complete and has ended with CashAcceptor.CashInEnd.
• rollback - The cash-in transaction ended with CashAcceptor.CashInRollback.
• active - There is a cash-in transaction active. See the CashAcceptor.CashInStart command description

for a definition of an active cash-in transaction.
• retract - The cash-in transaction ended with CashManagement.Retract.
• unknown - The state of the cash-in transaction is unknown. This status is also set if the noteNumberList

details are not known or are not reliable.
• reset - The cash-in transaction ended with CashManagement.Reset.

default: "unknown"

344

Properties

numOfRefused
Specifies the number of items refused during the currently active or most recently ended cash-in transaction
period. May be null if no items were refused.
Property value constraints:
minimum: 0
default: null

noteNumberList
List of banknote types that were inserted, identified, and accepted during the currently active or most recently
ended cash-in transaction period. If items have been rolled back (status is rollback) they will be included in this
list. It will be null if no banknotes were accepted.
Includes any identified notes.
default: null

noteNumberList/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

noteNumberList/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

noteNumberList/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

noteNumberList/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

noteNumberList/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

noteNumberList/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

345

Properties

noteNumberList/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

Event Messages
None

346

8.1.2 CashAcceptor.GetReplenishTarget
This command is used to determine which storage units can be specified as targets for a given source storage unit
with the CashAcceptor.Replenish command. For example, it can be used to determine which targets can be used for
replenishment from a replenishment container or from a recycle unit.

Command Message

Payload (version 2.0) Type Required
{
 "source": "unit2" string 🗸🗸
}

Properties

source
The name of the storage unit (as stated by the Storage.GetStorage command) which would be used as the source
of the replenishment operation.

Completion Message

Payload (version 2.0) Type Required
{
 "targets": [{ array (object), null
 "target": "unit1" string 🗸🗸
 }]
}

Properties

targets
Array of all suitable replenish targets. Empty if no suitable target was found.
default: null

targets/target
The name of the storage unit (as stated by the Storage.GetStorage command) that can be used as a target.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

Event Messages
None

347

8.1.3 CashAcceptor.GetDeviceLockStatus
This command is used to retrieve the lock/unlock statuses of the CashAcceptor device and each of its storage units.
This is only supported if the physical locking and unlocking of the device or the storage units is supported.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "deviceLockStatus": "lockUnknown", string
 "unitLock": [{ array (object), null
 "storageUnit": "unit1", string 🗸🗸
 "unitLockStatus": "lockUnknown" string
 }]
}

Properties

deviceLockStatus
Specifies the physical lock/unlock status of the CashAcceptor device. The following values are possible:

• lock - The device is physically locked.
• unlock - The device is physically unlocked.
• lockUnknown - Due to a hardware error or other condition, the physical lock/unlock status of the

device cannot be determined.
• lockNotSupported - The Service does not support reporting the physical lock/unlock status of the

device.
default: "lockUnknown"

unitLock
Array specifying the physical lock/unlock status of storage units. Units that do not support the physical
lock/unlock control are not contained in the array. If there are no units that support physical lock/unlock control
this will be empty.
default: null

unitLock/storageUnit
Object name of the storage unit as stated by Storage.GetStorage.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

unitLock/unitLockStatus
Specifies the physical lock/unlock status of storage units supported. The following values are possible:

• lock - The storage unit is physically locked.
• unlock - The storage unit is physically unlocked.
• lockUnknown - Due to a hardware error or other condition, the physical lock/unlock status of the

storage unit cannot be determined.
default: "lockUnknown"

Event Messages
None

348

349

8.1.4 CashAcceptor.GetDepleteSource
This command is used to determine which storage units can be specified as source storage units for a given target
storage unit with the CashAcceptor.Deplete command. For example, it can be used to determine which sources can
be used for depletion to a replenishment container or to a cash-in storage unit.

Command Message

Payload (version 2.0) Type Required
{
 "cashUnitTarget": "unit2" string 🗸🗸
}

Properties

cashUnitTarget
Object name of the storage unit (as stated by the Storage.GetStorage command) which would be used as the
target of the depletion operation.

Completion Message

Payload (version 2.0) Type Required
{
 "depleteSources": [{ array (object), null
 "cashUnitSource": "unit1" string 🗸🗸
 }]
}

Properties

depleteSources
Array of all suitable deplete sources. Empty if no suitable source was found.
default: null

depleteSources/cashUnitSource
The name of the storage unit (as stated by the Storage.GetStorage command) that can be used as a source.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

Event Messages
None

350

8.1.5 CashAcceptor.GetPresentStatus
This command is used to obtain the status of the most recent attempt to present or return items to the customer. This
information includes the number of items previously moved to the output position and the number of items which
have yet to be returned as a result of the following commands: CashAcceptor.CashIn,
CashAcceptor.CashInRollback, CashAcceptor.PreparePresent, CashAcceptor.PresentMedia,
CashManagement.OpenShutter (In the case of returning multiple bunches)

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "position": "outDefault", string
 "presentState": "unknown", string
 "additionalBunches": "unknown", string
 "bunchesRemaining": 0, integer, null
 "returnedItems": { object, null
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See returnedItems/type20USD1 properties object, null
 },
 "totalReturnedItems": See returnedItems properties object, null
 "remainingItems": See returnedItems properties object, null
}

Properties

position
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

351

Properties

presentState
Supplies the status of the items that were to be presented by the most recent attempt to present or return items to
the customer. The following values are possible:

• presented - The items were presented. This status is set as soon as the customer has access to the
items.

• notPresented - The customer has not had access to the items.
• unknown - It is not known if the customer had access to the items.

default: "unknown"

additionalBunches
Specifies whether or not additional bunches of items are remaining to be presented as a result of the most recent
operation. The following values are possible:

• none - No additional bunches remain.
• oneMore - At least one additional bunch remains.
• unknown - It is unknown whether additional bunches remain.

default: "unknown"

bunchesRemaining
If additionalBunches is oneMore, specifies the number of additional bunches of items remaining to be presented
as a result of the current operation. This property is null if any of the following are true:

• If the number of additional bunches is at least one, but the precise number is unknown.
• additionalBunches is not oneMore.

Property value constraints:
minimum: 0
default: null

returnedItems
Array holding a list of counts of banknotes which have been moved to the output position as a result of the most
recent operation.
default: null

returnedItems/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

returnedItems/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

returnedItems/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

returnedItems/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

352

Properties

returnedItems/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

returnedItems/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

returnedItems/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

totalReturnedItems
Array of cumulative counts of banknotes which have been moved to the output position. This value will be reset
when a CashAcceptor.CashInStart, CashAcceptor.CashIn, CashAcceptor.CashInEnd, CashManagement.Retract,
CashManagement.Reset or CashAcceptor.CashInRollback command is executed.
default: null

remainingItems
Array of counts of banknotes on the intermediate stacker or transport which have not been yet moved to the
output position.
default: null

Event Messages
None

353

8.1.6 CashAcceptor.CashInStart
Before initiating a cash-in operation, an application must issue this command to begin a cash-in transaction. During
a cash-in transaction any number of CashAcceptor.CashIn commands may be issued. The transaction is ended when
either a CashAcceptor.CashInRollback, CashAcceptor.CashInEnd, CashManagement.Retract or
CashManagement.Reset command is sent. Where shutterControl is false this command precedes any explicit
operation of the shutters.

If an application wishes to determine where the notes went during a transaction it can execute a Storage.GetStorage
before and after the transaction and then derive the difference.

A hardware failure during the cash-in transaction does not reset the note number list information; instead the note
number list information will include items that could be accepted and identified up to the point of the hardware
failure.

If supported by cashInLimit, an individual cash-in transaction can be limited to a maximum number of items
(totalItemsLimit) or a maximum amount (amountLimit). If not supported or specified, the number of items accepted
in the transaction is limited by the capacity of the intermediateStacker. Any limitations specified by these
parameters only apply to the individual cash-in transaction; subsequent transactions are not affected. The following
table shows some examples of how the transaction can be limited.

Transaction limits totalItemsLimit amountLimit

EUR 100 or GBP 200 or USD 500
Maximum number of items allowed limited by physical capability.

0 EUR 100
GBP 200
USD 500

EUR 100 or GBP 200, USD refused
Maximum 50 items allowed.

50 EUR 100
GBP 200

USD 500, no limit on GBP, other currencies refused
Maximum number of items allowed limited by physical capability.

0 GBP 0
USD 500

EUR limited by physical capability of the device. Other currencies refused. 0 EUR 0

EUR limited by physical capability of the device. GBP 100, USD refused. 0 EUR 0
GBP 100

Command Message

Payload (version 2.0) Type Required
{
 "tellerID": 0, integer, null
 "useRecycleUnits": true, boolean
 "outputPosition": "outDefault", string
 "inputPosition": "inDefault", string
 "totalItemsLimit": 0, integer
 "amountLimit": [{ array (object), null
 "currency": "USD", string 🗸🗸
 "value": 20.00 number, null
 }]
}

Properties

tellerID
Identification of teller. This property is not applicable to Self-Service devices and can therefore be null.
Property value constraints:
minimum: 0
default: null

354

Properties

useRecycleUnits
Specifies whether or not the recycle storage units should be used when items are cashed in on a successful
CashAcceptor.CashInEnd command. This property will be ignored if there are no recycle storage units or the
hardware does not support this.
default: true

outputPosition
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

inputPosition
Supplies the input position as one of the following values. Supported positions are reported in
Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.

default: "inDefault"

totalItemsLimit
If set to a non-zero value, specifies a limit on the total number of items to be accepted during the cash-in
transaction. If set to 0, there will be no limit on the number of items. This limitation can only be used if
byTotalItems is true.
Property value constraints:
minimum: 0
default: 0

amountLimit
If specified, provides a list of the maximum amount of one or more currencies to be accepted during the cash-in
transaction. This limitation can only be used if byAmount is true.
If not specified, no currency specific limit is placed on the transaction.
If specified for one currency and the device can handle multiple currencies in a single cash-in transaction, any
currencies not defined in this array are refused.
If a value of null is specified for a currency, there is no amount limit applied to the currency.
default: null

amountLimit/currency
ISO 4217 currency identifier [Ref. cashmanagement-1].
Property value constraints:
pattern: ^[A-Z]{3}$

355

Properties

amountLimit/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
May be null in command data or events if not being modified.
Property value constraints:
minimum: 0
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidTellerId" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidTellerId - The teller ID is invalid. This error will never be generated by a Self-Service
device.

• unsupportedPosition - The position specified is not supported.
• exchangeActive - The device is in the exchange state.
• cashInActive - The device is already in the cash-in state due to a previous CashAcceptor.CashInStart

command.
• safeDoorOpen - The safe door is open. This device requires the safe door to be closed

in order to perform this command. (See Common.Status) property.
default: null

Event Messages
None

356

8.1.7 CashAcceptor.CashIn
This command moves items into the cash device from an input position.

On devices with implicit shutter control, the CashAcceptor.InsertItemsEvent will be generated when the device is
ready to start accepting media.

The items may pass through the banknote reader for identification. Failure to identify items does not mean that the
command has failed - even if some or all of the items are rejected by the banknote reader the command may return
success. In this case one or more CashAcceptor.InputRefuseEvent events will be sent to report the rejection. See
also the paragraph below about returning refused items.

If the device does not have a banknote reader then the completion message will be empty.

If the device has a cash-in stacker then this command will cause inserted genuine items (see Note Classification) to
be moved there after validation. Counterfeit, suspect or inked items may also be moved to the cash-in stacker, but
some devices may immediately move them to a designated storage unit. Items on the stacker will remain there until
the current cash-in transaction is either cancelled by the CashAcceptor.CashInRollback command or confirmed by
the CashAcceptor.CashInEnd command. These commands will cause any non-genuine items on the cash-in stacker
to be moved to the appropriate storage unit. If there is no cash-in stacker then this command will move items
directly to the storage units and the CashAcceptor.CashInRollback command will not be supported. Storage unit
information will be updated accordingly whenever notes are moved to a storage unit during this command.

Note that the acceptor status property may change value during a cash-in transaction. If media has been retained to
storage units during a cash-in transaction, it may mean that acceptor is set to stop, which means subsequent cash-
in operations may not be possible. In this case, the subsequent command fails with errorCode cashUnitError.

The shutterControl property will determine whether the shutter is controlled implicitly by this command or whether
the application must explicitly open and close the shutter using the CashManagement.OpenShutter,
CashManagement.CloseShutter or CashAcceptor.PresentMedia commands. If shutterControl is false then this
command does not operate the shutter in any way, the application is responsible for all shutter control. If
shutterControl is true this command opens the shutter at the start of the command and closes it once bills are
inserted.

The presentControl property will determine whether or not it is necessary to call the CashAcceptor.PresentMedia
command in order to move items to the output position. If presentControl is true then all items are moved
immediately to the correct output position for removal (a CashManagement.OpenShutter command will be needed
in the case of explicit shutter control). If presentControl is false then items are not returned immediately and must
be presented to the correct output position for removal using the CashAcceptor.PresentMedia command.

It is possible that a device may divide bill or coin accepting into a series of sub-operations under hardware control.
In this case a CashAcceptor.SubCashInEvent may be sent after each sub-operation, if the hardware capabilities
allow it.

Returning items (single bunch):

If shutterControl is true, and a single bunch of items is returned then this command will complete once the notes
have been returned. A CashManagement.ItemsPresentedEvent will be generated.

If shutterControl is false, and a single bunch of items is returned then this command will complete without
generating a CashManagement.ItemsPresentedEvent, instead the event will be generated by the subsequent
CashManagement.OpenShutter or CashAcceptor.PresentMedia command.

Returning items (multiple bunches):

It is possible that a device will in certain situations return refused items in multiple bunches. In this case, this
command will not complete until the final bunch has been presented and after the last
CashManagement.ItemsPresentedEvent has been generated. For these devices shutterControl and presentControl
fields of the positionCapabilities structure returned from the Common.Capabilities /
CashAcceptor.PositionCapabilities query must both be true otherwise it will not be possible to return multiple
bunches. Additionally it may be possible to request the completion of this command with a Common.Cancel before
the final bunch is presented so that after the completion of this command the CashManagement.Retract or
CashManagement.Reset command can be used to move the remaining bunches, although the ability to do this will
be hardware dependent.

357

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cashUnitError", string, null
 "items": { object, null
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See items/type20USD1 properties object, null
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• cashUnitError - A problem occurred with a storage unit. A
Storage.StorageErrorEvent will be sent with the details.

• tooManyItems - There were too many items inserted previously. The cash-in stacker is full at
the beginning of this command. This may also be reported where a limit specified by CashAcceptor.CashInStart
has already been reached at the beginning of this command.

• noItems - There were no items to cash-in.
• exchangeActive - The device is in an exchange state.
• shutterNotClosed - Shutter failed to close. In the case of explicit shutter control the

application should close the shutter first.
• noCashInActive - There is no cash-in transaction active.
• positionNotEmpty - The output position is not empty so a cash-in is not possible.
• safeDoorOpen - The safe door is open. This device requires the safe door to be closed in order

to perform this command. (See Common.Status) property.
• foreignItemsDetected - Foreign items have been detected inside the input position.
• shutterNotOpen - Shutter failed to open.

default: null

items
Items detected during the command. May be null if no items were detected. This information is not cumulative
over multiple CashIn commands.
default: null

358

Properties

items/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

items/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

items/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

items/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

items/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

items/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

items/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

Event Messages

• Storage.StorageErrorEvent
• CashAcceptor.InputRefuseEvent
• CashManagement.NoteErrorEvent
• CashAcceptor.SubCashInEvent
• CashManagement.InfoAvailableEvent
• CashAcceptor.InsertItemsEvent

359

8.1.8 CashAcceptor.CashInEnd
This command ends a cash-in transaction. If cash items are on the stacker as a result of a CashAcceptor.CashIn
command these items are moved to the appropriate storage units.

The cash-in transaction is ended even if this command does not complete successfully.

In the special case where all the items inserted by the customer are classified as counterfeit and/or suspect items and
the Service is configured to automatically retain these item types then the command will complete with success
even if the hardware may have already moved the counterfeit and/or suspect items to their respective storage units
on the CashAcceptor.CashIn command and there are no items on the stacker at the start of the command. This
allows the location of the notes retained to be reported in the completion payload. If no items are available for cash-
in for any other reason, the noItems error code is returned.

Command Message

Payload (version 2.0)

This message does not define any properties.

Completion Message

Payload (version 2.0) Type Require
d

{
 "errorCode": "cashUnitError", string, null
 "storage": { object,

null

 "unit1": { object,
null

 "retractOperations": 15, integer,
null

 "deposited": { object,
null

 "unrecognized": 5, integer,
null

 "type20USD1": { object,
null

 "fit": 15, integer,
null

 "unfit": 0, integer,
null

 "suspect": 0, integer,
null

 "counterfeit": 0, integer,
null

 "inked": 0 integer,
null

 },
 "type50USD1": See storage/unit1/deposited/type20USD1
properties

object,
null

 },
 "retracted": See storage/unit1/deposited properties object,

null

360

Payload (version 2.0) Type Require
d

 "rejected": See storage/unit1/deposited properties object,
null

 "distributed": See storage/unit1/deposited properties object,
null

 "transport": See storage/unit1/deposited properties object,
null

 },
 "unit2": See storage/unit1 properties object,

null

 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• cashUnitError - A problem occurred with a storage unit. A
Storage.StorageErrorEvent will be sent with the details.

• noItems - There were no items to cash-in.
• exchangeActive - The device is in an exchange state.
• noCashInActive - There is no cash-in transaction active.
• positionNotEmpty - The input or output position is not empty.
• safeDoorOpen - The safe door is open. This device requires the safe door to be closed in order

to perform this command. (See Common.Status) property.
default: null

storage
Object containing the storage units which have had items inserted during the associated operation or transaction.
Only storage units whose contents have been modified are included.
default: null

storage/unit1 (example name)
List of items moved to this storage unit by this transaction or command. The property name is the same as
reported by Storage.GetStorage.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

storage/unit1/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

361

Properties

storage/unit1/deposited/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

storage/unit1/deposited/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

storage/unit1/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

362

Properties

storage/unit1/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

storage/unit1/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.InfoAvailableEvent
• CashManagement.NoteErrorEvent

363

8.1.9 CashAcceptor.CashInRollback
This command is used to roll back a cash-in transaction. It causes all the cash items cashed in since the last
CashAcceptor.CashInStart command to be returned to the customer.

This command ends the current cash-in transaction. The cash-in transaction is ended even if this command does not
complete successfully.

The shutterControl property will determine whether the shutter is controlled implicitly by this command or whether
the application must explicitly open and close the shutter using the CashManagement.OpenShutter,
CashManagement.CloseShutter or CashAcceptor.PresentMedia commands. If shutterControl is false then this
command does not operate the shutter in any way, the application is responsible for all shutter control. If
shutterControl is true then this command opens the shutter and it is closed when all items are removed.

The presentControl property will determine whether or not it is necessary to call the CashAcceptor.PresentMedia
command in order to move items to the output position. If presentControl is true then all items are moved
immediately to the correct output position for removal (a CashManagement.OpenShutter command will be needed
in the case of explicit shutter control). If presentControl is false then items are not returned immediately and must
be presented to the correct output position for removal using the CashAcceptor.PresentMedia command.

Items are returned in a single bunch or multiple bunches in the same way as described for the CashAcceptor.CashIn
command.

In the special case where all the items inserted by the customer are classified as counterfeit and/or suspect, and the
Service is configured to automatically retain these item types, then the command will complete with success even
though no items are returned to the customer. This allows the location of the notes retained to be reported in the
completion payload. The application can tell if items have been returned or not via the
CashManagement.ItemsPresentedEvent. This event will be generated before the command completes when items
are returned. This event will not be generated if no items are returned. If no items are available to rollback for any
other reason, the noItems error code is returned.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Require
d

{
 "errorCode": "cashUnitError", string, null
 "storage": { object,

null

 "unit1": { object,
null

 "retractOperations": 15, integer,
null

 "deposited": { object,
null

 "unrecognized": 5, integer,
null

 "type20USD1": { object,
null

 "fit": 15, integer,
null

 "unfit": 0, integer,
null

364

Payload (version 2.0) Type Require
d

 "suspect": 0, integer,
null

 "counterfeit": 0, integer,
null

 "inked": 0 integer,
null

 },
 "type50USD1": See storage/unit1/deposited/type20USD1
properties

object,
null

 },
 "retracted": See storage/unit1/deposited properties object,

null

 "rejected": See storage/unit1/deposited properties object,
null

 "distributed": See storage/unit1/deposited properties object,
null

 "transport": See storage/unit1/deposited properties object,
null

 },
 "unit2": See storage/unit1 properties object,

null

 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• cashUnitError - A problem occurred with a storage unit. A
Storage.StorageErrorEvent will be sent with the details.

• shutterNotOpen - The shutter failed to open. In the case of explicit shutter control
the application may have failed to open the shutter before issuing the command.

• exchangeActive - The device is in an exchange state.
• noCashInActive - There is no cash-in transaction active.
• positionNotEmpty - The input or output position is not empty.
• noItems - There were no items to rollback.

default: null

storage
Object containing the storage units which have had items inserted during the associated operation or transaction.
Only storage units whose contents have been modified are included.
default: null

storage/unit1 (example name)
List of items moved to this storage unit by this transaction or command. The property name is the same as
reported by Storage.GetStorage.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$
default: null

365

Properties

storage/unit1/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

storage/unit1/deposited/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

storage/unit1/deposited/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/deposited/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

366

Properties

storage/unit1/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

storage/unit1/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

storage/unit1/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

storage/unit1/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.InfoAvailableEvent

367

8.1.10 CashAcceptor.ConfigureNoteTypes
This command is used to change the note types the banknote reader should accept during cash-in. Only note types
which are to be changed need to be specified in the command payload. If an unknown note type is given the
completion code unsupportedData will be returned.

The values set by this command are persistent.

Command Message

Payload (version 2.0) Type Required
{
 "items": [{ array (object) 🗸🗸
 "item": "type20USD1", string 🗸🗸
 "enabled": false boolean 🗸🗸
 }]
}

Properties

items
An array which specifies which note types are to be disabled or re-enabled.

items/item
A cash item as reported by CashManagement.GetBankNoteTypes.
Property value constraints:
pattern: ^type[0-9A-Z]+$

items/enabled
If true the banknote reader will accept this note type during a cash-in operations. If false the banknote reader will
refuse this note type, unless it must be retained by note classification rules.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "exchangeActive" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• exchangeActive - The device is in the exchange state.
• cashInActive - A cash-in transaction is active. This device requires that no cash-in

transaction is active in order to perform the command.
default: null

Event Messages
None

368

8.1.11 CashAcceptor.CreateSignature
This command is used to create a reference signature which can be compared with the available signatures of the
cash-in transactions to track back the customer.

When this command is executed, the device waits for a note to be inserted at the input position, transports the note
to the recognition module, creates the signature and then returns the note to the output position.

The shutterControl property will determine whether the shutter is controlled implicitly by this command or whether
the application must explicitly open and close the shutter using the CashManagement.OpenShutter,
CashManagement.CloseShutter or CashAcceptor.PresentMedia commands. If shutterControl is false then this
command does not operate the shutter in any way, and the application is responsible for all shutter control. If
shutterControl is true then this command opens and closes the shutter at various times during the command
execution and the shutter is finally closed when all items are removed.

The presentControl property will determine whether or not it is necessary to call the CashAcceptor.PresentMedia
command in order to move items to the output position. If presentControl is true then all items are moved
immediately to the correct output position for removal (a CashManagement.OpenShutter command will be needed
in the case of explicit shutter control). If presentControl is false then items are not returned immediately and must
be presented to the correct output position for removal using the CashAcceptor.PresentMedia command.

On devices with implicit shutter control, the CashAcceptor.InsertItemsEvent will be generated when the device is
ready to start accepting media.

The application may have to execute this command repeatedly to make sure that all possible signatures are
captured.

If a single note is entered and returned to the customer but cannot be processed fully (e.g. no recognition software
in the recognition module, the note is not recognized, etc.) then a CashAcceptor.InputRefuseEvent will be sent and
the command will complete. In this case, no note specific output properties will be returned.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "tooManyItems", string, null
 "noteType": "type20USD1", string, null
 "orientation": "frontTop", string, null
 "signature": "MAA5ADgANwA2ADUANAAz ..." string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• tooManyItems - There was more than one banknote inserted for creating a signature.
• noItems - There was no banknote to create a signature.
• cashInActive - A cash-in transaction is active.
• exchangeActive - The device is in the exchange state.
• positionNotEmpty - The output position is not empty so a banknote cannot be inserted.
• shutterNotOpen - Shutter failed to open.
• shutterNotClosed - Shutter failed to close.
• foreignItemsDetected - Foreign items have been detected in the input position.

default: null

369

Properties

noteType
A cash item as reported by CashManagement.GetBankNoteTypes. This is null if the item was not identified as a
cash item.
Property value constraints:
pattern: ^type[0-9A-Z]+$
default: null

orientation
Specifies the note orientation. This property is null if the hardware is not capable to determine the orientation
The following values are possible:

• frontTop - If note is inserted wide side as the leading edge, the note was inserted with the front image
facing up and the top edge of the note was inserted first. If the note is inserted short side as the leading
edge, the note was inserted with the front image face up and the left edge was inserted first.

• frontBottom - If note is inserted wide side as the leading edge, the note was inserted with the front
image facing up and the bottom edge of the note was inserted first. If the note is inserted short side as
the leading edge, the note was inserted with the front image face up and the right edge was inserted
first.

• backTop - If note is inserted wide side as the leading edge, the note was inserted with the back image
facing up and the top edge of the note was inserted first. If the note is inserted short side as the leading
edge, the note was inserted with the back image face up and the left edge was inserted first.

• backBottom - If note is inserted wide side as the leading edge, the note was inserted with the back
image facing up and the bottom edge of the note was inserted first. If the note is inserted short side as
the leading edge, the note was inserted with the back image face up and the right edge was inserted first.

• unknown - The orientation for the inserted note cannot be determined.
default: null

signature
Base64 encoded vendor specific signature data. If no signature is available or has not been requested then this is
null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages

• CashAcceptor.InputRefuseEvent
• CashManagement.NoteErrorEvent
• CashAcceptor.InsertItemsEvent
• CashManagement.InfoAvailableEvent

370

8.1.12 CashAcceptor.ConfigureNoteReader
This command is used to configure the currency description configuration data into the banknote reader module.
The format and location of the configuration data is vendor and/or hardware dependent.

Command Message

Payload (version 2.0) Type Required
{
 "loadAlways": false boolean
}

Properties

loadAlways
If set to true, the Service loads the currency description data into the note reader, even if it is already loaded.
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "exchangeActive", string, null
 "rebootNecessary": false boolean
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• exchangeActive - The device is in the exchange state.
• cashInActive - A cash-in transaction is active.
• loadFailed - The load failed because the device is in a state that will not allow the

configuration data to be loaded at this time, for example on some devices there may be notes present in the
storage units when they should not be.
default: null

rebootNecessary
If set to true, the machine needs a reboot before the note reader can be accessed again.
default: false

Event Messages
None

371

8.1.13 CashAcceptor.CompareSignature
This command is used to compare the signatures of a reference item with the available signatures of the cash-in
transactions.

The reference signatures are created by the CashAcceptor.CreateSignature command.

The transaction signatures are obtained through the CashManagement.GetItemInfo command.

The signatures (1 to 4) of the reference banknote are typically the signatures of the 4 orientations of the banknote.

The CashAcceptor.CompareSignature command may return a single indication or a list of indications to the
matching signatures, each one associated to a confidence level factor. If the Service does not support the confidence
level factor, it returns a single indication to the best matching signature with the confidence level factor set to 0.

If the comparison completed with no matching signatures found then the command returns "ok" with
signaturesIndex empty.

This command must be used outside of cash-in transactions and outside of the exchange state.

Due to the potential for signatures to be large, as well as the possibility that it may be necessary to compare the
reference signature with a large number of signatures, applications should be aware of the amount of data passed as
input to this command. In some cases, it may be necessary to execute this command more than once, with subsets
of the total signatures, and then afterward compare the results from each execution.

Command Message

Payload (version 2.0) Type Required
{
 "referenceSignatures": [{ array (object) 🗸🗸
 "noteType": "type20USD1", string, null
 "orientation": "frontTop", string, null
 "signature": "MAA5ADgANwA2ADUANAAz ..." string, null
 }],
 "signatures": See referenceSignatures properties array (object) 🗸🗸
}

Properties

referenceSignatures
Array of Signature structures.
Each structure represents the signature corresponding to one orientation of a single reference banknote. At least
one orientation must be provided.

referenceSignatures/noteType
A cash item as reported by CashManagement.GetBankNoteTypes. This is null if the item was not identified as a
cash item.
Property value constraints:
pattern: ^type[0-9A-Z]+$
default: null

372

Properties

referenceSignatures/orientation
Specifies the note orientation. This property is null if the hardware is not capable to determine the orientation
The following values are possible:

• frontTop - If note is inserted wide side as the leading edge, the note was inserted with the front image
facing up and the top edge of the note was inserted first. If the note is inserted short side as the leading
edge, the note was inserted with the front image face up and the left edge was inserted first.

• frontBottom - If note is inserted wide side as the leading edge, the note was inserted with the front
image facing up and the bottom edge of the note was inserted first. If the note is inserted short side as
the leading edge, the note was inserted with the front image face up and the right edge was inserted
first.

• backTop - If note is inserted wide side as the leading edge, the note was inserted with the back image
facing up and the top edge of the note was inserted first. If the note is inserted short side as the leading
edge, the note was inserted with the back image face up and the left edge was inserted first.

• backBottom - If note is inserted wide side as the leading edge, the note was inserted with the back
image facing up and the bottom edge of the note was inserted first. If the note is inserted short side as
the leading edge, the note was inserted with the back image face up and the right edge was inserted first.

• unknown - The orientation for the inserted note cannot be determined.
default: null

referenceSignatures/signature
Base64 encoded vendor specific signature data. If no signature is available or has not been requested then this is
null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

signatures
Array of Signature structures. Each structure represents a signature from the cash-in transactions, to be compared
with the reference signatures in referenceSignatures. At least one signature must be provided.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cashInActive", string, null
 "signaturesIndex": [{ array (object), null
 "index": 0, integer 🗸🗸
 "confidenceLevel": 95, integer
 "comparisonData": "Example comparison data." string, null
 }]
}

373

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• cashInActive - A cash-in transaction is active. This device requires that no cash-in
transaction is active in order to perform the command.

• exchangeActive - The device is in the exchange state.
• invalidReferenceSignature - At least one of the reference signatures is invalid. The application

should
prompt the operator to carefully retry the creation of the reference signatures.

• invalidTransactionSignature - At least one of the transaction signatures is invalid.
default: null

signaturesIndex
Array of compare results. This is null when the compare operation completes with no matches found. If there are
matches found, signaturesIndex contains the indices of the matching signatures from the input property
signatures. If there is a match found but the Service does not support the confidence level factor, signaturesIndex
contains a single index with confidenceLevel set to 0.
default: null

signaturesIndex/index
Specifies the index (0 to #signatures - 1) of the matching signature from the input property signatures.
Property value constraints:
minimum: 0

signaturesIndex/confidenceLevel
Specifies the level of confidence for the match found. This value is in a scale 1 - 100, where 100 is the maximum
confidence level. This value is 0 if the Service does not support the confidence level factor.
Property value constraints:
minimum: 0
maximum: 100
default: 0

signaturesIndex/comparisonData
Vendor dependent comparison result data. This data may be used as justification for the signature match or
confidence level. This property is null if no additional comparison data is returned.
default: null

Event Messages
None

374

8.1.14 CashAcceptor.Replenish
This command replenishes items from a single storage unit to multiple storage units. Applications can use this
command to ensure that there is the optimum number of items in the cassettes by moving items from a source
storage unit to a target storage unit. This is especially applicable if a replenishment storage unit is used for the
replenishment and can help to minimize manual replenishment operations.

The CashAcceptor.GetReplenishTarget command can be used to determine what storage units can be specified as
target storage units for a given source storage unit. Any items which are removed from the source cash unit that are
not of the correct currency and value for the target storage unit during execution of this command will be returned
to the source storage unit.

The counts returned with the Storage.GetStorage command will be updated as part of the execution of this
command.

If the command fails after some items have been moved, the command will complete with an appropriate error
code, and a CashAcceptor.IncompleteReplenishEvent will be sent.

Command Message

Payload (version 2.0) Type Required
{
 "source": "unit1", string 🗸🗸
 "replenishTargets": [{ array (object) 🗸🗸
 "target": "unit1", string 🗸🗸
 "numberOfItemsToMove": 100 integer
 }]
}

Properties

source
Name of the storage unit (as stated by the Storage.GetStorage command) from which items are to be removed.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

replenishTargets
Array of target elements specifying how many items are to be moved and to where. There must be at least one
array element.

replenishTargets/target
Object name of the storage unit (as stated by the Storage.GetStorage command) to which items are to be moved.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

replenishTargets/numberOfItemsToMove
The number of items to be moved to the target storage unit. If 0, all items will be moved. Any items which are
removed from the source storage unit that are not of the correct currency and value for the target storage unit
during execution of this command will be returned to the source storage unit.
Property value constraints:
minimum: 0
default: 0

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cashUnitError", string, null

375

Payload (version 2.0) Type Required
 "numberOfItemsRemoved": 20, integer, null
 "numberOfItemsRejected": 2, integer, null
 "replenishTargetResults": [{ array (object), null
 "target": "unit1", string 🗸🗸
 "cashItem": "type20USD1", string, null
 "numberOfItemsReceived": 20 integer 🗸🗸
 }]
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• cashUnitError - A problem occurred with a storage unit. A
Storage.StorageErrorEvent will be sent with the details. If appropriate a
CashAcceptor.IncompleteReplenishEvent will also be sent.

• invalidCashUnit - The source or target storage unit specified is invalid for this operation.
The CashAcceptor.GetReplenishTarget command can be used to determine which source or target is valid.

• exchangeActive - The device is in the exchange state.
• cashInActive - A cash-in transaction is active.

default: null

numberOfItemsRemoved
Total number of items removed from the source storage unit including rejected items during execution of this
command. This property is null if no items were removed.
Property value constraints:
minimum: 1
default: null

numberOfItemsRejected
Total number of items rejected during execution of this command. This property is null if no items were rejected.
Property value constraints:
minimum: 1
default: null

replenishTargetResults
Breakdown of which notes were moved and where they moved to. In the case where one note type has several
releases and these are moved, or where items are moved from a multi denomination storage unit to a multi
denomination storage unit, each target can receive several note types.
For example:

• If one single target was specified with the replenishTargets input structure, and this target received two
different note types, then this property will have two elements.

• If two targets were specified and the first target received two different note types and the second target
received three different note types, then this property will have five elements.

default: null

replenishTargetResults/target
Name of the storage unit (as stated by the Storage.GetStorage command) to which items have been moved.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

376

Properties

replenishTargetResults/cashItem
A cash item as reported by CashManagement.GetBankNoteTypes. This is null if the item was not identified as a
cash item.
Property value constraints:
pattern: ^type[0-9A-Z]+$
default: null

replenishTargetResults/numberOfItemsReceived
Total number of items received in this target storage unit of the cashItem note type.
Property value constraints:
minimum: 1

Event Messages

• Storage.StorageErrorEvent
• CashManagement.NoteErrorEvent
• CashManagement.InfoAvailableEvent
• CashAcceptor.IncompleteReplenishEvent

377

8.1.15 CashAcceptor.CashUnitCount
This command counts the items in the storage unit(s). If it is necessary to move items internally to count them, the
items should be returned to the unit from which they originated before completion of the command. If items could
not be moved back to the storage unit they originated from and did not get rejected, the command will complete
with an appropriate error.

During the execution of this command one Storage.StorageChangedEvent will be generated for each storage unit
that has been counted successfully, or if the counts have changed, even if the overall command fails.

If an application wishes to determine where the notes went during the command it can execute a
Storage.GetStorage before and after the transaction and then derive the difference.

This command is designed to be used on devices where the counts cannot be guaranteed to be accurate and
therefore may need to be automatically counted periodically. Upon successful completion, for those storage units
that have been counted, the counts are accurately reported with the Storage.GetStorage command.

Command Message

Payload (version 2.0) Type Required
{
 "units": ["unit1", "unit2"] array (string) 🗸🗸
}

Properties

units
Array containing the identifiers of the individual storage units to be counted. If an invalid storage unit is
contained in this list, the command will fail with a cashUnitError errorCode.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidCashUnit" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidCashUnit - At least one of the storage units specified is either invalid or does not
support being counted. No storage units have been counted.

• cashInActive - A cash-in transaction is active.
• exchangeActive - The device is in the exchange state.
• tooManyItemsToCount - There were too many items. The required internal position may have been

of insufficient size. All items should be returned to the storage unit from which they originated.
• countPositionNotEmpty - A required internal position is not empty so a storage unit count is

not possible.
• cashUnitError - A storage unit caused a problem. A

Storage.StorageErrorEvent will be posted with the details.
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.NoteErrorEvent
• CashManagement.InfoAvailableEvent

378

379

8.1.16 CashAcceptor.DeviceLockControl
This command can be used to lock or unlock a CashAcceptor device or one or more storage units.
[CashAcceptor.GetDeviceLockStatus] can be used to obtain the current lock state of any items which support
locking.

During normal device operation the device and storage units will be locked and removal will not be possible. If
supported, the device or storage units can be unlocked, ready for removal. In this situation the device will still
remain online and cash-in or dispense operations will be possible, as long as the device or storage units are not
physically removed from their normal operating position.

If the lock action is specified and the device or storage units are already locked, or if the unlock action is specified
and the device or storage units are already unlocked then the action will complete successfully.

Once a storage unit has been removed and reinserted it may then have a manipulated status. This status can only be
cleared by issuing a Storage.StartExchange / Storage.EndExchange command sequence.

The device and all storage units will also be locked implicitly as part of the execution of the Storage.EndExchange
or the CashManagement.Reset command.

The normal command sequence is as follows:

1. CashAcceptor.DeviceLockControl command is executed to unlock the device and some or all of the
storage units.

2. Optionally a cash-in transaction or a dispense transaction on a cash recycler device may be performed.
3. The operator was not required to remove any of the storage units, all storage units are still in their original

position.
4. CashAcceptor.DeviceLockControl command is executed to lock the device and the storage units.

The relation of lock/unlock control with the Storage.StartExchange and the Storage.EndExchange commands is as
follows:

1. CashAcceptor.DeviceLockControl command is executed to unlock the device and some or all of the
storage units.

2. Optionally a CashAcceptor.CashInStart / CashAcceptor.CashIn / CashAcceptor.CashInEnd cash-in
transaction or a CashDispenser.Dispense / CashDispenser.Present transaction on a cash recycler device
may be performed.

3. The operator removes and reinserts one or more of the previously unlocked storage units. The associated
Storage.StorageChangedEvent will be posted and after the reinsertion the storage unit will show the status
manualInsertion.

4. Storage.StartExchange command is executed.
5. Storage.EndExchange command is executed. During this command execution the Service implicitly locks

the device and all previously unlocked storage units. The status of the previously removed unit will be
reset.

Command Message

Payload (version 2.0) Type Required
{
 "deviceAction": "noLockAction", string
 "cashUnitAction": "noLockAction", string
 "unitLockControl": [{ array (object), null
 "storageUnit": "unit1", string 🗸🗸
 "unitAction": "lock" string 🗸🗸
 }]
}

380

Properties

deviceAction
Specifies locking or unlocking the device in its normal operating position. The following values are possible:

• lock - Locks the device so that it cannot be removed from its normal operating position.
• unlock - Unlocks the device so that it can be removed from its normal operating position.
• noLockAction - No lock/unlock action will be performed on the device.

default: "noLockAction"

cashUnitAction
Specifies the type of lock/unlock action on storage units. The following values are possible:

• lockAll - Locks all storage units supported.
• unlockAll - Unlocks all storage units supported.
• lockIndividual - Locks/unlocks storage units individually as specified in the unitLockControl

property.
• noLockAction - No lock/unlock action will be performed on storage units.

default: "noLockAction"

unitLockControl
Array of structures, one for each storage unit to be locked or unlocked. Only valid in the case where
lockIndividual is specified in the cashUnitAction property otherwise this will be ignored.
default: null

unitLockControl/storageUnit
Name of the storage unit (as stated by the Storage.GetStorage command) to be locked or unlocked.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

unitLockControl/unitAction
Specifies whether to lock or unlock the storage unit indicated in the storageUnit property. The following values
are possible:

• lock - Locks the specified storage unit so that it cannot be removed from the device.
• unlock - Unlocks the specified storage unit so that it can be removed from the device.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidCashUnit" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidCashUnit - The storage unit type specified is invalid.
• cashInActive - A cash-in transaction is active.
• exchangeActive - The device is in the exchange state.
• deviceLockFailure - The device and/or the storage units specified could not be locked/unlocked,

e.g., the lock action could not be performed because the storage unit specified to be locked had been removed.
default: null

Event Messages

• Storage.StorageErrorEvent

381

8.1.17 CashAcceptor.PresentMedia
This command opens the shutter and presents items to be taken by the customer. The shutter is automatically closed
after the media is taken. The command can be called after a CashAcceptor.CashIn, CashAcceptor.CashInRollback,
CashManagement.Reset or CashAcceptor.CreateSignature command and can be used with explicit and implicit
shutter control. The command is only valid on positions where usage is rollback or refuse and where presentControl
is false.

This command cannot be used to present items stacked through the CashDispenser interface. Where this is
attempted the command fails with errorCode sequenceError.

Command Message

Payload (version 2.0) Type Required
{
 "position": "inLeft" string
}

Properties

position
Supplies the input or output position as one of the following values. If not specified, the default position applies.
Supported positions are reported in Common.Capabilities.

• inDefault - Default input position.
• inLeft - Left input position.
• inRight - Right input position.
• inCenter - Center input position.
• inTop - Top input position.
• inBottom - Bottom input position.
• inFront - Front input position.
• inRear - Rear input position.
• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "unsupportedPosition" string, null
}

382

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• unsupportedPosition - The position specified is not supported or is not a valid position for
this command.

• shutterNotOpen - Shutter failed to open.
• noItems - There were no items to present at the specified position.
• exchangeActive - The device is in the exchange state.
• foreignItemsDetected - Foreign items have been detected in the input position.

default: null

Event Messages
None

383

8.1.18 CashAcceptor.Deplete
This command moves items from multiple storage units to a single storage unit. Applications can use this command
to ensure that there are the optimum number of items in the cassettes by moving items from source storage units to
a target storage unit. This is especially applicable if surplus items are removed from multiple recycle storage units
to a replenishment storage unit and can help to minimize manual replenishment operations.

The CashAcceptor.GetDepleteSource command can be used to determine what storage units can be specified as
source storage units for a given target storage unit.

The counts returned by the Storage.GetStorage command will be updated as part of the execution of this command.

If the command fails after some items have been moved, the command will complete with an appropriate error
code, and a CashAcceptor.IncompleteDepleteEvent will be sent.

Command Message

Payload (version 2.0) Type Required
{
 "depleteSources": [{ array (object) 🗸🗸
 "source": "unit1", string 🗸🗸
 "numberOfItemsToMove": 100 integer
 }],
 "cashUnitTarget": "unit1" string 🗸🗸
}

Properties

depleteSources
Array of objects listing which storage units are to be depleted. There must be at least one element in this array.

depleteSources/source
Name of the storage unit (as stated by the Storage.GetStorage command) from which items are to be removed.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

depleteSources/numberOfItemsToMove
The number of items to be moved from the source storage unit. If 0, all items will be moved. If non-zero, this
must be equal to or less than the count of items reported for the storage unit specified by cashUnitSource.
Property value constraints:
minimum: 0
default: 0

cashUnitTarget
Name of the storage unit (as stated by the Storage.GetStorage command) to which items are to be moved.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cashUnitError", string, null
 "numberOfItemsReceived": 100, integer
 "numberOfItemsRejected": 10, integer
 "depleteSourceResults": [{ array (object), null

384

Payload (version 2.0) Type Required
 "cashUnitSource": "unit1", string 🗸🗸
 "cashItem": "type20USD1", string, null
 "numberOfItemsRemoved": 0 integer
 }]
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• cashUnitError - A problem occurred with a storage unit. A
Storage.StorageErrorEvent will be sent with the details. If appropriate a CashAcceptor.IncompleteDepleteEvent
will also be sent.

• invalidCashUnit - The source or target storage unit specified is invalid for this operation.
The CashAcceptor.GetDepleteSource command can be used to determine which source or target is valid.

• cashInActive - A cash-in transaction is active.
• exchangeActive - The device is in the exchange state.

default: null

numberOfItemsReceived
Total number of items received in the target storage unit during execution of this command.
Property value constraints:
minimum: 0
default: 0

numberOfItemsRejected
Total number of items rejected during execution of this command.
Property value constraints:
minimum: 0
default: 0

depleteSourceResults
Breakdown of which notes moved where. In the case where one item type has several releases and these are
moved, or where items are moved from a multi denomination storage unit to a multi denomination storage unit,
each source can move several note types.
For example:

• If one single source was specified with the input structure, and this source moved two different note
types, then this will have two elements.

• If two sources were specified and the first source moved two different note types and the second source
moved three different note types, then this will have five elements.

default: null

depleteSourceResults/cashUnitSource
Name of the storage unit (as stated by the Storage.GetStorage command) from which items have been removed.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

depleteSourceResults/cashItem
A cash item as reported by CashManagement.GetBankNoteTypes. This is null if the item was not identified as a
cash item.
Property value constraints:
pattern: ^type[0-9A-Z]+$
default: null

385

Properties

depleteSourceResults/numberOfItemsRemoved
Total number of items removed from this source storage unit of the cashItem item type. Not reported if this
source storage unit did not move any items of this item type, for example due to a storage unit or transport jam.
Property value constraints:
minimum: 0
default: 0

Event Messages

• Storage.StorageErrorEvent
• CashManagement.NoteErrorEvent
• CashManagement.InfoAvailableEvent
• CashAcceptor.IncompleteDepleteEvent

386

8.1.19 CashAcceptor.PreparePresent
In cases where multiple bunches are to be returned under explicit shutter control, this command is used for the
purpose of moving a remaining bunch to the output position explicitly before using the following commands:

CashManagement.OpenShutter

CashAcceptor.PresentMedia

The application can tell whether the additional items were left by using the CashAcceptor.GetPresentStatus
command. This command does not affect the status of the current cash-in transaction.

Command Message

Payload (version 2.0) Type Required
{
 "position": "outDefault" string
}

Properties

position
Supplies the output position as one of the following values. Supported positions are reported in
Common.Capabilities.

• outDefault - Default output position.
• outLeft - Left output position.
• outRight - Right output position.
• outCenter - Center output position.
• outTop - Top output position.
• outBottom - Bottom output position.
• outFront - Front output position.
• outRear - Rear output position.

default: "outDefault"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "unsupportedPosition" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• unsupportedPosition - The position specified is not supported or is not a valid position for
this command.

• positionNotEmpty - The input or output position is not empty.
• noItems - There were no items to present at the specified position.
• cashUnitError - A storage unit caused a problem. A

Storage.StorageErrorEvent will be posted with the details.
default: null

Event Messages

• Storage.StorageErrorEvent
• CashManagement.InfoAvailableEvent

387

388

8.2 Event Messages

8.2.1 CashAcceptor.InputRefuseEvent
This event specifies that the device has refused either a portion or all the items.

Event Message

Payload (version 2.0) Type Required
{
 "reason": "cashInUnitFull" string 🗸🗸
}

Properties

reason
Reason for refusing a part of the amount. The following values are possible:

• cashInUnitFull - storage unit is full.
• invalidBill - Recognition of the items took place, but one or more of the items are invalid.
• noBillsToDeposit - There are no items in the input area.
• depositFailure - A deposit has failed for a reason not covered by the other reasons and the

failure is not a fatal hardware problem, for example failing to pick an item from the input area.
• commonInputComponentFailure - Failure of a common input component which is shared by all

storage
units.

• stackerFull - The intermediate stacker is full.
• foreignItemsDetected - Foreign items have been detected in the input position.
• invalidBunch - Recognition of the items did not take place. The bunch of notes inserted is

invalid, e.g. it is too large or was inserted incorrectly.
• counterfeit - One or more counterfeit items have been detected and refused. This is only

applicable where notes are not classified as level 2 and the device is capable of differentiating between invalid
and counterfeit items.

• limitOverTotalItems - Number of items inserted exceeded the limitation set with the
CashAcceptor.CashInStart command.

• limitOverAmount - Amount exceeded the limitation set with the CashAcceptor.CashInStart
command.

389

8.2.2 CashAcceptor.SubCashInEvent
This event is generated when one of the sub cash-in operations into which the cash-in operation was divided has
finished successfully.

Event Message

Payload (version 2.0) Type Required
{
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See type20USD1 properties object, null
}

Properties

unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

390

Properties

type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

391

8.2.3 CashAcceptor.InsertItemsEvent
This event notifies the application when the device is ready for the user to insert items.

Event Message

Payload (version 2.0)
This message does not define any properties.

392

8.2.4 CashAcceptor.IncompleteReplenishEvent
This event is generated when some items had been moved before the CashAcceptor.Replenish command failed with
an error code (not "success"), but some items were moved then the details will be reported with this event. This
event can only occur once per command.

Event Message

Payload (version 2.0) Type Required
{
 "replenish": { object 🗸🗸
 "numberOfItemsRemoved": 20, integer, null
 "numberOfItemsRejected": 2, integer, null
 "replenishTargetResults": [{ array (object), null
 "target": "unit1", string 🗸🗸
 "cashItem": "type20USD1", string, null
 "numberOfItemsReceived": 20 integer 🗸🗸
 }]
 }
}

Properties

replenish
Note that in this case the values in this structure report the amount and number of each denomination that have
actually been moved during the replenishment command.

replenish/numberOfItemsRemoved
Total number of items removed from the source storage unit including rejected items during execution of this
command. This property is null if no items were removed.
Property value constraints:
minimum: 1
default: null

replenish/numberOfItemsRejected
Total number of items rejected during execution of this command. This property is null if no items were rejected.
Property value constraints:
minimum: 1
default: null

replenish/replenishTargetResults
Breakdown of which notes were moved and where they moved to. In the case where one note type has several
releases and these are moved, or where items are moved from a multi denomination storage unit to a multi
denomination storage unit, each target can receive several note types.
For example:

• If one single target was specified with the replenishTargets input structure, and this target received two
different note types, then this property will have two elements.

• If two targets were specified and the first target received two different note types and the second target
received three different note types, then this property will have five elements.

default: null

replenish/replenishTargetResults/target
Name of the storage unit (as stated by the Storage.GetStorage command) to which items have been moved.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

393

Properties

replenish/replenishTargetResults/cashItem
A cash item as reported by CashManagement.GetBankNoteTypes. This is null if the item was not identified as a
cash item.
Property value constraints:
pattern: ^type[0-9A-Z]+$
default: null

replenish/replenishTargetResults/numberOfItemsReceived
Total number of items received in this target storage unit of the cashItem note type.
Property value constraints:
minimum: 1

394

8.2.5 CashAcceptor.IncompleteDepleteEvent
This event is generated when the CashAcceptor.Deplete command failed with an error code (not "success"), but
some items were moved. In this case the details will be reported with this event. This event can only occur once per
command.

Event Message

Payload (version 2.0) Type Required
{
 "deplete": { object 🗸🗸
 "numberOfItemsReceived": 100, integer
 "numberOfItemsRejected": 10, integer
 "depleteSourceResults": [{ array (object), null
 "cashUnitSource": "unit1", string 🗸🗸
 "cashItem": "type20USD1", string, null
 "numberOfItemsRemoved": 0 integer
 }]
 }
}

Properties

deplete
Note that in this case the values in this structure report the amount and number of each denomination that have
actually been moved during the depletion command.

deplete/numberOfItemsReceived
Total number of items received in the target storage unit during execution of this command.
Property value constraints:
minimum: 0
default: 0

deplete/numberOfItemsRejected
Total number of items rejected during execution of this command.
Property value constraints:
minimum: 0
default: 0

deplete/depleteSourceResults
Breakdown of which notes moved where. In the case where one item type has several releases and these are
moved, or where items are moved from a multi denomination storage unit to a multi denomination storage unit,
each source can move several note types.
For example:

• If one single source was specified with the input structure, and this source moved two different note
types, then this will have two elements.

• If two sources were specified and the first source moved two different note types and the second source
moved three different note types, then this will have five elements.

default: null

deplete/depleteSourceResults/cashUnitSource
Name of the storage unit (as stated by the Storage.GetStorage command) from which items have been removed.
Property value constraints:
pattern: ^unit[0-9A-Za-z]+$

395

Properties

deplete/depleteSourceResults/cashItem
A cash item as reported by CashManagement.GetBankNoteTypes. This is null if the item was not identified as a
cash item.
Property value constraints:
pattern: ^type[0-9A-Z]+$
default: null

deplete/depleteSourceResults/numberOfItemsRemoved
Total number of items removed from this source storage unit of the cashItem item type. Not reported if this
source storage unit did not move any items of this item type, for example due to a storage unit or transport jam.
Property value constraints:
minimum: 0
default: 0

396

9. Check Interface
Check Processing Modules accept one or more media items (Checks, Giros, etc) and process these items according
to application requirements. The Check Interface supports devices that can handle a single item as well as those
devices that can handle bunches of items. The following are the three principal device types:

• Single Item: can accept and process a single item at a time.
• Multi-Item Feed with no stacker (known as an escrow in some environments): can accept a bunch of

media from the customer but each item has to be processed fully (i.e. deposited in a storage unit or
returned) before the next item can be processed.

• Multi-Item Feed with a stacker: can accept a bunch of media from the customer and all items can be
processed together.

In the U.S., checks are always encoded in magnetic ink for reading by Magnetic Ink Character Recognition
(MICR), and a single font is always used. In Europe some countries use MICR and some use Optical Character
Recognition (OCR) character sets, with different fonts, for their checks.

The Check specification provides applications with an interface to control the following functions (depending on
the capabilities of the specific underlying device):

• Capture an image of the front of an item in multiple formats and bit depths.
• Capture an image of the back of an item in multiple formats and bit depths.
• Read the code line of an item using a MICR reader.
• Read the code line of an item using OCR.
• Endorse (print text) on an item.
• Stamp an item.
• Return an item to the customer.
• Deposit an item in a storage unit.
• Retract items left by the customer.

The Check specification uses the concept of a Media-In transaction to track and control a customer's interaction
with the device. A Media-In transaction consists of one or more Check.MediaIn commands. The transaction is
initiated by the first Check.MediaIn command and remains active until the transaction is either confirmed through
Check.MediaInEnd, or terminated by Check.MediaInRollback, Check.RetractMedia or Check.Reset. While a
transaction is active the Check.GetTransactionStatus command reports the status of the current transaction. When a
transaction is not active the Check.GetTransactionStatus command reports the status of the last transaction as well
as some current status values.

In this the specification the terms "long edge" and "short edge" are used to describe the orientation of a check and
length of its edges.

This interface is to be used together with the Storage interface to handle management of storage units.

9.1 General Information

9.1.1 References

ID Description

check-1 OCR-A font - ANSI X3.17-1981 figure E1

check-2 OCR-B font - ANSI X3.49-1975 figure C2

check-3 E-13B MICR font - ISO 1004-1:2013

check-4 CMC7 MICR font - ISO 1004-2:2013

check-5 https://www.unicode.org/charts/PDF/U2440.pdf

9.1.2 Code Line Characters
This section describes how code line data is returned in the Check specification depending on how the code line
was read:

• OCR-A font will conform to [Ref. check-1].

https://www.unicode.org/charts/PDF/U2440.pdf

397

• OCR-B font will conform to [Ref. check-2].
• E-13B MICR font will conform to [Ref. check-3]. Note that the special E-13B banking symbols are

defined by Unicode (see [Ref. check-5]), therefore E-13B code lines are provided without mapping - see
Table 1 below for more details.

• CMC7 MICR font will conform to [Ref. check-4]. The special banking symbols in this font are not defined
in Unicode, therefore they are mapped to standard characters as shown in Table 2 below.

In all cases unrecognized characters are reported as the REJECT/SUB character, 0x1A.

Table 1 - E-13B Special Banking Symbols

Symbol MICR Definition Unicode Unicode Definition

⑆ Transit U+2446 OCR Bank Branch Identification

⑇ Amount U+2447 OCR Amount Of Check

⑈ On Us U+2448 OCR Dash

⑉ Dash U+2449 OCR Customer Account Number

Table 2 - CMC7 Special Banking Symbols

Symbol Meaning Mapping

 S1 - Start of Bank Account a

 S2 - Start of the Amount field b

S3 - Terminate Routing c

S4 - Unused d

 S5 - Transit / Routing e

Example

Check code line codeline reported in XFS4IoT

ABCD 1234
aABCDb1234c

398

9.2 Command Messages

9.2.1 Check.GetTransactionStatus
This command is used to request the status of the current or last media-in transaction as well as current status values
outside a transaction. A media-in transaction consists of one or more Check.MediaIn commands. A media-in
transaction is initiated by the MediaIn command and remains active until the transaction is either confirmed through
the Check.MediaInEnd command, or cancelled by the Check.MediaInRollback, the Check.RetractMedia or the
Check.Reset command. Multiple calls to the Check.MediaIn command can be made while a transaction is active to
obtain additional items from the customer.

The following values returned by this command can change after the media-in transaction has ended if items are
later moved in the device:

• mediaOnStacker
• mediaLocation
• customerAccess

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "mediaInTransaction": "active", string 🗸🗸
 "mediaOnStacker": "5", string, null
 "lastMediaInTotal": "10", string, null
 "lastMediaAddedToStacker": "3", string, null
 "totalItems": "8", string
 "totalItemsRefused": "2", string
 "totalBunchesRefused": "1", string
 "mediaInfo": [{ array (object), null
 "mediaID": 4, integer 🗸🗸
 "mediaLocation": "device", string 🗸🗸
 "codelineData": "⑈22222⑈⑈123456⑈", string
 "magneticReadIndicator": "noMicr", string 🗸🗸
 "image": [{ array (object), null
 "imageSource": "back", string 🗸🗸
 "imageType": "jpg", string 🗸🗸
 "imageColorFormat": "full", string 🗸🗸
 "imageScanColor": "white", string 🗸🗸
 "imageStatus": "ok", string 🗸🗸
 "image": "wCAAAQgwMDAwMDAwMA==" string, null
 }],
 "insertOrientation": { object, null

399

Payload (version 2.0) Type Required
 "codeline": "top", string, null
 "media": "down" string, null
 },
 "mediaSize": { object, null
 "longEdge": 205, integer
 "shortEdge": 103 integer
 },
 "mediaValidity": "ok", string
 "customerAccess": "customer" string
 }]
}

Properties

mediaInTransaction
Status of the media-in transaction. The following values are possible:

• ok - The media-in transaction completed successfully.
• active - There is a media-in transaction active.
• rollback - The media-in transaction was successfully rolled back.
• rollbackAfterDeposit - The media-in transaction was successfully rolled back after some items

had
been deposited to a storage unit. This value only applies to devices without a stacker.

• retract - The media-in transaction ended with the items being successfully retracted.
• failure - The media-in transaction failed as the result of a device failure.
• unknown - The state of the media-in transaction is unknown.
• reset - The media-in transaction ended as the result of a Reset or

CashManagement.Reset command.

mediaOnStacker
Contains the total number of media items currently on the stacker or null if the device has no stacker. This value
can change outside of a transaction as the media moves within the device. Following values are possible:

• <number> - The number of items.
• unknown - The precise number of items is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]+$
default: null

lastMediaInTotal
Contains the number of media items processed by the last MediaIn command. This count is not modified for
bunches of items which are refused as a single entity. This count only applies to devices with stackers is
persistent and is therefore null if not applicable. Following values are possible:

• <number> - The number of items.
• unknown - The precise number of items is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]+$
default: null

400

Properties

lastMediaAddedToStacker
Contains the number of media items on the stacker successfully accepted by the last MediaIn command. This
count is persistent and is null if the device has no stacker.
The number of media items refused during the last command can be determined by lastMediaInTotal -
lastMediaAddedToStacker. This is only possible if these values contain values, and would not include bunches of
items refused as a single entity.
Following values are possible:

• <number> - The number of items.
• unknown - The precise number of items is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]+$
default: null

totalItems
The total number of items that have been allocated a media ID during the whole of the current transaction (if a
transaction is active) or last transaction (if no transaction is active). This count does not include refused items
and Cash items. This count is persistent.
Following values are possible:

• <number> - The number of items.
• unknown - The precise number of items is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]+$
default: "0"

totalItemsRefused
Contains the total number of refused items during the execution of the whole transaction. This count does not
include bunches of items which are refused as a single entity without being processed as single items. This count
is persistent. Following values are possible:

• <number> - The number of items.
• unknown - The precise number of items is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]+$
default: "0"

totalBunchesRefused
Contains the total number of refused bunches of items that were not processed as single items. This count is
persistent. Following values are possible:

• <number> - The number of items.
• unknown - The precise number of items is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]+$
default: "0"

mediaInfo
This array contains details of the media items processed during the current or last transaction (depending on the
value of mediaInTransaction). The array contains one element for every item that has been allocated a media ID
(i.e. items that have been reported to the application). If there are no media items then mediaInfo is null. The
media info is available until a new transaction is started with the MediaIn command. The media location
information may be updated after a transaction is completed, e.g. if media that was presented to the customer is
subsequently retracted. The media info is persistent.
default: null

mediaInfo/mediaID
Specifies the sequence number (starting from 1) of a media item.
Property value constraints:
minimum: 1

401

Properties

mediaInfo/mediaLocation
Specifies the location of the media item. This value can change outside of a media-in transaction as the media
moves within the device. The following values are possible:

• device - The media item is inside the device in some position other than a storage unit.
• <storage unit identifier> - The media item is in a storage unit as specified by identifier.
• customer - The media item has been returned to the customer.
• unknown - The media item location is unknown.

Property value constraints:
pattern: ^device$|^customer$|^unknown$|^unit[0-9A-Za-z]+$

mediaInfo/codelineData
Specifies the code line data. See Code line Characters.
default: ""

mediaInfo/magneticReadIndicator
Specifies the type of technology used to read a MICR code line. The following values are possible:

• micr - The MICR code line was read using MICR technology and MICR characters were present.
• notMicr - The MICR code line was NOT read using MICR technology.
• noMicr - The MICR code line was read using MICR technology and no magnetic characters were read.
• unknown - It is unknown how the MICR code line was read.
• notMicrFormat - The code line is not a MICR format code line.
• notRead - No code line was read.

mediaInfo/image
Array of image data. If the Device has determined the orientation of the media (i.e. insertOrientation is defined
and not set to "unknown"), then all images returned are in the standard orientation and the images will match the
image source requested by the application. This means that images will be returned with the code line at the
bottom, and the image of the front and rear of the media item will be returned in the structures associated with
the "front" and "back" image sources respectively.
default: null

mediaInfo/image/imageSource
Specifies the source. The following values are possible:

• front - The image is for the front of the media item.
• back - The image is for the back of the media item.

mediaInfo/image/imageType
Specifies the format of the image. The following values are possible:

• tif - The image is in TIFF 6.0 format.
• wmf - The image is in WMF (Windows Metafile) format.
• bmp - The image is in Windows BMP format.
• jpg - The image is in JPG format.

mediaInfo/image/imageColorFormat
Specifies the color format of the image. The following values are possible:

• binary - The image is binary (image contains two colors, usually the colors black and white).
• grayScale - The image is gray scale (image contains multiple gray colors).
• full - The image is full color (image contains colors like red, green, blue etc.).

402

Properties

mediaInfo/image/imageScanColor
Selects the scan color. The following values are possible:

• red - The image is scanned with red light.
• green - The image is scanned with green light.
• blue - The image is scanned with blue light.
• yellow - The image is scanned with yellow light.
• white - The image is scanned with white light.
• infraRed - The image is scanned with infrared light.
• ultraViolet - The image is scanned with ultraviolet light.

mediaInfo/image/imageStatus
Status of the image data. The following values are possible:

• ok - The data is OK.
• sourceNotSupported - The data source or image attributes are not supported by the Service, e.g.,

scan color not supported.
• sourceMissing - The image could not be obtained.

mediaInfo/image/image
Base64 encoded image. May be null if no image was obtained.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

mediaInfo/insertOrientation
This value reports how the media item was actually inserted into the input position (from the customer's
perspective). The full orientation can be determined as a combination of codeline and media values. If the
orientation is unknown, this will be null.
default: null

mediaInfo/insertOrientation/codeline
Specifies the orientation of the code line. The following values are possible, or null if unknown.

• right - The code line is to the right.
• left - The code line is to the left.
• bottom - The code line is to the bottom.
• top - The code line is to the top.

default: null

mediaInfo/insertOrientation/media
Specifies the orientation of the media. The following values are possible, or null if unknown:

• up - The front of the media (the side with the code line) is facing up.
• down - The front of the media (the side with the code line) is facing down.

default: null

mediaInfo/mediaSize
Specifies the size of the media item. Will be null if the device does not support media size measurement or no
size measurements are known.
default: null

mediaInfo/mediaSize/longEdge
Specifies the length of the long edge of the media in millimeters, or 0 if unknown.
Property value constraints:
minimum: 0
default: 0

403

Properties

mediaInfo/mediaSize/shortEdge
Specifies the length of the short edge of the media in millimeters, or 0 if unknown.
Property value constraints:
minimum: 0
default: 0

mediaInfo/mediaValidity
Media items may have special security features which can be detected by the device. This specifies whether the
media item is suspect or valid, allowing the application the choice in how to further process a media item that
could not be confirmed as being valid. The following values are possible:

• ok - The media item is valid.
• suspect - The validity of the media item is suspect.
• unknown - The validity of the media item is unknown.
• noValidation - No specific security features were evaluated.

default: "ok"

mediaInfo/customerAccess
Specifies if the media item has been in customer access since it was first deposited, e.g. it has been retracted
from a position with customer access. This value can change outside of a media-in transaction as the media
moves within the device. The following values are possible:

• unknown - It is not known if the media item has been in a position with customer access.
• customer - The media item has been in a position with customer access.
• none - The media item has not been in a position with customer access.

default: "none"

Event Messages
None

404

9.2.2 Check.MediaIn
This command accepts media into the device from the input position.

A media-in transaction consists of one or more Check.MediaIn commands. A media-in transaction is initiated by
the first Check.MediaIn command and remains active until the transaction is either confirmed through the
Check.MediaInEnd command, or cancelled by the Check.MediaInRollBack, the Check.RetractMedia or the
Check.Reset command. Multiple calls to the Check.MediaIn command can be made while a transaction is active to
obtain additional items from the customer. If a media-in transaction is active (i.e. mediaInTransaction is active)
when a Check.MediaIn command is successfully cancelled or times out, then the transaction remains active.

When the command is executed, if there is no media in the input slot then the device is enabled for media entry and
the Check.NoMediaEvent event is generated when the device is ready to accept media. When the customer inserts
the media a Check.MediaInsertedEvent event is generated and media processing begins. If media is already present
at the input slot then a Check.MediaInsertedEvent event is generated and media processing begins immediately.

The Check.MediaDataEvent event delivers the code line and all requested image data during execution of this
command. One event is generated for each media item scanned by this command. The Check.MediaDataEvent
event is not generated for refused media items.

A failure during processing a single media item does not mean that the command has failed even if some or all of
the media are refused by the media reader. In this case the command will return success and one or more
Check.MediaRefusedEvent events will be sent to report the reasons why the items have been refused.

Refused items are not presented back to the customer with this command. The Check.MediaRefusedEvent event
indicates whether or not media must be returned to the customer before further media movement commands can be
executed. If the Check.MediaRefusedEvent event indicates that the media must be returned then the application
must use the Check.PresentMedia command to return the refused items. If the event does not indicate that the
application must return the media items then the application can still elect to return the media items using the
Check.PresentMedia command or instead allow the refused items to be returned during the Check.MediaInEnd or
Check.MediaInRollBack commands.

If there is no stacker on the device or applicationRefuse is true then just one of the media items inserted are
processed by this command, and therefore the command completes as soon as the last image for the first item is
produced or when the first item is automatically refused. If there is a stacker on the device then the command
completes when the last image for the last item is produced or when the last item is refused.

Command Message

Payload (version 2.0) Type Required
{
 "codelineFormat": "e13b", string, null
 "image": [{ array (object), null
 "source": "back", string 🗸🗸
 "type": "jpg", string 🗸🗸
 "colorFormat": "full", string 🗸🗸
 "scanColor": "white" string 🗸🗸
 }],
 "maxMediaOnStacker": 10, integer
 "applicationRefuse": true boolean
}

405

Properties

codelineFormat
Specifies the code line format. May be null if no code line data is required. If supplied, it must be one of the
supported code line formats. The following values are possible:

• cmc7 - Read CMC7 code line [Ref. check-4].
• e13b - Read E13B code line [Ref. check-3].
• ocr - Read code line using OCR. The default or pre-configured OCR font will be used.
• ocra - Read code line using OCR font A [Ref. check-1].
• ocrb - Read code line using OCR font B [Ref. check-2].

default: null

image
An array specifying the images to be read for each item. May be null if no images are required.
default: null

image/source
Specifies the source. The following values are possible:

• front - The image is for the front of the media item.
• back - The image is for the back of the media item.

image/type
Specifies the format of the image. The following values are possible:

• tif - The image is in TIFF 6.0 format.
• wmf - The image is in WMF (Windows Metafile) format.
• bmp - The image is in Windows BMP format.
• jpg - The image is in JPG format.

image/colorFormat
Specifies the color format of the image. The following values are possible:

• binary - The image is binary (image contains two colors, usually the colors black and white).
• grayScale - The image is gray scale (image contains multiple gray colors).
• full - The image is full color (image contains colors like red, green, blue etc.).

image/scanColor
Selects the scan color. The following values are possible:

• red - The image is scanned with red light.
• green - The image is scanned with green light.
• blue - The image is scanned with blue light.
• yellow - The image is scanned with yellow light.
• white - The image is scanned with white light.
• infraRed - The image is scanned with infrared light.
• ultraViolet - The image is scanned with ultraviolet light.

maxMediaOnStacker
Maximum number of media items allowed on the stacker during the media-in transaction. This value is used to
limit the total number of media items on the stacker. When this limit is reached all further media items will be
refused and a Check.MediaRefusedEvent message will be generated reporting stackerFull.

• This value cannot exceed maxMediaOnStacker or the Service will return a invalidData error.
• If 0 then the maximum number of items allowed on the stacker reported in maxMediaOnStacker will be

used.
• Ignored unless specified on the first Check.MediaIn command within a single media-in transaction.
• Ignored on devices without stackers.

Property value constraints:
minimum: 0
default: 0

406

Properties

applicationRefuse
Specifies if the application wants to make the decision to accept or refuse each media item that has successfully
been accepted by the device.

• If true then the application must decide to accept or refuse each item. The application must use the
Check.AcceptItem and Check.GetNextItem commands in a sequential manner to process the bunch of
media inserted during the Check.MediaIn command.

• If false then any decision on whether an item should be refused is left to the device/Service.
• Ignored unless specified on the first Check.MediaIn command within a single media-in transaction.
• Ignored if applicationRefuse is false.

default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaRejected", string, null
 "mediaIn": { object, null
 "mediaOnStacker": 10, integer, null
 "lastMedia": 5, integer, null
 "lastMediaOnStacker": 3, integer, null
 "mediaFeeder": "notEmpty" string, null
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• stackerFull - The internal stacker is already full or has already reached the limit specified as an input
parameter. No media items can be accepted.

• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed.
• refusedItems - Programming error: refused items that must be returned via the Check.PresentMedia

command have not been presented (see presentRequired).
• allBinsFull - All storage units are unusable due to being full, missing or inoperative, so no further

items can be accepted.
• scannerInop - Only images were requested by the application and these cannot be obtained because

the image scanner is inoperative.
• micrInop - Only MICR data was requested by the application and it cannot be obtained because the

MICR reader is inoperative.
• positionNotEmpty - One of the input/output/refused positions is not empty and items cannot be

inserted until the media items in the position are removed.
• feederNotEmpty - The media feeder is not empty. This only applies when the Check.GetNextItem

command should be used to retrieve the next media item.
• mediaRejected - The media was rejected before it was fully inserted within the device. The

Check.MediaRejectedEvent is posted with the details. The device is still operational.
• feederInop - The media feeder is inoperative.
• mediaPresent - Media from a previous transaction is present in the device when an attempt to start a

new media-in transaction was made. The media must be cleared before a new transaction can be started.
default: null

407

Properties

mediaIn
Describes the outcome of the command, defining where all the media was moved. May be null if no media items
were moved.
default: null

mediaIn/mediaOnStacker
Contains the total number of media items on the stacker (including lastMediaOnStacker). May be null if it is
unknown or the device does not have a stacker.
Property value constraints:
minimum: 0
default: null

mediaIn/lastMedia
Contains the number of media items processed by this instance of the command execution. May be null if it is
unknown or the device does not have a stacker.
Property value constraints:
minimum: 0
default: null

mediaIn/lastMediaOnStacker
Contains the number of media items on the stacker successfully accepted by this instance of the command
execution. May be null if it is unknown or the device does not have a stacker.
The number of refused media items can be determined by lastMedia - lastMediaOnStacker. This is only possible
if these values contain known values, and would not be possible if a bunch of items were refused as a single
entity.
Property value constraints:
minimum: 0
default: null

mediaIn/mediaFeeder
Supplies the state of the media feeder. This value indicates if there are items on the media feeder waiting for
processing via the Check.GetNextItem command. If null, the device has no media feeder or the capability to
report the status of the media feeder is not supported by the device. This value can be one of the following
values:

• empty - The media feeder is empty.
• notEmpty - The media feeder is not empty.
• inoperative - The media feeder is inoperative.
• unknown - Due to a hardware error or other condition, the state of the media feeder cannot be

determined.
default: null

Event Messages

• Check.NoMediaEvent
• Check.MediaInsertedEvent
• Check.MediaRefusedEvent
• Check.MediaDataEvent
• Check.MediaRejectedEvent

408

9.2.3 Check.MediaInEnd
This command ends a media-in transaction. If media items are on the stacker as a result of a Check.MediaIn
command, they are moved to the destination specified by Check.SetMediaParameters. Any additional actions
specified for the items by Check.SetMediaParameters such as printing, stamping and rescanning are also executed.
If the destination has not been set for a media item then the Service will decide which storage unit to put the item
into. If no items are in the device the command will complete with the noMediaPresent error and
mediaInTransaction will be set to ok.

The way in which media is returned to the customer as a result of this command is defined by presentControl. If
false, the application must call Check.PresentMedia to present the media items to be returned as a result of this
command. If true the Service presents any returned items implicitly and the application does not need to call
Check.PresentMedia.

If items have been refused and the Check.MediaRefusedEvent message has indicated that the items must be
returned (i.e. presentRequired is true) then these items must be returned using the Check.PresentMedia command
before the Check.MediaInEnd command is issued, otherwise a refusedItems error will be returned. If items have
been refused and the Check.MediaRefusedEvent event has indicated that the items do not need to be returned (i.e.
presentRequired is false) then the Check.MediaInEnd command causes any refused items which have not yet been
returned to the customer (via the Check.PresentMedia command) to be returned along with any items that the
application has selected to return to the customer (via the Check.SetMediaParameters command). Even if all items
are being deposited, previously refused items will be returned to the customer by this command. The
Check.MediaPresentedEvent event(s) inform the application of the position where the media has been presented to.

This command completes when all the media items have been put into their specified storage units and in the case
where media is returned to the customer as a result of this command, after the last bunch of media items to be
returned to the customer has been presented, but before the last bunch is taken.

The media-in transaction is ended even if this command does not complete successfully.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Requ
ired

{
 "errorCode": "refusedItems", string, null
 "mediaInEnd": { object, null
 "itemsReturned": 2, integer
 "itemsRefused": 3, integer
 "bunchesRefused": 1, integer
 "storage": { object, null
 "storage": { object, null
 "unit1": { object
 "id": "RC1", string, null
 "positionName": "Top Right", string, null
 "capacity": 100, integer,

null

 "status": "ok", string, null
 "serialNumber": "ABCD1234", string, null
 "cash": { object, null

409

Payload (version 2.0) Type Requ
ired

 "capabilities": { object, null
 "types": { object, null
 "cashIn": true, boolean,

null

 "cashOut": false, boolean,
null

 "replenishment": false, boolean,
null

 "cashInRetract": false, boolean,
null

 "cashOutRetract": false, boolean,
null

 "reject": false boolean,
null

 },
 "items": { object, null
 "fit": false, boolean,

null

 "unfit": false, boolean,
null

 "unrecognized": false, boolean,
null

 "counterfeit": false, boolean,
null

 "suspect": false, boolean,
null

 "inked": false, boolean,
null

 "coupon": false, boolean,
null

 "document": false boolean,
null

 },
 "hardwareSensors": false, boolean,

null

 "retractAreas": 1, integer,
null

 "retractThresholds": false, boolean,
null

 "cashItems": ["type20USD1", "type50USD1"] array
(string),
null

 },
 "configuration": { object, null
 "types": See
mediaInEnd/storage/storage/unit1/cash/capabilities/types properties

object, null

410

Payload (version 2.0) Type Requ
ired

 "items": See
mediaInEnd/storage/storage/unit1/cash/capabilities/items properties

object, null

 "currency": "USD", string, null
 "value": 20.00, number,

null

 "highThreshold": 500, integer,
null

 "lowThreshold": 10, integer,
null

 "appLockIn": false, boolean,
null

 "appLockOut": false, boolean,
null

 "cashItems": See
mediaInEnd/storage/storage/unit1/cash/capabilities/cashItems,

array
(string),
null

 "name": "$10", string, null
 "maxRetracts": 5 integer,

null

 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "unrecognized": 5, integer,

null

 "type20USD1": { object, null
 "fit": 15, integer,

null

 "unfit": 0, integer,
null

 "suspect": 0, integer,
null

 "counterfeit": 0, integer,
null

 "inked": 0 integer,
null

 },
 "type50USD1": See
mediaInEnd/storage/storage/unit1/cash/status/initial/type20USD1
properties

object, null

 },
 "out": { object, null
 "presented": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "rejected": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

411

Payload (version 2.0) Type Requ
ired

 "distributed": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "unknown": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "stacked": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "diverted": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "transport": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 },
 "in": { object, null
 "retractOperations": 15, integer,

null

 "deposited": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "retracted": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "rejected": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "distributed": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 "transport": See
mediaInEnd/storage/storage/unit1/cash/status/initial properties

object, null

 },
 "accuracy": "accurate", string, null
 "replenishmentStatus": "ok", string, null
 "operationStatus": "dispenseInoperative" string, null
 }
 },
 "card": { object, null
 "capabilities": { object, null
 "type": "retain", string, null
 "hardwareSensors": true boolean,

null

 },
 "configuration": { object, null
 "cardID": "LoyaltyCard", string, null
 "threshold": 10 integer,

null

 },
 "status": { object, null
 "initialCount": 0, integer,

null

 "count": 0, integer,
null

412

Payload (version 2.0) Type Requ
ired

 "retainCount": 0, integer,
null

 "replenishmentStatus": "ok" string, null
 }
 },
 "check": { object, null
 "capabilities": { object, null
 "types": { object, null
 "mediaIn": true, boolean,

null

 "retract": false boolean,
null

 },
 "sensors": { object, null
 "empty": false, boolean,

null

 "high": false, boolean,
null

 "full": false boolean,
null

 }
 },
 "configuration": { object, null
 "types": See
mediaInEnd/storage/storage/unit1/check/capabilities/types
properties

object, null

 "binID": "My check bin", string, null
 "highThreshold": 500, integer,

null

 "retractHighThreshold": 5 integer,
null

 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "mediaInCount": 100, integer,

null

 "count": 150, integer,
null

 "retractOperations": 15 integer,
null

 },
 "in": See
mediaInEnd/storage/storage/unit1/check/status/initial properties

object, null

 "replenishmentStatus": "high" string, null

413

Payload (version 2.0) Type Requ
ired

 }
 }
 },
 "unit2": See mediaInEnd/storage/storage/unit1 properties object
 }
 }
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• noMedia - No media is present in the device.
• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed.
• mediaBinError - A storage unit caused a problem. A Storage.StorageErrorEvent will be posted with

the details.
• positionNotEmpty - One of the input/output/refused positions is not empty and items cannot be

inserted until the media items in the position are removed.
• refusedItems - Programming error: refused items that must be returned via the Check.PresentMedia

command have not been presented (see presentRequired).
• feederNotEmpty - The media feeder is not empty.

default: null

mediaInEnd
Describes the outcome of the command and hence the outcome of the transaction, defining where all the media
items were moved.
default: null

mediaInEnd/itemsReturned
Contains the number of media items that were returned to the customer by application selection through the
Check.SetMediaParameters command during the current transaction. This does not include items that were
refused.
Property value constraints:
minimum: 0
default: 0

mediaInEnd/itemsRefused
Contains the total number of items automatically returned to the customer during the execution of the whole
transaction. This count does not include bunches of items which are refused as a single entity without being
processed as single items.
Property value constraints:
minimum: 0
default: 0

mediaInEnd/bunchesRefused
Contains the total number of refused bunches of items that were automatically returned to the customer without
being processed as single items.
Property value constraints:
minimum: 0
default: 0

414

Properties

mediaInEnd/storage
List of storage units that have taken items, and the type of items they have taken, during the current transaction.
This only contains data related to the current transaction.
default: null

mediaInEnd/storage/storage
Object containing storage unit information. The property name is the storage unit identifier.
default: null

mediaInEnd/storage/storage/unit1 (example name)
The object contains a single storage unit.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$

mediaInEnd/storage/storage/unit1/id
An identifier which can be used for cUnitID in CDM/CIM XFS 3.x migration. May be null if not applicable.
Property value constraints:
pattern: ^.{1,5}$
default: null

mediaInEnd/storage/storage/unit1/positionName
Fixed physical name for the position. May be null if not applicable.
default: null

mediaInEnd/storage/storage/unit1/capacity
The nominal capacity of the unit. This may be an estimate as the quality and thickness of the items stored in the
unit may affect how many items can be stored. 0 means the capacity is unknown, null means capacity is not
applicable.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/status
The state of the unit. This property may be null in events if the state did not change, otherwise the following
values are possible:

• ok - The storage unit is in a good state.
• inoperative - The storage unit is inoperative.
• missing - The storage unit is missing.
• notConfigured - The storage unit has not been configured for use.
• manipulated - The storage unit has been inserted (including removal followed by a reinsertion) when

the device was not in the exchange state - see Storage.StartExchange. This storage unit cannot be used. Only
applies to services which support the exchange state.
default: null

mediaInEnd/storage/storage/unit1/serialNumber
The storage unit's serial number if it can be read electronically. May be null if not applicable.
default: null

mediaInEnd/storage/storage/unit1/cash
The cash related contents, status and configuration of the unit. May be null if not applicable.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO, WFS_INF_CIM_CASH_UNIT_INFO and
WFS_INF_CIM_CASH_UNIT_CAPABILITIES in XFS 3.x. This may be null in events if capabilities have not
changed.
default: null

415

Properties

mediaInEnd/storage/storage/unit1/cash/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data or events if
not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/types/cashIn
The unit can accept cash items. If cashOut is also true then the unit can recycle. May be null in command data or
events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/types/cashOut
The unit can dispense cash items. If cashIn is also true then the unit can recycle. May be null in command data
or events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/types/replenishment
Replenishment container. A storage unit can be refilled from or emptied to a replenishment container. May be
null in command data or events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/types/cashInRetract
Retract unit. Items can be retracted into this unit during Cash In operations. May be null in command data or
events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/types/cashOutRetract
Retract unit. Items can be retracted into this unit during Cash Out operations. May be null in command data or
events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/types/reject
Reject unit. Items can be rejected into this unit. May be null in command data or events if not changed or being
changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/items
The types of cash media the unit is capable of storing or configured to store. This is a combination of one or
more item types. May only be modified in an exchange state if applicable. See Note Classification for more
information about cash classification levels. May be null in command data if not being changed. May be null in
command data or events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/items/fit
The storage unit can store cash items which are fit for recycling. May be null in command data or events if not
changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/items/unfit
The storage unit can store cash items which are unfit for recycling. May be null in command data or events if not
changed or being changed.
default: false

mediaInEnd/storage/storage/unit1/cash/capabilities/items/unrecognized
The storage unit can store unrecognized cash items. May be null in command data or events if not changed or
being changed.
default: null

416

Properties

mediaInEnd/storage/storage/unit1/cash/capabilities/items/counterfeit
The storage unit can store counterfeit cash items. May be null in command data or events if not changed or being
changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/items/suspect
The storage unit can store suspect counterfeit cash items. May be null in command data or events if not changed
or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/items/inked
The storage unit can store cash items which have been identified as ink stained. May be null in command data or
events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/items/coupon
Storage unit containing coupons or advertising material. May be null in command data or events if not changed
or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/items/document
Storage unit containing documents. May be null in command data or events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/hardwareSensors
Indicates whether the storage unit has sensors which report the status. If true, then hardware sensors will override
count-based replenishment status for empty and full. Other replenishment states can be overridden by counts.
May be null in command data or events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/retractAreas
If items can be retracted into this storage unit, this is the number of areas within the storage unit which allow
physical separation of different bunches. If there is no physical separation of retracted bunches within this
storage unit, this value is 1. May be null if items can not be retracted into this storage unit or in events if not
changed or being changed.
Property value constraints:
minimum: 1
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/retractThresholds
If true, indicates that retract capacity is based on counts. If false, indicates that retract capacity is based on the
number of commands which resulted in items being retracted into the storage unit. May be null if items can not
be retracted into this storage unit or in events if not changed or being changed.
default: null

mediaInEnd/storage/storage/unit1/cash/capabilities/cashItems
An array containing multiple cash items, listing what a storage unit is capable of or configured to handle. Each
member is the object name of a cash item reported by CashManagement.GetBankNoteTypes. May be null in
command data or events if not being modified.
Property value constraints:
minItems: 1
default: null

417

Properties

mediaInEnd/storage/storage/unit1/cash/configuration
Indicates what this storage unit is configured as or is being configured to do - where applicable the supported
options can be derived from capabilities.
If the Service supports an exchange state, only a subset of these parameters may be modified unless in an
exchange. Parameters which may only be modified in an exchange state are listed.
May be null in command data or events if no configuration is to be or has been changed.
default: null

mediaInEnd/storage/storage/unit1/cash/configuration/currency
ISO 4217 currency identifier [Ref. cashmanagement-1]. May only be modified in an exchange state if applicable.
May be null if the unit is configured to store mixed currencies or non-cash items.
Property value constraints:
pattern: ^[A-Z]{3}$
default: null

mediaInEnd/storage/storage/unit1/cash/configuration/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
May be null in command data or events if not being modified.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/cash/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. The total number is not reported directly, but derived from initial + in - out.
If null, high is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

mediaInEnd/storage/storage/unit1/cash/configuration/lowThreshold
If specified, replenishmentStatus is set to low if total number of items in the storage unit is less than this number.
The total number is not reported directly, but derived from initial + in - out.
If null, low is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

mediaInEnd/storage/storage/unit1/cash/configuration/appLockIn
If true, items cannot be accepted into the storage unit in Cash In operations. May be null in command data or
events if not being modified.
default: null

mediaInEnd/storage/storage/unit1/cash/configuration/appLockOut
If true, items cannot be dispensed from the storage unit in Cash Out operations. May be null in command data or
events if not being modified.
default: null

mediaInEnd/storage/storage/unit1/cash/configuration/name
Application configured name of the unit. May be null in command data or events if not being modified.
default: null

418

Properties

mediaInEnd/storage/storage/unit1/cash/configuration/maxRetracts
If specified, this is the number of retract operations allowed into the unit. Only applies to retract units. If
retractOperations equals this number, then no further retracts are allowed into this storage unit.
If null in output, the maximum number is not limited by counts. May be null in command data or events if not
being modified.
Property value constraints:
minimum: 1
default: null

mediaInEnd/storage/storage/unit1/cash/status
Indicates the storage unit status - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO and WFS_INF_CIM_CASH_UNIT_INFO in XFS 3.x. Note that the
count of items in the storage unit must be derived from the counts reported. May be null in events if not
changing.
default: null

mediaInEnd/storage/storage/unit1/cash/status/index
Assigned by the Service. Will be a unique number which can be used to determine usNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

mediaInEnd/storage/storage/unit1/cash/status/initial
The cash related items which were in the storage unit at the last replenishment.
default: null

mediaInEnd/storage/storage/unit1/cash/status/initial/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/cash/status/initial/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

mediaInEnd/storage/storage/unit1/cash/status/initial/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/cash/status/initial/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/cash/status/initial/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

419

Properties

mediaInEnd/storage/storage/unit1/cash/status/initial/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/cash/status/initial/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/cash/status/out
The items moved from this storage unit by cash commands to another destination since the last replenishment of
this unit. This includes intermediate positions such as a stacker, where an item has been moved before moving to
the final destination such as another storage unit or presentation to a customer.
Counts for non-intermediate positions are reset if initial is set for this unit by Storage.GetStorage. See
descriptions for the counts which will not be reset by this command.
Intermediate position counts are reset when the intermediate position is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved from the storage unit by cash commands.
default: null

mediaInEnd/storage/storage/unit1/cash/status/out/presented
The items dispensed from this storage unit which are or were customer accessible. Will be null if no items were
presented.
default: null

mediaInEnd/storage/storage/unit1/cash/status/out/rejected
The items dispensed from this storage unit which were invalid and were diverted to a reject storage unit and were
not customer accessible during the operation. Will be null if no items were rejected.
default: null

mediaInEnd/storage/storage/unit1/cash/status/out/distributed
The items dispensed from this storage unit which were moved to a storage unit other than a reject storage unit
and were not customer accessible during the operation. Will be null if no items were distributed.
default: null

mediaInEnd/storage/storage/unit1/cash/status/out/unknown
The items dispensed from this storage unit which moved to an unknown position. Will be null if no items were
unknown.
default: null

mediaInEnd/storage/storage/unit1/cash/status/out/stacked
The items dispensed from this storage unit which are not customer accessible and are currently stacked awaiting
presentation to the customer. This item list can increase and decrease as items are moved around in the device.
This is not reset if initial is set for this unit by Storage.GetStorage. Will be null if no items were stacked.
default: null

mediaInEnd/storage/storage/unit1/cash/status/out/diverted
The items dispensed from this storage unit which are not customer accessible and were diverted to a temporary
location due to being invalid and have not yet been deposited in a storage unit. This item list can increase and
decrease as items are moved around in the device. This is not reset if initial is set for this unit by
Storage.GetStorage. Will be null if no items were diverted.
default: null

420

Properties

mediaInEnd/storage/storage/unit1/cash/status/out/transport
The items dispensed from this storage unit which are not customer accessible and which have jammed in the
transport. This item list can increase and decrease as items are moved around in the device. This is not reset if
initial is set for this unit by Storage.GetStorage. Will be null if no items apply.
default: null

mediaInEnd/storage/storage/unit1/cash/status/in
List of items inserted in this storage unit by cash commands from another source since the last replenishment of
this unit. This also reports items in the transport, where an item has jammed before being deposited in the
storage unit.
Counts other than transport are reset if initial is set for this unit by Storage.GetStorage. See descriptions for the
counts which will not be reset by this command.
The transport count is reset when it is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved into the storage unit by cash commands.
default: null

mediaInEnd/storage/storage/unit1/cash/status/in/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/cash/status/in/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

mediaInEnd/storage/storage/unit1/cash/status/in/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

mediaInEnd/storage/storage/unit1/cash/status/in/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

mediaInEnd/storage/storage/unit1/cash/status/in/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

mediaInEnd/storage/storage/unit1/cash/status/in/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

421

Properties

mediaInEnd/storage/storage/unit1/cash/status/accuracy
Describes the accuracy of the counts reported by out and in. If null in Storage.GetStorage, the hardware is not
capable of determining the accuracy, otherwise the following values are possible:

• accurate - The count is expected to be accurate. The notes were previously counted
and there have since been no events that might have introduced inaccuracy.

• accurateSet - The count is expected to be accurate. The counts were previously set and there have
since been no events that might have introduced inaccuracy.

• inaccurate - The count is likely to be inaccurate. A jam, picking fault, or some other event may
have resulted in a counting inaccuracy.

• unknown - The accuracy of count cannot be determined. This may be due to storage unit insertion or
some other hardware event.
default: null

mediaInEnd/storage/storage/unit1/cash/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in events if not
changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on sensors or counts.
• high - The storage unit is almost full (either sensor based or exceeded the

highThreshold.
• low - The storage unit is almost empty (either sensor based or below the

lowThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has hardwareSensors, this state is not set by counts.
default: null

mediaInEnd/storage/storage/unit1/cash/status/operationStatus
On some devices it may be possible to allow items to be dispensed in a recycling storage unit while deposit is
inoperable or vice-versa. This property allows the Service to report that one operation is possible while the other
is not, without taking the storage unit out of Service completely with status or replenishmentStatus.
Following values are possible:

• dispenseInoperative - Dispense operations are possible and deposit operations are not possible on
this recycling storage unit.

• depositInoperative - Deposit operations are possible and dispense operations are not possible on
this recycling storage unit.
If null in Storage.GetStorage, status and replenishmentStatus apply to both cash out and cash in operations.
default: null

mediaInEnd/storage/storage/unit1/card
The card related contents, status and configuration of the unit. May be null if not applicable.
default: null

mediaInEnd/storage/storage/unit1/card/capabilities
Indicates the card storage unit capabilities. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

422

Properties

mediaInEnd/storage/storage/unit1/card/capabilities/type
The type of card storage. This property may be null in events if the type did not change, otherwise will be one of
the following values:

• retain - The storage unit can retain cards.
• dispense - The storage unit can dispense cards.
• park - The storage unit can be used to temporarily store a card allowing another card to enter the

transport.
default: null

mediaInEnd/storage/storage/unit1/card/capabilities/hardwareSensors
Indicates whether the storage unit has hardware sensors that can detect threshold states. This property may be
null in events if it did not change.
default: null

mediaInEnd/storage/storage/unit1/card/configuration
Indicates the card storage unit configuration. This property can be null if the storage unit is being set using
Storage.SetStorage, or a change is being reported using Storage.StorageChangedEvent or
Storage.StorageThresholdEvent.

mediaInEnd/storage/storage/unit1/card/configuration/cardID
The identifier that may be used to identify the type of cards in the storage unit. This is only applicable to
dispense storage units and may be null in events if it did not change.
default: null

mediaInEnd/storage/storage/unit1/card/configuration/threshold
If the threshold value is non zero, hardware sensors in the storage unit do not trigger
Storage.StorageThresholdEvent events. This property may be null in events if it did not change.
If non zero, when count reaches the threshold value:

• For retain type storage units, a high threshold will be sent.
• For dispense type storage units, a low threshold will be sent.

Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/card/status
Indicates the card storage unit status. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

mediaInEnd/storage/storage/unit1/card/status/initialCount
The initial number of cards in the storage unit. This is only applicable to dispense type storage units. This
property may be null in events if it did not change.
This value is persistent.
Property value constraints:
minimum: 0
default: null

423

Properties

mediaInEnd/storage/storage/unit1/card/status/count
The number of cards in the storage unit.
If the storage unit type is dispense:

• This count also includes a card dispensed from the storage unit which has not been moved to either the
exit position or a dispense type storage unit.

• This count is decremented when a card from the card storage unit is moved to the exit position or
retained. If this value reaches zero it will not decrement further but will remain at zero.

If the storage unit type is retain:
• The count is incremented when a card is moved into the storage unit.

If the storage unit type is park:
• The count will increment when a card is moved into the storage module and decremented when a card

is moved out of the storage module.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/card/status/retainCount
The number of cards from this storage unit which are in a retain storage unit.
This is only applicable to dispense type storage units.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/card/status/replenishmentStatus
The state of the cards in the storage unit if it can be determined. Note that overall status of the storage unit must
be taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will be null. The property may also be null in events
if it did not change.
The following values are possible:

• ok - The storage unit is in a good state.
• full - The storage unit is full.
• high - The storage unit is almost full (either sensor based or above the

threshold).
• low - The storage unit is almost empty (either sensor based or below the

threshold).
• empty - The storage unit is empty.

default: null

mediaInEnd/storage/storage/unit1/check
The check related contents, status and configuration of the unit. May be null if not applicable.
default: null

mediaInEnd/storage/storage/unit1/check/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_IPM_MEDIA_BIN_INFO and WFS_INF_IPM_MEDIA_BIN_CAPABILITIES in XFS 3.x. May be
null in events if not changed.
default: null

mediaInEnd/storage/storage/unit1/check/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data and events if
not changing.
default: null

424

Properties

mediaInEnd/storage/storage/unit1/check/capabilities/types/mediaIn
The unit can accept items during Media In transactions. May be null in command data and events if not
changing.
default: null

mediaInEnd/storage/storage/unit1/check/capabilities/types/retract
Retract unit. Items can be retracted into this unit using Check.RetractMedia. May be null in command data and
events if not changing.
default: null

mediaInEnd/storage/storage/unit1/check/capabilities/sensors
The types of sensor the unit has. May be null in command data and events if not changing.
default: null

mediaInEnd/storage/storage/unit1/check/capabilities/sensors/empty
The unit contains a hardware sensor which reports when the unit is empty. May be null in command data and
events if not changing.
default: null

mediaInEnd/storage/storage/unit1/check/capabilities/sensors/high
The unit contains a hardware sensor which reports when the unit is nearly full. May be null in command data and
events if not changing.
default: null

mediaInEnd/storage/storage/unit1/check/capabilities/sensors/full
The unit contains a hardware sensor which reports when the unit is full. May be null in command data and events
if not changing.
default: null

mediaInEnd/storage/storage/unit1/check/configuration
Indicates what the storage unit is configured to do - where applicable the supported options can be derived from
capabilities. May be null in command data and events if not being modified.

mediaInEnd/storage/storage/unit1/check/configuration/binID
An application defined Storage Unit Identifier. This may be null in events if not changing.
default: null

mediaInEnd/storage/storage/unit1/check/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. May be null in command data and events if not being modified.
Property value constraints:
minimum: 1
default: null

mediaInEnd/storage/storage/unit1/check/configuration/retractHighThreshold
If specified and the storage unit is configured as retract, replenishmentStatus is set to high if the total number of
retract operations in the storage unit is greater than this number. May be null in command data and events if not
being modified.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/check/status
Indicates the storage unit status. May be null in events where status has not changed.
default: null

425

Properties

mediaInEnd/storage/storage/unit1/check/status/index
Assigned by the Service. Will be a unique number which can be used to determine usBinNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

mediaInEnd/storage/storage/unit1/check/status/initial
The check related counts as set at the last replenishment. May be null in events where status has not changed.
default: null

mediaInEnd/storage/storage/unit1/check/status/initial/mediaInCount
Count of items added to the storage unit due to Check operations. If the number of items is not counted this is
not reported and retractOperations is incremented as items are added to the unit. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/check/status/initial/count
Total number of items added to the storage unit due to any operations. If the number of items is not counted this
is not reported and retractOperations is incremented as items are added to the unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/check/status/initial/retractOperations
Total number of operations which resulted in items being retracted to the storage unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

mediaInEnd/storage/storage/unit1/check/status/in
The check items added to the unit since the last replenishment. May be null in events where status has not
changed.
default: null

mediaInEnd/storage/storage/unit1/check/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in command data
and events if not changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on a

full sensor or counts.
• high - The storage unit is almost full (either

high sensor based or exceeded the highThreshold or retractHighThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has the empty sensor, this state is not set by counts.
default: null

Event Messages

• Check.MediaDataEvent
• Storage.StorageErrorEvent
• Check.MediaPresentedEvent

426

427

9.2.4 Check.MediaInRollback
This command ends a media-in transaction. All media that is in the device as a result of Check.MediaIn commands
is returned to the customer. Nothing is printed on the media. If no items are in the device the command will
complete with the noMediaPresent error and mediaInTransaction will be set to rollback.

The way in which media is returned to the customer as a result of this command is defined by presentControl. If
false, the application must call Check.PresentMedia to present the media items to be returned as a result of this
command. If true the Service presents any returned items implicitly and the application does not need to call
Check.PresentMedia.

If items have been refused and the Check.MediaRefusedEvent message has indicated that the items must be
returned (i.e. presentRequired is true) then these items must be returned using the Check.PresentMedia command
before the Check.MediaInRollBack command is issued, otherwise a refusedItems error will be returned. If items
have been refused and the Check.MediaRefusedEvent has indicated that the items do not need to be returned (i.e.
presentRequired is false) then the Check.MediaInRollBack command causes any refused items which have not yet
been returned to the customer (via the Check.PresentMedia command) to be returned along with any items that are
returned as a result of the rollback. The Check.MediaPresentedEvent event(s) inform the application of the position
where the media has been presented to.

In the case where media is returned to the customer as a result of this command, this command completes when the
last bunch of media items to be returned to the customer has been presented, but before the last bunch is taken.

The media-in transaction is ended even if this command does not complete successfully.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Requ
ired

{
 "errorCode": "mediaJammed", string, null
 "mediaInRollback": { object,

null

 "itemsReturned": 2, integer
 "itemsRefused": 3, integer
 "bunchesRefused": 1, integer
 "storage": { object,

null

 "storage": { object,
null

 "unit1": { object
 "id": "RC1", string, null
 "positionName": "Top Right", string, null
 "capacity": 100, integer,

null

 "status": "ok", string, null
 "serialNumber": "ABCD1234", string, null
 "cash": { object,

null

428

Payload (version 2.0) Type Requ
ired

 "capabilities": { object,
null

 "types": { object,
null

 "cashIn": true, boolean,
null

 "cashOut": false, boolean,
null

 "replenishment": false, boolean,
null

 "cashInRetract": false, boolean,
null

 "cashOutRetract": false, boolean,
null

 "reject": false boolean,
null

 },
 "items": { object,

null

 "fit": false, boolean,
null

 "unfit": false, boolean,
null

 "unrecognized": false, boolean,
null

 "counterfeit": false, boolean,
null

 "suspect": false, boolean,
null

 "inked": false, boolean,
null

 "coupon": false, boolean,
null

 "document": false boolean,
null

 },
 "hardwareSensors": false, boolean,

null

 "retractAreas": 1, integer,
null

 "retractThresholds": false, boolean,
null

 "cashItems": ["type20USD1", "type50USD1"] array
(string),
null

 },

429

Payload (version 2.0) Type Requ
ired

 "configuration": { object,
null

 "types": See
mediaInRollback/storage/storage/unit1/cash/capabilities/types
properties

object,
null

 "items": See
mediaInRollback/storage/storage/unit1/cash/capabilities/items
properties

object,
null

 "currency": "USD", string, null
 "value": 20.00, number,

null

 "highThreshold": 500, integer,
null

 "lowThreshold": 10, integer,
null

 "appLockIn": false, boolean,
null

 "appLockOut": false, boolean,
null

 "cashItems": See
mediaInRollback/storage/storage/unit1/cash/capabilities/cashItems,

array
(string),
null

 "name": "$10", string, null
 "maxRetracts": 5 integer,

null

 },
 "status": { object,

null

 "index": 4, integer 🗸🗸
 "initial": { object,

null

 "unrecognized": 5, integer,
null

 "type20USD1": { object,
null

 "fit": 15, integer,
null

 "unfit": 0, integer,
null

 "suspect": 0, integer,
null

 "counterfeit": 0, integer,
null

 "inked": 0 integer,
null

 },

430

Payload (version 2.0) Type Requ
ired

 "type50USD1": See
mediaInRollback/storage/storage/unit1/cash/status/initial/type20USD
1 properties

object,
null

 },
 "out": { object,

null

 "presented": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "rejected": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "distributed": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "unknown": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "stacked": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "diverted": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "transport": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 },
 "in": { object,

null

 "retractOperations": 15, integer,
null

 "deposited": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "retracted": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "rejected": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "distributed": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 "transport": See
mediaInRollback/storage/storage/unit1/cash/status/initial
properties

object,
null

 },
 "accuracy": "accurate", string, null
 "replenishmentStatus": "ok", string, null
 "operationStatus": "dispenseInoperative" string, null
 }

431

Payload (version 2.0) Type Requ
ired

 },
 "card": { object,

null

 "capabilities": { object,
null

 "type": "retain", string, null
 "hardwareSensors": true boolean,

null

 },
 "configuration": { object,

null

 "cardID": "LoyaltyCard", string, null
 "threshold": 10 integer,

null

 },
 "status": { object,

null

 "initialCount": 0, integer,
null

 "count": 0, integer,
null

 "retainCount": 0, integer,
null

 "replenishmentStatus": "ok" string, null
 }
 },
 "check": { object,

null

 "capabilities": { object,
null

 "types": { object,
null

 "mediaIn": true, boolean,
null

 "retract": false boolean,
null

 },
 "sensors": { object,

null

 "empty": false, boolean,
null

 "high": false, boolean,
null

 "full": false boolean,
null

 }

432

Payload (version 2.0) Type Requ
ired

 },
 "configuration": { object,

null

 "types": See
mediaInRollback/storage/storage/unit1/check/capabilities/types
properties

object,
null

 "binID": "My check bin", string, null
 "highThreshold": 500, integer,

null

 "retractHighThreshold": 5 integer,
null

 },
 "status": { object,

null

 "index": 4, integer 🗸🗸
 "initial": { object,

null

 "mediaInCount": 100, integer,
null

 "count": 150, integer,
null

 "retractOperations": 15 integer,
null

 },
 "in": See
mediaInRollback/storage/storage/unit1/check/status/initial
properties

object,
null

 "replenishmentStatus": "high" string, null
 }
 }
 },
 "unit2": See mediaInRollback/storage/storage/unit1
properties

object

 }
 }
 }
}

433

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• noMedia - No media is present in the device.
• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed.
• positionNotEmpty - One of the input/output/refused positions is not empty and items cannot be

inserted until the media items in the position are removed.
• refusedItems - Programming error: refused items that must be returned via the Check.PresentMedia

command have not been presented (see presentRequired).
default: null

mediaInRollback
Describes the outcome of the command and hence the outcome of the transaction, defining where all the media
items were moved.
default: null

mediaInRollback/itemsReturned
Contains the number of media items that were returned to the customer by application selection through the
Check.SetMediaParameters command during the current transaction. This does not include items that were
refused.
Property value constraints:
minimum: 0
default: 0

mediaInRollback/itemsRefused
Contains the total number of items automatically returned to the customer during the execution of the whole
transaction. This count does not include bunches of items which are refused as a single entity without being
processed as single items.
Property value constraints:
minimum: 0
default: 0

mediaInRollback/bunchesRefused
Contains the total number of refused bunches of items that were automatically returned to the customer without
being processed as single items.
Property value constraints:
minimum: 0
default: 0

mediaInRollback/storage
List of storage units that have taken items, and the type of items they have taken, during the current transaction.
This only contains data related to the current transaction.
default: null

mediaInRollback/storage/storage
Object containing storage unit information. The property name is the storage unit identifier.
default: null

mediaInRollback/storage/storage/unit1 (example name)
The object contains a single storage unit.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$

mediaInRollback/storage/storage/unit1/id
An identifier which can be used for cUnitID in CDM/CIM XFS 3.x migration. May be null if not applicable.
Property value constraints:
pattern: ^.{1,5}$
default: null

434

Properties

mediaInRollback/storage/storage/unit1/positionName
Fixed physical name for the position. May be null if not applicable.
default: null

mediaInRollback/storage/storage/unit1/capacity
The nominal capacity of the unit. This may be an estimate as the quality and thickness of the items stored in the
unit may affect how many items can be stored. 0 means the capacity is unknown, null means capacity is not
applicable.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/status
The state of the unit. This property may be null in events if the state did not change, otherwise the following
values are possible:

• ok - The storage unit is in a good state.
• inoperative - The storage unit is inoperative.
• missing - The storage unit is missing.
• notConfigured - The storage unit has not been configured for use.
• manipulated - The storage unit has been inserted (including removal followed by a reinsertion) when

the device was not in the exchange state - see Storage.StartExchange. This storage unit cannot be used. Only
applies to services which support the exchange state.
default: null

mediaInRollback/storage/storage/unit1/serialNumber
The storage unit's serial number if it can be read electronically. May be null if not applicable.
default: null

mediaInRollback/storage/storage/unit1/cash
The cash related contents, status and configuration of the unit. May be null if not applicable.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO, WFS_INF_CIM_CASH_UNIT_INFO and
WFS_INF_CIM_CASH_UNIT_CAPABILITIES in XFS 3.x. This may be null in events if capabilities have not
changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data or events if
not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/types/cashIn
The unit can accept cash items. If cashOut is also true then the unit can recycle. May be null in command data or
events if not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/types/cashOut
The unit can dispense cash items. If cashIn is also true then the unit can recycle. May be null in command data
or events if not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/types/replenishment
Replenishment container. A storage unit can be refilled from or emptied to a replenishment container. May be
null in command data or events if not changed or being changed.
default: null

435

Properties

mediaInRollback/storage/storage/unit1/cash/capabilities/types/cashInRetract
Retract unit. Items can be retracted into this unit during Cash In operations. May be null in command data or
events if not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/types/cashOutRetract
Retract unit. Items can be retracted into this unit during Cash Out operations. May be null in command data or
events if not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/types/reject
Reject unit. Items can be rejected into this unit. May be null in command data or events if not changed or being
changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/items
The types of cash media the unit is capable of storing or configured to store. This is a combination of one or
more item types. May only be modified in an exchange state if applicable. See Note Classification for more
information about cash classification levels. May be null in command data if not being changed. May be null in
command data or events if not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/items/fit
The storage unit can store cash items which are fit for recycling. May be null in command data or events if not
changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/items/unfit
The storage unit can store cash items which are unfit for recycling. May be null in command data or events if not
changed or being changed.
default: false

mediaInRollback/storage/storage/unit1/cash/capabilities/items/unrecognized
The storage unit can store unrecognized cash items. May be null in command data or events if not changed or
being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/items/counterfeit
The storage unit can store counterfeit cash items. May be null in command data or events if not changed or being
changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/items/suspect
The storage unit can store suspect counterfeit cash items. May be null in command data or events if not changed
or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/items/inked
The storage unit can store cash items which have been identified as ink stained. May be null in command data or
events if not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/items/coupon
Storage unit containing coupons or advertising material. May be null in command data or events if not changed
or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/items/document
Storage unit containing documents. May be null in command data or events if not changed or being changed.
default: null

436

Properties

mediaInRollback/storage/storage/unit1/cash/capabilities/hardwareSensors
Indicates whether the storage unit has sensors which report the status. If true, then hardware sensors will override
count-based replenishment status for empty and full. Other replenishment states can be overridden by counts.
May be null in command data or events if not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/retractAreas
If items can be retracted into this storage unit, this is the number of areas within the storage unit which allow
physical separation of different bunches. If there is no physical separation of retracted bunches within this
storage unit, this value is 1. May be null if items can not be retracted into this storage unit or in events if not
changed or being changed.
Property value constraints:
minimum: 1
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/retractThresholds
If true, indicates that retract capacity is based on counts. If false, indicates that retract capacity is based on the
number of commands which resulted in items being retracted into the storage unit. May be null if items can not
be retracted into this storage unit or in events if not changed or being changed.
default: null

mediaInRollback/storage/storage/unit1/cash/capabilities/cashItems
An array containing multiple cash items, listing what a storage unit is capable of or configured to handle. Each
member is the object name of a cash item reported by CashManagement.GetBankNoteTypes. May be null in
command data or events if not being modified.
Property value constraints:
minItems: 1
default: null

mediaInRollback/storage/storage/unit1/cash/configuration
Indicates what this storage unit is configured as or is being configured to do - where applicable the supported
options can be derived from capabilities.
If the Service supports an exchange state, only a subset of these parameters may be modified unless in an
exchange. Parameters which may only be modified in an exchange state are listed.
May be null in command data or events if no configuration is to be or has been changed.
default: null

mediaInRollback/storage/storage/unit1/cash/configuration/currency
ISO 4217 currency identifier [Ref. cashmanagement-1]. May only be modified in an exchange state if applicable.
May be null if the unit is configured to store mixed currencies or non-cash items.
Property value constraints:
pattern: ^[A-Z]{3}$
default: null

mediaInRollback/storage/storage/unit1/cash/configuration/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
May be null in command data or events if not being modified.
Property value constraints:
minimum: 0
default: null

437

Properties

mediaInRollback/storage/storage/unit1/cash/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. The total number is not reported directly, but derived from initial + in - out.
If null, high is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

mediaInRollback/storage/storage/unit1/cash/configuration/lowThreshold
If specified, replenishmentStatus is set to low if total number of items in the storage unit is less than this number.
The total number is not reported directly, but derived from initial + in - out.
If null, low is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

mediaInRollback/storage/storage/unit1/cash/configuration/appLockIn
If true, items cannot be accepted into the storage unit in Cash In operations. May be null in command data or
events if not being modified.
default: null

mediaInRollback/storage/storage/unit1/cash/configuration/appLockOut
If true, items cannot be dispensed from the storage unit in Cash Out operations. May be null in command data or
events if not being modified.
default: null

mediaInRollback/storage/storage/unit1/cash/configuration/name
Application configured name of the unit. May be null in command data or events if not being modified.
default: null

mediaInRollback/storage/storage/unit1/cash/configuration/maxRetracts
If specified, this is the number of retract operations allowed into the unit. Only applies to retract units. If
retractOperations equals this number, then no further retracts are allowed into this storage unit.
If null in output, the maximum number is not limited by counts. May be null in command data or events if not
being modified.
Property value constraints:
minimum: 1
default: null

mediaInRollback/storage/storage/unit1/cash/status
Indicates the storage unit status - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO and WFS_INF_CIM_CASH_UNIT_INFO in XFS 3.x. Note that the
count of items in the storage unit must be derived from the counts reported. May be null in events if not
changing.
default: null

mediaInRollback/storage/storage/unit1/cash/status/index
Assigned by the Service. Will be a unique number which can be used to determine usNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

mediaInRollback/storage/storage/unit1/cash/status/initial
The cash related items which were in the storage unit at the last replenishment.
default: null

438

Properties

mediaInRollback/storage/storage/unit1/cash/status/initial/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/cash/status/initial/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

mediaInRollback/storage/storage/unit1/cash/status/initial/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/cash/status/initial/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/cash/status/initial/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/cash/status/initial/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/cash/status/initial/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

439

Properties

mediaInRollback/storage/storage/unit1/cash/status/out
The items moved from this storage unit by cash commands to another destination since the last replenishment of
this unit. This includes intermediate positions such as a stacker, where an item has been moved before moving to
the final destination such as another storage unit or presentation to a customer.
Counts for non-intermediate positions are reset if initial is set for this unit by Storage.GetStorage. See
descriptions for the counts which will not be reset by this command.
Intermediate position counts are reset when the intermediate position is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved from the storage unit by cash commands.
default: null

mediaInRollback/storage/storage/unit1/cash/status/out/presented
The items dispensed from this storage unit which are or were customer accessible. Will be null if no items were
presented.
default: null

mediaInRollback/storage/storage/unit1/cash/status/out/rejected
The items dispensed from this storage unit which were invalid and were diverted to a reject storage unit and were
not customer accessible during the operation. Will be null if no items were rejected.
default: null

mediaInRollback/storage/storage/unit1/cash/status/out/distributed
The items dispensed from this storage unit which were moved to a storage unit other than a reject storage unit
and were not customer accessible during the operation. Will be null if no items were distributed.
default: null

mediaInRollback/storage/storage/unit1/cash/status/out/unknown
The items dispensed from this storage unit which moved to an unknown position. Will be null if no items were
unknown.
default: null

mediaInRollback/storage/storage/unit1/cash/status/out/stacked
The items dispensed from this storage unit which are not customer accessible and are currently stacked awaiting
presentation to the customer. This item list can increase and decrease as items are moved around in the device.
This is not reset if initial is set for this unit by Storage.GetStorage. Will be null if no items were stacked.
default: null

mediaInRollback/storage/storage/unit1/cash/status/out/diverted
The items dispensed from this storage unit which are not customer accessible and were diverted to a temporary
location due to being invalid and have not yet been deposited in a storage unit. This item list can increase and
decrease as items are moved around in the device. This is not reset if initial is set for this unit by
Storage.GetStorage. Will be null if no items were diverted.
default: null

mediaInRollback/storage/storage/unit1/cash/status/out/transport
The items dispensed from this storage unit which are not customer accessible and which have jammed in the
transport. This item list can increase and decrease as items are moved around in the device. This is not reset if
initial is set for this unit by Storage.GetStorage. Will be null if no items apply.
default: null

440

Properties

mediaInRollback/storage/storage/unit1/cash/status/in
List of items inserted in this storage unit by cash commands from another source since the last replenishment of
this unit. This also reports items in the transport, where an item has jammed before being deposited in the
storage unit.
Counts other than transport are reset if initial is set for this unit by Storage.GetStorage. See descriptions for the
counts which will not be reset by this command.
The transport count is reset when it is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved into the storage unit by cash commands.
default: null

mediaInRollback/storage/storage/unit1/cash/status/in/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/cash/status/in/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

mediaInRollback/storage/storage/unit1/cash/status/in/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

mediaInRollback/storage/storage/unit1/cash/status/in/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

mediaInRollback/storage/storage/unit1/cash/status/in/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

mediaInRollback/storage/storage/unit1/cash/status/in/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

441

Properties

mediaInRollback/storage/storage/unit1/cash/status/accuracy
Describes the accuracy of the counts reported by out and in. If null in Storage.GetStorage, the hardware is not
capable of determining the accuracy, otherwise the following values are possible:

• accurate - The count is expected to be accurate. The notes were previously counted
and there have since been no events that might have introduced inaccuracy.

• accurateSet - The count is expected to be accurate. The counts were previously set and there have
since been no events that might have introduced inaccuracy.

• inaccurate - The count is likely to be inaccurate. A jam, picking fault, or some other event may
have resulted in a counting inaccuracy.

• unknown - The accuracy of count cannot be determined. This may be due to storage unit insertion or
some other hardware event.
default: null

mediaInRollback/storage/storage/unit1/cash/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in events if not
changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on sensors or counts.
• high - The storage unit is almost full (either sensor based or exceeded the

highThreshold.
• low - The storage unit is almost empty (either sensor based or below the

lowThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has hardwareSensors, this state is not set by counts.
default: null

mediaInRollback/storage/storage/unit1/cash/status/operationStatus
On some devices it may be possible to allow items to be dispensed in a recycling storage unit while deposit is
inoperable or vice-versa. This property allows the Service to report that one operation is possible while the other
is not, without taking the storage unit out of Service completely with status or replenishmentStatus.
Following values are possible:

• dispenseInoperative - Dispense operations are possible and deposit operations are not possible on
this recycling storage unit.

• depositInoperative - Deposit operations are possible and dispense operations are not possible on
this recycling storage unit.
If null in Storage.GetStorage, status and replenishmentStatus apply to both cash out and cash in operations.
default: null

mediaInRollback/storage/storage/unit1/card
The card related contents, status and configuration of the unit. May be null if not applicable.
default: null

mediaInRollback/storage/storage/unit1/card/capabilities
Indicates the card storage unit capabilities. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

442

Properties

mediaInRollback/storage/storage/unit1/card/capabilities/type
The type of card storage. This property may be null in events if the type did not change, otherwise will be one of
the following values:

• retain - The storage unit can retain cards.
• dispense - The storage unit can dispense cards.
• park - The storage unit can be used to temporarily store a card allowing another card to enter the

transport.
default: null

mediaInRollback/storage/storage/unit1/card/capabilities/hardwareSensors
Indicates whether the storage unit has hardware sensors that can detect threshold states. This property may be
null in events if it did not change.
default: null

mediaInRollback/storage/storage/unit1/card/configuration
Indicates the card storage unit configuration. This property can be null if the storage unit is being set using
Storage.SetStorage, or a change is being reported using Storage.StorageChangedEvent or
Storage.StorageThresholdEvent.

mediaInRollback/storage/storage/unit1/card/configuration/cardID
The identifier that may be used to identify the type of cards in the storage unit. This is only applicable to
dispense storage units and may be null in events if it did not change.
default: null

mediaInRollback/storage/storage/unit1/card/configuration/threshold
If the threshold value is non zero, hardware sensors in the storage unit do not trigger
Storage.StorageThresholdEvent events. This property may be null in events if it did not change.
If non zero, when count reaches the threshold value:

• For retain type storage units, a high threshold will be sent.
• For dispense type storage units, a low threshold will be sent.

Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/card/status
Indicates the card storage unit status. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

mediaInRollback/storage/storage/unit1/card/status/initialCount
The initial number of cards in the storage unit. This is only applicable to dispense type storage units. This
property may be null in events if it did not change.
This value is persistent.
Property value constraints:
minimum: 0
default: null

443

Properties

mediaInRollback/storage/storage/unit1/card/status/count
The number of cards in the storage unit.
If the storage unit type is dispense:

• This count also includes a card dispensed from the storage unit which has not been moved to either the
exit position or a dispense type storage unit.

• This count is decremented when a card from the card storage unit is moved to the exit position or
retained. If this value reaches zero it will not decrement further but will remain at zero.

If the storage unit type is retain:
• The count is incremented when a card is moved into the storage unit.

If the storage unit type is park:
• The count will increment when a card is moved into the storage module and decremented when a card

is moved out of the storage module.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/card/status/retainCount
The number of cards from this storage unit which are in a retain storage unit.
This is only applicable to dispense type storage units.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/card/status/replenishmentStatus
The state of the cards in the storage unit if it can be determined. Note that overall status of the storage unit must
be taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will be null. The property may also be null in events
if it did not change.
The following values are possible:

• ok - The storage unit is in a good state.
• full - The storage unit is full.
• high - The storage unit is almost full (either sensor based or above the

threshold).
• low - The storage unit is almost empty (either sensor based or below the

threshold).
• empty - The storage unit is empty.

default: null

mediaInRollback/storage/storage/unit1/check
The check related contents, status and configuration of the unit. May be null if not applicable.
default: null

mediaInRollback/storage/storage/unit1/check/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_IPM_MEDIA_BIN_INFO and WFS_INF_IPM_MEDIA_BIN_CAPABILITIES in XFS 3.x. May be
null in events if not changed.
default: null

mediaInRollback/storage/storage/unit1/check/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data and events if
not changing.
default: null

444

Properties

mediaInRollback/storage/storage/unit1/check/capabilities/types/mediaIn
The unit can accept items during Media In transactions. May be null in command data and events if not
changing.
default: null

mediaInRollback/storage/storage/unit1/check/capabilities/types/retract
Retract unit. Items can be retracted into this unit using Check.RetractMedia. May be null in command data and
events if not changing.
default: null

mediaInRollback/storage/storage/unit1/check/capabilities/sensors
The types of sensor the unit has. May be null in command data and events if not changing.
default: null

mediaInRollback/storage/storage/unit1/check/capabilities/sensors/empty
The unit contains a hardware sensor which reports when the unit is empty. May be null in command data and
events if not changing.
default: null

mediaInRollback/storage/storage/unit1/check/capabilities/sensors/high
The unit contains a hardware sensor which reports when the unit is nearly full. May be null in command data and
events if not changing.
default: null

mediaInRollback/storage/storage/unit1/check/capabilities/sensors/full
The unit contains a hardware sensor which reports when the unit is full. May be null in command data and events
if not changing.
default: null

mediaInRollback/storage/storage/unit1/check/configuration
Indicates what the storage unit is configured to do - where applicable the supported options can be derived from
capabilities. May be null in command data and events if not being modified.

mediaInRollback/storage/storage/unit1/check/configuration/binID
An application defined Storage Unit Identifier. This may be null in events if not changing.
default: null

mediaInRollback/storage/storage/unit1/check/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. May be null in command data and events if not being modified.
Property value constraints:
minimum: 1
default: null

mediaInRollback/storage/storage/unit1/check/configuration/retractHighThreshold
If specified and the storage unit is configured as retract, replenishmentStatus is set to high if the total number of
retract operations in the storage unit is greater than this number. May be null in command data and events if not
being modified.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/check/status
Indicates the storage unit status. May be null in events where status has not changed.
default: null

445

Properties

mediaInRollback/storage/storage/unit1/check/status/index
Assigned by the Service. Will be a unique number which can be used to determine usBinNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

mediaInRollback/storage/storage/unit1/check/status/initial
The check related counts as set at the last replenishment. May be null in events where status has not changed.
default: null

mediaInRollback/storage/storage/unit1/check/status/initial/mediaInCount
Count of items added to the storage unit due to Check operations. If the number of items is not counted this is
not reported and retractOperations is incremented as items are added to the unit. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/check/status/initial/count
Total number of items added to the storage unit due to any operations. If the number of items is not counted this
is not reported and retractOperations is incremented as items are added to the unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/check/status/initial/retractOperations
Total number of operations which resulted in items being retracted to the storage unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

mediaInRollback/storage/storage/unit1/check/status/in
The check items added to the unit since the last replenishment. May be null in events where status has not
changed.
default: null

mediaInRollback/storage/storage/unit1/check/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in command data
and events if not changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on a

full sensor or counts.
• high - The storage unit is almost full (either

high sensor based or exceeded the highThreshold or retractHighThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has the empty sensor, this state is not set by counts.
default: null

Event Messages

• Check.MediaPresentedEvent

446

9.2.5 Check.ReadImage
On devices where items can be physically rescanned or all the supported image formats can be generated during
this command (regardless of the images requested during the Check.MediaIn command), i.e. where rescan is true,
then this command is used to obtain additional images and/or reread the code line for media already in the device.

If rescan is false, this command is used to retrieve an image or code line that was initially obtained when the media
was initially processed (e.g. during the Check.MediaIn or Check.GetNextItem command). In this case, all images
required must have been previously been requested during the Check.MediaIn command.

The media has to be inserted using the command Check.MediaIn. If no media is present the command returns the
error code noMediaPresent.

Command Message

Payload (version 2.0) Type Required
{
 "mediaID": 4, integer 🗸🗸
 "codelineFormat": "e13b", string, null
 "image": [{ array (object), null
 "source": "back", string 🗸🗸
 "type": "jpg", string 🗸🗸
 "colorFormat": "full", string 🗸🗸
 "scanColor": "white" string 🗸🗸
 }]
}

Properties

mediaID
Specifies the sequence number (starting from 1) of a media item.
Property value constraints:
minimum: 1

codelineFormat
Specifies the code line format. May be null if no code line data is required. If supplied, it must be one of the
supported code line formats. The following values are possible:

• cmc7 - Read CMC7 code line [Ref. check-4].
• e13b - Read E13B code line [Ref. check-3].
• ocr - Read code line using OCR. The default or pre-configured OCR font will be used.
• ocra - Read code line using OCR font A [Ref. check-1].
• ocrb - Read code line using OCR font B [Ref. check-2].

default: null

image
An array specifying the images to be read for each item. May be null if no images are required.
default: null

image/source
Specifies the source. The following values are possible:

• front - The image is for the front of the media item.
• back - The image is for the back of the media item.

447

Properties

image/type
Specifies the format of the image. The following values are possible:

• tif - The image is in TIFF 6.0 format.
• wmf - The image is in WMF (Windows Metafile) format.
• bmp - The image is in Windows BMP format.
• jpg - The image is in JPG format.

image/colorFormat
Specifies the color format of the image. The following values are possible:

• binary - The image is binary (image contains two colors, usually the colors black and white).
• grayScale - The image is gray scale (image contains multiple gray colors).
• full - The image is full color (image contains colors like red, green, blue etc.).

image/scanColor
Selects the scan color. The following values are possible:

• red - The image is scanned with red light.
• green - The image is scanned with green light.
• blue - The image is scanned with blue light.
• yellow - The image is scanned with yellow light.
• white - The image is scanned with white light.
• infraRed - The image is scanned with infrared light.
• ultraViolet - The image is scanned with ultraviolet light.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidMediaID", string, null
 "data": { object, null
 "mediaID": 4, integer 🗸🗸
 "codelineData": "⑈22222⑈⑈123456⑈", string
 "magneticReadIndicator": "noMicr", string 🗸🗸
 "image": [{ array (object), null
 "imageSource": "back", string 🗸🗸
 "imageType": "jpg", string 🗸🗸
 "imageColorFormat": "full", string 🗸🗸
 "imageScanColor": "white", string 🗸🗸
 "imageStatus": "ok", string 🗸🗸
 "image": "wCAAAQgwMDAwMDAwMA==" string, null
 }],
 "insertOrientation": { object, null
 "codeline": "top", string, null
 "media": "down" string, null
 },
 "mediaSize": { object, null
 "longEdge": 205, integer

448

Payload (version 2.0) Type Required
 "shortEdge": 103 integer
 },
 "mediaValidity": "ok" string
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• mediaJammed - The media is jammed.
• scannerInop - Only images were requested by the application and these cannot be obtained because

the image scanner is inoperative.
• micrInop - Only MICR data was requested by the application and it cannot be obtained because the

MICR reader is inoperative.
• noMedia - No media is present in the device.
• invalidMediaID - The requested media ID does not exist.

default: null

data
Image data. May be null if an error occurred.
default: null

data/mediaID
Specifies the sequence number (starting from 1) of a media item.
Property value constraints:
minimum: 1

data/codelineData
Specifies the code line data. See Code line Characters.
default: ""

data/magneticReadIndicator
Specifies the type of technology used to read a MICR code line. The following values are possible:

• micr - The MICR code line was read using MICR technology and MICR characters were present.
• notMicr - The MICR code line was NOT read using MICR technology.
• noMicr - The MICR code line was read using MICR technology and no magnetic characters were read.
• unknown - It is unknown how the MICR code line was read.
• notMicrFormat - The code line is not a MICR format code line.
• notRead - No code line was read.

data/image
Array of image data. If the Device has determined the orientation of the media (i.e. insertOrientation is defined
and not set to "unknown"), then all images returned are in the standard orientation and the images will match the
image source requested by the application. This means that images will be returned with the code line at the
bottom, and the image of the front and rear of the media item will be returned in the structures associated with
the "front" and "back" image sources respectively.
default: null

data/image/imageSource
Specifies the source. The following values are possible:

• front - The image is for the front of the media item.
• back - The image is for the back of the media item.

449

Properties

data/image/imageType
Specifies the format of the image. The following values are possible:

• tif - The image is in TIFF 6.0 format.
• wmf - The image is in WMF (Windows Metafile) format.
• bmp - The image is in Windows BMP format.
• jpg - The image is in JPG format.

data/image/imageColorFormat
Specifies the color format of the image. The following values are possible:

• binary - The image is binary (image contains two colors, usually the colors black and white).
• grayScale - The image is gray scale (image contains multiple gray colors).
• full - The image is full color (image contains colors like red, green, blue etc.).

data/image/imageScanColor
Selects the scan color. The following values are possible:

• red - The image is scanned with red light.
• green - The image is scanned with green light.
• blue - The image is scanned with blue light.
• yellow - The image is scanned with yellow light.
• white - The image is scanned with white light.
• infraRed - The image is scanned with infrared light.
• ultraViolet - The image is scanned with ultraviolet light.

data/image/imageStatus
Status of the image data. The following values are possible:

• ok - The data is OK.
• sourceNotSupported - The data source or image attributes are not supported by the Service, e.g.,

scan color not supported.
• sourceMissing - The image could not be obtained.

data/image/image
Base64 encoded image. May be null if no image was obtained.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

data/insertOrientation
This value reports how the media item was actually inserted into the input position (from the customer's
perspective). The full orientation can be determined as a combination of codeline and media values. If the
orientation is unknown, this will be null.
default: null

data/insertOrientation/codeline
Specifies the orientation of the code line. The following values are possible, or null if unknown.

• right - The code line is to the right.
• left - The code line is to the left.
• bottom - The code line is to the bottom.
• top - The code line is to the top.

default: null

data/insertOrientation/media
Specifies the orientation of the media. The following values are possible, or null if unknown:

• up - The front of the media (the side with the code line) is facing up.
• down - The front of the media (the side with the code line) is facing down.

default: null

450

Properties

data/mediaSize
Specifies the size of the media item. Will be null if the device does not support media size measurement or no
size measurements are known.
default: null

data/mediaSize/longEdge
Specifies the length of the long edge of the media in millimeters, or 0 if unknown.
Property value constraints:
minimum: 0
default: 0

data/mediaSize/shortEdge
Specifies the length of the short edge of the media in millimeters, or 0 if unknown.
Property value constraints:
minimum: 0
default: 0

data/mediaValidity
Media items may have special security features which can be detected by the device. This specifies whether the
media item is suspect or valid, allowing the application the choice in how to further process a media item that
could not be confirmed as being valid. The following values are possible:

• ok - The media item is valid.
• suspect - The validity of the media item is suspect.
• unknown - The validity of the media item is unknown.
• noValidation - No specific security features were evaluated.

default: "ok"

Event Messages
None

451

9.2.6 Check.PresentMedia
This command is used to present media items to the customer.

Applications can use this command to return refused items without terminating the media-in transaction. This
allows customers to correct the problem with the media item and reinsert during execution of a subsequent
Check.MediaIn command.

This command is also used to return items after a Check.MediaInEnd or Check.MediaInRollBack command when
presentControl is false.

A Check.MediaPresentedEvent event is generated when media is presented and a Check.MediaTakenEvent event is
generated when the media is taken (if the position has a taken sensor itemsTakenSensor is true.

This command completes when the last bunch of media items to be returned to the customer has been presented, but
before the last bunch is taken.

Command Message

Payload (version 2.0) Type Required
{
 "source": { object, null
 "position": "refused" string 🗸🗸
 }
}

Properties

source
Specifies the position where items are to be returned from. If null, all items are returned from all positions in a
sequence determined by the Service, otherwise an individual position must be specified.
default: null

source/position
Specifies the position.
It is specified as one of the following values:

• input - The input position.
• refused - The refused media position.
• rebuncher - The refuse/return re-buncher.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaJammed" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• noMedia - No media is present in the device.
• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed.
• positionNotEmpty - One of the input/output/refused positions is not empty and items cannot be

inserted until the media items in the position are removed.
default: null

452

Event Messages

• Check.MediaPresentedEvent

453

9.2.7 Check.RetractMedia
The media is removed from its present position (media present in device, media entering, unknown position) and
stored in the area specified in the input parameters.

A Storage.StorageThresholdEvent event is sent if a high or full condition is reached as a result of this command. If
the storage unit is already full and the command cannot be executed, an error is returned and the media remains in
its present position.

If media items are to be endorsed/stamped during this operation, then the SetMediaParameters command must be
called prior to the Check.RetractMedia command. Where endorsing is specified, the same text will be printed on all
media items that are detected.

This command ends the current media-in transaction.

If no items are in the device the command will complete with the noMediaPresent error and the
mediaInTransaction will be set to retract.

Command Message

Payload (version 2.0) Type Required
{
 "retractLocation": "rebuncher" string 🗸🗸
}

Properties

retractLocation
Specifies the location for the retracted media, on input where it is to be retracted to, on output where it was
retracted to. See retractLocation to determine the supported locations. This can take one of the following values:

• stacker - The device stacker.
• transport - The device transport.
• rebuncher - The device rebuncher.
• <storage unit identifier> - A storage unit as specified by identifier.

Property value constraints:
pattern: ^stacker$|^transport$|^rebuncher$|^unit[0-9A-Za-z]+$

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "shutterFail", string, null
 "media": { object, null
 "count": "1", string
 "retractLocation": "rebuncher" string 🗸🗸
 }
}

454

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• noMediaPresent - No media present on retract. Either there was no media present (in a position to be
retracted) when the command was called or the media was removed during the retract.

• mediaJammed - The media is jammed. Operator intervention is required.
• stackerFull - The stacker or re-buncher is full.
• invalidBin - The specified storage unit cannot accept retracted items.
• noBin - The specified storage unit does not exist.
• mediaBinError - A storage unit caused a problem. A Storage.StorageErrorEvent will be posted with

the details.
• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• foreignItemsDetected - Foreign items have been detected in the input position.

default: null

media
The details of the media retracted. May be null if no media was retracted.
default: null

media/count
Contains the number of media items retracted as a result of this command. The following values are possible:

• <number> - The number of items retracted.
• unknown - The number of items is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]+$

media/retractLocation
Specifies the location for the retracted media, on input where it is to be retracted to, on output where it was
retracted to. See retractLocation to determine the supported locations. This can take one of the following values:

• stacker - The device stacker.
• transport - The device transport.
• rebuncher - The device rebuncher.
• <storage unit identifier> - A storage unit as specified by identifier.

Property value constraints:
pattern: ^stacker$|^transport$|^rebuncher$|^unit[0-9A-Za-z]+$

Event Messages

• Storage.StorageErrorEvent

455

9.2.8 Check.Reset
This command is used by the application to perform a hardware reset which will attempt to return the device to a
known good state. This command does not override a lock obtained on another application or service handle.

The device will attempt to retract or eject any items found anywhere within the device. This may not always be
possible because of hardware problems. One or more Check.MediaDetectedEvent events will inform the
application where items were actually moved to.

If media items are to be endorsed/stamped during this operation, then the SetMediaParameters must be called prior
to the Check.Reset command. Where endorsing is specified, the same text will be printed on all media items that
are detected.

This command ends a media-in transaction started by the Check.MediaIn command.

Command Message

Payload (version 2.0) Type Required
{
 "mediaControl": "transport" string 🗸🗸
}

Properties

mediaControl
Specifies the manner in which the media should be handled, as one of the following values. See resetControl to
determine the supported options.

• eject - Eject the media, i.e. return the media to the customer. Note that more than one position may be
used to return media.

• <storage unit identifier> - The media item is in a storage unit as specified by identifier.
• transport - Retract the media to the transport.
• rebuncher - Retract the media to the rebuncher.

Property value constraints:
pattern: ^eject$|^transport$|^rebuncher$|^unit[0-9A-Za-z]+$

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "shutterFail" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed. Operator intervention is required.
• mediaBinError - A storage unit caused a problem. A Storage.StorageErrorEvent will be posted with

the details.
• invalidBin - The specified storage unit cannot accept retracted items.

default: null

Event Messages

• Storage.StorageErrorEvent
• Check.MediaPresentedEvent

456

9.2.9 Check.GetNextItem
This command is used to get the next item from the multi-item feed unit and capture the item data. The data and the
format of the data that is generated by this command are defined by the input parameters of the Check.MediaIn
command. The media data is reported via the Check.MediaDataEvent event.

This command must be supported by all Services where the hardware does not have a stacker or where the Service
supports the application making the accept/refuse decision. On single item feed devices this command simply
returns the error code noMediaPresent. This allows a single application flow to be used on all devices without a
stacker.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noItems", string, null
 "mediaFeeder": "notEmpty" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• noItems - There were no items present in the device.
• mediaJammed - The media is jammed.
• refusedItems - Programming error, refused items that must be returned have not been presented.
• positionNotEmpty - One of the input/output/refused positions is not empty.
• scannerInop - Only images were requested by the application and these cannot be obtained because

the image scanner is inoperative.
• micrInop - Only MICR data was requested by the application and it cannot be obtained because the

MICR reader is inoperative.
• feederInop - The media feeder is inoperative.

default: null

mediaFeeder
Supplies the state of the media feeder. This value indicates if there are items on the media feeder waiting for
processing via the Check.GetNextItem command. If null, the device has no media feeder or the capability to
report the status of the media feeder is not supported by the device. This value can be one of the following
values:

• empty - The media feeder is empty.
• notEmpty - The media feeder is not empty.
• inoperative - The media feeder is inoperative.
• unknown - Due to a hardware error or other condition, the state of the media feeder cannot be

determined.
default: null

Event Messages

• Check.MediaRefusedEvent
• Check.MediaDataEvent

457

9.2.10 Check.ActionItem
This command is used to cause the predefined actions (move item to destination, stamping, endorsing, re-imaging)
to be executed on the current media item. This command only applies to devices without stackers and on devices
with stackers this command is not supported.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "inkOut" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaBinError - A storage unit caused a problem. A Storage.StorageErrorEvent

will be posted with the details.
• mediaJammed - The media is jammed.
• tonerOut - Toner or ink supply is empty or printing contrast with ribbon is not sufficient.
• inkOut - No stamping possible, stamping ink supply empty.
• noMediaPresent - There were no items present in the device.
• scannerInop - The scanner is inoperative.
• refusedItems - Programming error, refused items that must be returned have not been presented.
• positionNotEmpty - One of the input/output/refused positions is not empty.

default: null

Event Messages

• Check.MediaPresentedEvent
• Check.MediaDataEvent
• Storage.StorageErrorEvent

458

9.2.11 Check.ExpelMedia
The media that has been presented to the customer will be expelled out of the device.

This command completes after the bunch has been expelled from the device.

This command does not end the current media-in transaction. The application must deal with any media remaining
within the device, e.g., by using the Check.MediaInRollBack, Check.MediaInEnd, or Check.RetractMedia
command.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "shutterFail" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed.
• noItems - There were no items present in the device to expel.

default: null

Event Messages
None

459

9.2.12 Check.AcceptItem
This command is used by applications to indicate if the current media item should be accepted or refused.
Applications only use this command when the Check.MediaIn command is used in the mode where the application
can decide if each physically acceptable media item should be accepted or refused, i.e. applicationRefuse is true.

Command Message

Payload (version 2.0) Type Required
{
 "accept": true boolean 🗸🗸
}

Properties

accept
Specifies if the item should be accepted or refused. If true then the item is accepted and moved to the stacker. If
false then the item is moved to the re-buncher/refuse position.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaJammed" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• mediaJammed - The media is jammed.
• noItems - There were no items present in the device.
• refusedItems - Programming error, refused items that must be returned have not been presented.
• positionNotEmpty - One of the input/output/refused positions is not empty.

default: null

Event Messages
None

460

9.2.13 Check.SupplyReplenish
After the supplies have been replenished, this command is used to indicate that one or more supplies have been
replenished and are expected to be in a healthy state.

Hardware that cannot detect the level of a supply and reports on the supply's status using metrics (or some other
means), must assume the supply has been fully replenished after this command is issued. A
Common.StatusChangedEvent event must be broadcast to report that the state has changed.

Hardware that can detect the level of a supply must update its status based on its sensors, generate a
Common.StatusChangedEvent event if appropriate, and succeed the command even if the supply has not been
replenished. If it has already detected the level and reported the new status before this command was issued, the
command must succeed and no event is required.

Command Message

Payload (version 2.0) Type Required
{
 "toner": true, boolean
 "ink": false boolean
}

Properties

toner
Specifies whether the toner supply was replenished.
default: false

ink
Specifies whether the ink supply was replenished.
default: false

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

461

9.2.14 Check.SetMediaParameters
This command is used to predefine parameters for the specified media item or all items. The command can be
called multiple times to specify individual parameters for each required media item. Any parameter specified
replaces any parameters specified for the same media item (or items) on previous commands.

The parameters which can be specified include:

• Destination
• Endorsements, i.e., text to be printed on the media or whether the media is to be stamped
• Images of the media after it has been printed on or stamped

The media is not moved immediately by this command. The requested actions are performed during subsequent
commands which move the media:

• On devices with stackers, Check.MediaInEnd
• On devices without stackers, Check.ActionItem

If the bunch is returned with Check.MediaInRollback, none of the requested actions will be performed.

If the media is to be returned to the customer using Check.MediaInEnd or Check.ActionItem, the media can still be
endorsed if endorse is true or imaged if endorseImage is true.

The Service will determine which storage unit to use for any items that have not had a destination set by the
application.

Command Message

Payload (version 2.0) Type Required
{
 "mediaID": 4, integer, null
 "destination": "unit1", string 🗸🗸
 "stamp": false, boolean
 "printData": "Text to print on the check.", string
 "image": [{ array (object), null
 "source": "back", string 🗸🗸
 "type": "jpg", string 🗸🗸
 "colorFormat": "full", string 🗸🗸
 "scanColor": "white" string 🗸🗸
 }]
}

Properties

mediaID
Specifies the sequence number of a media item. Valid IDs are 1 to the maximum media ID assigned within the
transaction - see mediaID. If null, all media items are selected.
Property value constraints:
minimum: 1
default: null

462

Properties

destination
Specifies where the item(s) specified by mediaID are to be moved to. Following values are possible:

• customer - The item or items are to be returned to the customer.
• <storage unit identifier> - The item or items are to be sored in a storage unit with matching

identifier.
Property value constraints:
pattern: ^customer$|^unit[0-9A-Za-z]+$

stamp
Specifies whether the media will be stamped. If not specified, the media will not be stamped.
default: false

printData
Specifies the data that will be printed on the media item that is entered by the customer. If a character is not
supported by the device it will be replaced by a vendor dependent substitution character. If not specified, no text
will be printed.
For devices that can print multiple lines, each line is separated by a Carriage Return (Unicode 0x000D) and Line
Feed (Unicode 0x000A) sequence. For devices that can print on both sides, the front and back print data are
separated by a Carriage Return (Unicode 0x000D) and a Form Feed (Unicode 0x000C) sequence. In this case the
data to be printed on the back is the first set of data, and the front is the second set of data.
default: ""

image
Specifies the images required. May be null if no images are required.
default: null

image/source
Specifies the source. The following values are possible:

• front - The image is for the front of the media item.
• back - The image is for the back of the media item.

image/type
Specifies the format of the image. The following values are possible:

• tif - The image is in TIFF 6.0 format.
• wmf - The image is in WMF (Windows Metafile) format.
• bmp - The image is in Windows BMP format.
• jpg - The image is in JPG format.

image/colorFormat
Specifies the color format of the image. The following values are possible:

• binary - The image is binary (image contains two colors, usually the colors black and white).
• grayScale - The image is gray scale (image contains multiple gray colors).
• full - The image is full color (image contains colors like red, green, blue etc.).

image/scanColor
Selects the scan color. The following values are possible:

• red - The image is scanned with red light.
• green - The image is scanned with green light.
• blue - The image is scanned with blue light.
• yellow - The image is scanned with yellow light.
• white - The image is scanned with white light.
• infraRed - The image is scanned with infrared light.
• ultraViolet - The image is scanned with ultraviolet light.

463

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidMediaID" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• invalidMediaID - The requested media ID does not exist.
• invalidBin - The specified storage unit cannot accept items.
• noBin - The specified storage unit does not exist.
• mediaBinFull - The storage unit is already full and no media can be placed in the specified storage

unit.
• mediaJammed - The media is jammed.
• scannerInop - Only images were requested by the application and these cannot be obtained because

the image scanner is inoperative.
• noItems - There were no items present in the device.
• tonerOut - Toner or ink supply is empty or printing contrast with ribbon is not sufficient.
• inkOut - No stamping possible, stamping ink supply empty.

default: null

Event Messages
None

464

9.3 Event Messages

9.3.1 Check.NoMediaEvent
This reports that the physical media must be inserted into the device in order for the command to proceed.

Event Message

Payload (version 2.0)
This message does not define any properties.

465

9.3.2 Check.MediaInsertedEvent
This specifies that the physical media has been inserted into the device.

Event Message

Payload (version 2.0)
This message does not define any properties.

466

9.3.3 Check.MediaRefusedEvent
This is sent when a media item is refused. One message is sent for every media item or bunch of media items that
has been refused.

Event Message

Payload (version 2.0) Type Required
{
 "reason": "metal", string 🗸🗸
 "location": "refused", string 🗸🗸
 "presentRequired": true, boolean 🗸🗸
 "mediaSize": { object, null
 "longEdge": 205, integer
 "shortEdge": 103 integer
 }
}

Properties

reason
Specified the reason why the media was refused. Specified as one of the following values:

• foreignItems - Foreign items were detected in the input position.
• stackerFull - The stacker is full or the maximum number of items that the application wants to be

allowed on the stacker has been reached (see usMaxMediaOnStacker input parameter in the
WFS_CMD_IPM_MEDIA_IN command).

• codelineInvalid - The code line data was found but was invalid.
• invalidMedia - The media item is not a check, and in the case of Mixed Media processing not a cash

item either.
• tooLong - The media item (or bunch of items) long edge was too long.
• tooShort - The media item (or bunch of items) long edge was too short.
• tooWide - The media item (or bunch of items) short edge was too wide.
• tooNarrow - The media item (or bunch of items) short edge was too narrow.
• tooThick - The media item was too thick.
• invalidOrientation - The media item was inserted in an invalid orientation.
• doubleDetect - The media items could not be separated.
• refusePosFull - There are too many items in the refuse area. The refused items must be returned to

the customer before any additional media items can be accepted.
• returnBlocked - Processing of the items did not take place as the bunch of items is blocking the

return of other items.
• invalidBunch - Processing of the items did not take place as the bunch of items presented is invalid,

e.g. it is too large or was presented incorrectly.
• otherItem - The item was refused for some reason not covered by the other reasons.
• otherBunch - The bunch was refused for some reason not covered by the other reasons.
• jamming - The media item is causing a jam.
• metal - Metal (e.g. staple, paperclip, etc) was detected in the input position.

location
Specifies where the refused media should be presented to the customer from. It can be one of the following
values:

• input - The input position.
• refused - The refused media position.
• rebuncher - The refuse/return re-buncher.
• stacker - The stacker.

467

Properties

presentRequired
This indicates whether the media needs to be presented to the customer before any additional media movement
commands can be executed. If true then the media must be presented to the customer via the
Check.PresentMedia command before further media movement commands can be executed. If false then the
device can continue without the media being returned to the customer.

mediaSize
Specifies the size of the media item. Will be null if the device does not support media size measurement or no
size measurements are known.
default: null

mediaSize/longEdge
Specifies the length of the long edge of the media in millimeters, or 0 if unknown.
Property value constraints:
minimum: 0
default: 0

mediaSize/shortEdge
Specifies the length of the short edge of the media in millimeters, or 0 if unknown.
Property value constraints:
minimum: 0
default: 0

468

9.3.4 Check.MediaDataEvent
This message returns the code line and all the images requested for each item processed. This can be generated
during the Check.MediaIn, Check.MediaInEnd, Check.GetNextItem and Check.ActionItem commands. One
message is generated for each item processed, no message is generated for refused items.

Event Message

Payload (version 2.0) Type Required
{
 "mediaID": 4, integer 🗸🗸
 "codelineData": "⑈22222⑈⑈123456⑈", string
 "magneticReadIndicator": "noMicr", string 🗸🗸
 "image": [{ array (object), null
 "imageSource": "back", string 🗸🗸
 "imageType": "jpg", string 🗸🗸
 "imageColorFormat": "full", string 🗸🗸
 "imageScanColor": "white", string 🗸🗸
 "imageStatus": "ok", string 🗸🗸
 "image": "wCAAAQgwMDAwMDAwMA==" string, null
 }],
 "insertOrientation": { object, null
 "codeline": "top", string, null
 "media": "down" string, null
 },
 "mediaSize": { object, null
 "longEdge": 205, integer
 "shortEdge": 103 integer
 },
 "mediaValidity": "ok" string
}

Properties

mediaID
Specifies the sequence number (starting from 1) of a media item.
Property value constraints:
minimum: 1

codelineData
Specifies the code line data. See Code line Characters.
default: ""

469

Properties

magneticReadIndicator
Specifies the type of technology used to read a MICR code line. The following values are possible:

• micr - The MICR code line was read using MICR technology and MICR characters were present.
• notMicr - The MICR code line was NOT read using MICR technology.
• noMicr - The MICR code line was read using MICR technology and no magnetic characters were read.
• unknown - It is unknown how the MICR code line was read.
• notMicrFormat - The code line is not a MICR format code line.
• notRead - No code line was read.

image
Array of image data. If the Device has determined the orientation of the media (i.e. insertOrientation is defined
and not set to "unknown"), then all images returned are in the standard orientation and the images will match the
image source requested by the application. This means that images will be returned with the code line at the
bottom, and the image of the front and rear of the media item will be returned in the structures associated with
the "front" and "back" image sources respectively.
default: null

image/imageSource
Specifies the source. The following values are possible:

• front - The image is for the front of the media item.
• back - The image is for the back of the media item.

image/imageType
Specifies the format of the image. The following values are possible:

• tif - The image is in TIFF 6.0 format.
• wmf - The image is in WMF (Windows Metafile) format.
• bmp - The image is in Windows BMP format.
• jpg - The image is in JPG format.

image/imageColorFormat
Specifies the color format of the image. The following values are possible:

• binary - The image is binary (image contains two colors, usually the colors black and white).
• grayScale - The image is gray scale (image contains multiple gray colors).
• full - The image is full color (image contains colors like red, green, blue etc.).

image/imageScanColor
Selects the scan color. The following values are possible:

• red - The image is scanned with red light.
• green - The image is scanned with green light.
• blue - The image is scanned with blue light.
• yellow - The image is scanned with yellow light.
• white - The image is scanned with white light.
• infraRed - The image is scanned with infrared light.
• ultraViolet - The image is scanned with ultraviolet light.

image/imageStatus
Status of the image data. The following values are possible:

• ok - The data is OK.
• sourceNotSupported - The data source or image attributes are not supported by the Service, e.g.,

scan color not supported.
• sourceMissing - The image could not be obtained.

470

Properties

image/image
Base64 encoded image. May be null if no image was obtained.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

insertOrientation
This value reports how the media item was actually inserted into the input position (from the customer's
perspective). The full orientation can be determined as a combination of codeline and media values. If the
orientation is unknown, this will be null.
default: null

insertOrientation/codeline
Specifies the orientation of the code line. The following values are possible, or null if unknown.

• right - The code line is to the right.
• left - The code line is to the left.
• bottom - The code line is to the bottom.
• top - The code line is to the top.

default: null

insertOrientation/media
Specifies the orientation of the media. The following values are possible, or null if unknown:

• up - The front of the media (the side with the code line) is facing up.
• down - The front of the media (the side with the code line) is facing down.

default: null

mediaSize
Specifies the size of the media item. Will be null if the device does not support media size measurement or no
size measurements are known.
default: null

mediaSize/longEdge
Specifies the length of the long edge of the media in millimeters, or 0 if unknown.
Property value constraints:
minimum: 0
default: 0

mediaSize/shortEdge
Specifies the length of the short edge of the media in millimeters, or 0 if unknown.
Property value constraints:
minimum: 0
default: 0

mediaValidity
Media items may have special security features which can be detected by the device. This specifies whether the
media item is suspect or valid, allowing the application the choice in how to further process a media item that
could not be confirmed as being valid. The following values are possible:

• ok - The media item is valid.
• suspect - The validity of the media item is suspect.
• unknown - The validity of the media item is unknown.
• noValidation - No specific security features were evaluated.

default: "ok"

471

9.3.5 Check.MediaRejectedEvent
This reports that an attempt to insert media into the device has been rejected before the media was fully inside the
device, i.e. no Check.MediaInsertedEvent event has been generated. Rejection of the media will cause the
Check.MediaIn command to complete with a mediaRejected error, at which point the media should be removed.

Event Message

Payload (version 2.0) Type Required
{
 "reason": "metal" string 🗸🗸
}

Properties

reason
Specified the reason why the media was rejected. Specified as one of the following values:

• long - The media was too long.
• thick - The media was too thick.
• double - More than one media item was detected (this value only applies to devices without a media

feeder).
• transport - The media could not be moved inside the device.
• shutter - The media was rejected due to the shutter failing to close.
• removed - The media was removed (no Check.MediaTakenEvent is expected).
• metal - Metal (e.g. staple, paperclip, etc) was detected in the input position.
• foreignItems - Foreign items were detected in the input position.
• other - The item was rejected for some reason not covered by the other reasons.

472

9.3.6 Check.MediaPresentedEvent
This indicates that media has been presented to the customer for removal.

Event Message

Payload (version 2.0) Type Required
{
 "position": "refused", string 🗸🗸
 "bunchIndex": 2, integer 🗸🗸
 "totalBunches": "1" string
}

Properties

position
Specifies the position.
It is specified as one of the following values:

• input - The input position.
• refused - The refused media position.
• rebuncher - The refuse/return re-buncher.

bunchIndex
Specifies the index (starting from one) of the presented bunch (one or more items presented as a bunch).
Property value constraints:
minimum: 1

totalBunches
Specifies the total number of bunches to be returned from all positions. The total represents the number of
bunches that will be returned as a result of a single command that presents media. The following values are
possible:

• <number> - The number of bunches to be presented.
• unknown - More than one bunch is required but the precise number is unknown.

Property value constraints:
pattern: ^unknown$|^[0-9]+$
default: "1"

473

9.4 Unsolicited Messages

9.4.1 Check.MediaTakenEvent
This is sent when the media is taken by the customer.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "refused" string 🗸🗸
}

Properties

position
Specifies the position.
It is specified as one of the following values:

• input - The input position.
• refused - The refused media position.
• rebuncher - The refuse/return re-buncher.

474

9.4.2 Check.MediaDetectedEvent
This service event is generated when media is detected in the device during a Check.Reset.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "customer" string 🗸🗸
}

Properties

position
Specifies the media position after the operation, as one of the following values:

• <storage unit identifier> - The media item was retracted to a storage unit as specified by
identifier.

• device - The media is in the device.
• position - The media is at one or more of the input, output and refused positions.
• jammed - The media is jammed in the device.
• customer - The media has been returned and taken by the customer.
• unknown - The media is in an unknown position.

Property value constraints:
pattern: ^device$|^position$|^jammed$|^customer$|^unknown$|^unit[0-9A-Za-z]+$

475

9.4.3 Check.ShutterStatusChangedEvent
Within the limitations of the hardware sensors this service event is generated whenever the status of a shutter
changes. The shutter status can change because of an explicit, implicit or manual operation depending on how the
shutter is operated.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "refused", string 🗸🗸
 "shutter": "closed" string, null
}

Properties

position
Specifies the position.
It is specified as one of the following values:

• input - The input position.
• refused - The refused media position.
• rebuncher - The refuse/return re-buncher.

shutter
Specifies the state of the shutter. This property is null in Common.Status if the physical device has no shutter or
shutter state reporting is not supported, otherwise the following values are possible:

• closed - The shutter is operational and is closed.
• open - The shutter is operational and is open.
• jammed - The shutter is jammed and is not operational.
• unknown - Due to a hardware error or other condition, the state of the shutter cannot be determined.

default: null

476

10. Mixed Media
This chapter provides information on how to perform MixedMedia transactions. A Mixed Media transaction is
defined as a single transaction on a single device which can accept different kinds of media, specifically cash and
checks.

It is possible that the device may process items in mixed bunches within one operation, or require that the different
media types are processed in separate operations. The MixedMedia interface defines what type of mixed media
transactions the device is capable of and configured for and methods to choose which type of transaction should be
performed.

This interface would only be supported by devices which support MixedMedia functionality. A device which can
accept cash and checks but not in one transaction would not support this interface.

10.1 General Information

10.1.1 Introduction
The MixedMedia service is defined to support hardware devices exists which are able to accept cash and checks in
the same transaction either in a single or multiple bunches. The service provides a simple way to report the device's
capability to perform such a transaction as well as the methods required to perform such a transaction.

If mixed media is enabled (both cashAccept and checkAccept are true), then moving the media can be performed
using either CashAcceptor or Check commands. While equivalent commands such as CashAcceptor.CashInEnd and
Check.MediaInEnd perform the same function and could therefore be used interchangeably, it is recommended to
use one or other to move the media as this allows existing non mixed media transaction flows to be re-used. The
only real advantage to either is that check image parameters can be specified using Check.MediaIn and no such
parameters exist in the CashAcceptor service, therefore default or pre-configured check image parameters have to
apply.

The interface follows these principles:

• A transaction is not mixed unless the device is capable of performing such an operation and configured to
do so.

• If the transaction is accepted and media is deposited to storage units, the same storage units are used
regardless of whether the transaction was performed using CashAcceptor or Check commands.

• Media acceptance is based on the current configuration appropriate to the media, for example if EUR 500
has been disabled for acceptance using CashAcceptor.ConfigureNoteTypes, then it is also disabled during
a mixed media transaction.

• Events appropriate to the media detected are sent, so for example a Check.MediaDataEvent is sent if a
check is detected, while cash events such as CashManagement.InfoAvailableEvent are posted if cash items
are detected. If a given item is not detected as either media type (for example, not cash and no codeline
detected), it can be reported using either interface.

• If supported, the type of transaction can be changed using the MixedMedia.SetMode command. Example
usage may be that customers of the financial institution may be permitted to perform mixed media
transactions while customers of other financial institution may only be permitted to deposit cash. Another
example may be that mixed media transactions could be disabled if there is no storage unit available to
store checks, allowing check only transactions to return all the media after imaging and endorsement.

• If the media is to be cleared to a single storage unit using a retract or reset command, the storage unit
should be capable of accepting all such media. If media is to be sorted to appropriate units, for example by
specifying itemCassette in CashManagement.Reset, then media are sorted to storage units which support
the media types detected.

10.1.2 Example Transaction flows
This section describes some example mixed media transaction flows. In all cases, equivalent functionality can be
achieved using CashAcceptor or Check commands, while events appropriate to the items are sent as they are
processed. Some of the example flows are implemented using both using interfaces to illustrate this.

477

Successful CashAcceptor Mixed Media Transaction
This flow describes a successful MixedMedia transaction flow using CashAcceptor commands to move the media.
Successful Check Mixed Media Transaction shows the equivalent flow using Check commands to move the media.
The service supports the MixedMedia interface and a mixed media transction can be offered to this customer.

478

Successful Check Mixed Media Transaction
This flow describes a successful MixedMedia transaction flow using Check commands to move the media.
Successful CashAcceptor Mixed Media Transaction shows the equivalent flow using CashAcceptor commands to
move the media. The service supports the MixedMedia interface and a mixed media transction can be offered to
this customer.

479

Canceled CashAcceptor Mixed Media Transaction
This flow describes a MixedMedia transaction flow using CashAcceptor commands to move the media, where the
transaction is canceled by the application or customer and the media is therefore rolled back. The flow is identical
to Successful CashAcceptor Mixed Media Transaction up to Display amount inserted.

Canceled Check Mixed Media Transaction
This flow describes a MixedMedia transaction flow using Check commands to move the media, where the
transaction is canceled by the application or customer and the media is therefore rolled back. The flow is identical
to Successful Check Mixed Media Transaction up to Display amount inserted.

480

Successful CashAcceptor Mixed Media Transaction with item(s) refused
This flow describes a successful MixedMedia transaction flow using CashAcceptor commands to move the media.
One item is refused and taken by the customer. The flow is identical to Successful CashAcceptor Mixed Media
Transaction up to Accept Items. The transaction can also be performed using equivalent Check commands.

481

CashAcceptor Mixed Media Transaction with item(s) retracted
This flow describes a MixedMedia transaction flow using CashAcceptor commands to move the media, where the
transaction is canceled by the application or customer and the media is therefore rolled back, but the media is not
taken by the customer and is therefore retracted after a timeout expires. The same media which was rolled back is
retracted. The flow is identical to Successful CashAcceptor Mixed Media Transaction up to Prompt Customer.

482

CashAcceptor Mixed Media Transaction with items returned, some taken and others retracted
This flow describes a MixedMedia transaction flow using CashAcceptor commands to move the media, where the
transaction is canceled by the application or customer and the media is therefore rolled back. The customer takes
one of the items rolled back but not all, therefore the remaining item is retracted after a timeout expires. The flow is
identical to Successful CashAcceptor Mixed Media Transaction up to Prompt Customer.

483

Check Mixed Media Transaction where items jam during Rollback
This flow describes a MixedMedia transaction flow using Check commands to move the media. A hardware error
occurs during the transaction therefore Check.Reset is used to recover and in this case the media was successfully
returned to the customer and taken. The same flow can be performed using equivalent CashAcceptor commands.
The flow is identical to Successful Check Mixed Media Transaction up to Display amount inserted.

484

485

10.2 Command Messages

10.2.1 MixedMedia.SetMode
This command is used to set the transaction mode for the device and is only applicable for MixedMedia processing.
The mode determines which type of item the device will process in subsequent transactions.

An example of how this can be used is on a device which can accept cash and checks. The decision whether to
allow acceptance of either or both types of media could be based on the individual customer, or switched
dynamically based on bank or local requirements.

The mode:

• Applies to all subsequent transactions on this device
• Is persistent
• Is unaffected by a device reset by for example a Check.Reset or reset on another interface
• Fails if a transaction is in progress on the device if the dynamic property is false
• Fails with the invalidData error where an attempt is made to set a mode that is not supported.

The current mode is reported by mixedMedia status. If the command is successful, status is updated.

Command Message

Payload (version 2.0) Type Required
{
 "modes": { object 🗸🗸
 "cashAccept": true, boolean, null
 "checkAccept": true boolean, null
 }
}

Properties

modes
Specifies the required mixed media modes.
Property value constraints:
minProperties: 1

modes/cashAccept
Specifies whether transactions can accept cash. This property may be null if no change required or its state has
not changed in Common.StatusChangedEvent.
default: null

modes/checkAccept
Specifies whether transactions can accept checks. This property may be null if no change required or its state has
not changed in Common.StatusChangedEvent.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "transactionActive" string, null
}

486

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• transactionActive - A transaction is active and
dynamic is false.
default: null

Event Messages
None

487

11. Key Management Interface
This chapter defines the Key Management interface functionality and messages.

This section describes the general interface for the following functions:

• Loading of encryption keys.
• EMV 4.0 PIN blocks, EMV 4.0 public key loading, static and dynamic data verification.

Important Notes:

• This revision of this specification does not define all key management procedures; some key management
is still vendor-specific.

• Key space management is customer-specific, and is therefore handled by vendor-specific mechanisms.

Key values are passed to the API as binary hexadecimal values, for example: 0123456789ABCDEF = 0x01 0x23
0x45 0x67 0x89 0xAB 0xCD 0xEF. When hex values are passed to the API within strings, the hex digits 0xA to
0xF can be represented by characters in the ranges 'a' to 'f' or 'A' to 'F'.

Certain levels of the PCI security standards specify that if a Key Encryption Key (KEK) is deleted or replaced, then
all keys in the hierarchy under that KEK are also removed. When a key is deleted, clients should check the loaded
state of other keys using KeyManagement.GetKeyDetail.

11.1 General Information

11.1.1 References

ID Description

keymanagement-
1

RSA Laboratories, PKCS#7: Cryptographic Message Syntax Standard. Version 1.5,
November 1993.

keymanagement-
2

SHA-1 Hash algorithm ANSI X9.30-2:1993, Public Key Cryptography for Financial
Services Industry Part 2.

keymanagement-
3

EMVCo, EMV2000 Integrated Circuit Card Specification for Payment Systems, Book 2 –
Security and Key Management, Version 4.0, December 2000.

keymanagement-
4

Europay International, EPI CA Module Technical – Interface specification Version 1.4.

keymanagement-
5

Groupement des Cartes Bancaires "CB", Description du format et du contenu des données
cryprographiques échangées entre GAB et GDG, Version 1.3 / Octobre 2002.

keymanagement-
6

ANSI - X9.143, Retail Financial Services Interoperable Secure Key Block Specification.

keymanagement-
7

ISO/IEC 10118-3:2004 Information technology – Security techniques – Hash-functions –
Part 3: Dedicated hash-functions.

keymanagement-
8

FIPS 180-2 Secure Hash Signature Standard.

keymanagement-
9

ANS X9 TR-34 2019, Interoperable Method for Distribution of Symmetric Keys using
Asymmetric Techniques: Part 1 – Using Factoring-Based Public Key Cryptography
Unilateral Key Transport.

keymanagement-
10

ANS X9.24-1:2009, Retail Financial Services Symmetric Key Management Part 1: Using
Symmetric Techniques.

keymanagement-
11

NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of
Operation.

keymanagement-
12

NIST Special Publication 800-38E: Recommendation for Block Cipher Modes of
Operation: the XTS-AES Mode for Confidentiality on Storage Devices.

488

11.1.2 RKL Terminology
This section provides extended explanation of concepts and functionality needing further clarification. The
terminology as described below is used within the following sections.

Definitions and
Abbreviations

Description

ATM Automated Teller Machine, used here for any type of self-service terminal,
regardless whether it actually dispenses cash.

CA Certificate Authority.

Certificate A data structure that contains a public key and a name that allows certification of
a public key belonging to a specific individual. This is certified using digital
signatures.

HOST The remote system that a device communicates with.

KTK Key Transport Key.

PKI Public Key Infrastructure.

Private Key The key of an entity's key pair that should only be used by that entity.

Public Key The key of an entity's key pair that can be made public.

Symmetric Key A key used with symmetric cryptography.

Verification Key A key that is used to verify the validity of a certificate.

SignatureIssuer An entity that signs the device's public key at production time which could be for
instance, the device manufacturer.

Notation of Cryptographic
Items and Functions

Description

SKE The private key belonging to entity E.

PKE The public belonging to entity E.

SKDEVICE The private key belonging to the device.

PKDEVICE The public key belonging to the device.

SKHOST The private key belonging to the Host.

PKHOST The public key belonging to the Host.

SKSI The private key belonging to Signature Issuer.

PKSI The public key belonging to Signature Issuer.

SKROOT The root private key belonging to the Host.

PKROOT The root public key belonging to the Host.

KNAME A symmetric key.

CertHOST A Certificate that contains the public verification of the host and is signed by a
trusted Certificate Authority.

CertDEVICE A Certificate that contains the device public verification or encipherment key,
which is signed by a trusted Certificate Authority.

CertCA The Certificate of a new Certificate Authority.

RDEVICE Random Number of the device.

IHOST Identifier of the Host.

KKTK Key Transport Key.

RHOST Random number of the Host.

IDEVICE Identifier of the device.

TPDEVICE Thumb Print of the device.

489

Definitions and
Abbreviations

Description

Sign (SKE)[D] The signing of data block D, using the private key SKE.

Recover (PKE)[S] The recovery of the data block D from the signature S, using the private key
PKE.

RSACrypt (PKE)[D] RSA Encryption of the data block D using the public key PKE.

Hash [M] Hashing of a message M of arbitrary length to a 20 Byte hash value.

Des (K)[D] DES encipherment of an 8 byte data block D using the secret key K.

Des-1 (K)[D] DES decipherment of an 8 byte data block D using the 8 byte secret key K.

Des3 (K)[D] Triple DES encipherment of an 8 byte data block D using the 16 byte secret key
K = (KL || KR), equivalent to Des (KL) [Des-1 (KR) [Des (KL) [D]]].

Des3-1 (K)[D] Triple DES decipherment of an 8 byte data block D using the 16 byte secret key
K = (KL || KR), equivalent to Des-1 (KL) [Des (KR) [Des-1 (KL) [D]]].

RndE A random number created by entity E.

UIE Unique Identifier for entity E.

(A || B) Concatenation of A and B.

11.1.3 Remote Key Loading Using Signatures

RSA Data Authentication and Digital Signatures
Digital signatures rely on a public key infrastructure (PKI). The PKI model involves an entity, such as a Host,
having a pair of encryption keys – one private, one public. These keys work in consort to encrypt, decrypt and
authenticate data. One way authentication occurs is through the application of a digital signature. For example:

1. The Host creates some data that it would like to digitally sign;
2. The Host runs the data through a hashing algorithm to produce a hash or digest of the data. The digest is

unique to every block of data – a digital fingerprint of the data, much smaller and therefore more
economical to encrypt than the data itself.

3. The digest is encrypted with the Host's private key.

This is the digital signature – a data block digest encrypted with the private key. The Host then sends the following
to the device:

1. The data block.
2. The digital signature.
3. The host's public key.

To validate the signature, the device performs the following:

1. The device runs data through the standard hashing algorithm – the same one used by the Host – to produce
a digest of the data received. Consider this digest2;

2. The device uses the Host's public key to decrypt the digital signature. The digital signature was produced
using the Host's private key to encrypt the data digest; therefore, when decrypted with the Host's public

490

key it produces the same digest. Consider this digest1. Incidentally, no other public key in the world would
work to decrypt digest1 – only the public key corresponding to the signing private key.

3. The device compares digest1 with digest2.

If digest1 matches digest2 exactly, the device has confirmed the following:

• The data was not tampered with in transit. Changing a single bit in the data sent from the Host to the Key
Management Device would cause digest2 to be different from digest1. Every data block has a unique
digest; therefore, an altered data block is detected by the device.

• The Public key used to decrypt the digital signature corresponds to the private key used to create it. No
other public key could possibly work to decrypt the digital signature, so the device was not handed
someone else's public key.

This gives an overview of how Digital Signatures can be used in Data Authentication. In particular, Signatures can
be used to validate and securely install Encryption Keys. The following section describes Key Exchange and the
use of Digital signatures.

RSA Secure Key Exchange using Digital Signatures
In summary, both end points, the Host and Device, inform each other of their Public Keys. This information is then
used to securely send the Master Key to the Device. A trusted third party, the Signature Issuer, is used to generate
the signatures for the Public keys of each end point, ensuring their validity.

The detail of this is as follows:

Purpose: The Host wishes to install a new Master Key (KM) on the device securely.

Assumptions:

1. The Host has obtained the Public Key (PKSI) from the Signature Issuer.
2. The Host has provided the Signature Issuer with its Public Key (PKHOST), and receives the corresponding

signature Sign(SKSI)[PKHOST]. The Signature Issuer uses its own Private Key (SKSI) to create this
signature.

3. In the case where Enhanced Remote Key Loading is used, the Host has provided the Signature Issuer with
its Public Key (PKROOT), and receives the corresponding signature Sign (SKSI)[PKROOT]. The Host has
generated another key pair PKHOST and SKHOST and signs the PKHOST with the SKROOT.

4. (Optional) The Host obtains a list of the valid device Unique Identifiers. The Signature Issuer installs a
Signature Sign(SKSI)[UIDEVICE] for the Unique ID (UIDEVICE) on the Device. The Signature Issuer uses
SKSI to do this.

5. The Signature Issuer installs its Public Key (PKSI) on the Device. It also derives and installs the Signature
Sign(SKSI)[PKDEVICE] of the Device's Public Key (PKDEVICE) on the Device. The Signature Issuer uses
SKSI to do this.

6. The Device additionally contains its own Public (PKDEVICE) and Private Key (SKDEVICE).

Step 1

The Device sends its Public Key to the Host in a secure structure:

The Device sends its Public Key with its associated Signature. When the Host receives this information it will use
the Signature Issuer's Public Key to validate the signature and obtain the Device Public Key.

The command used to export the device's public key securely as described above is:

• KeyManagement.ExportRsaIssuerSignedItem.

Step 2 (Optional)

The Host verifies that the key it has just received is from a valid sender:

It does this by obtaining the Device Unique Identifier. The Device sends its Unique Identifier with its associated
Signature. When the Host receives this information it will use the Signature Issuer's Public Key to validate the
signature and retrieve the Device Unique ID. It can then check this against the list it received from the Signature
Issuer.

The command used to export the Device Unique Identifier is:

• KeyManagement.ExportRsaIssuerSignedItem.

Step 3 (Enhanced Remote Key Loading only)

491

The Host sends its root public key to the Device:

The Host sends its Root Public Key (PKROOT) and associated Signature. The Device verifies the signature using
PKSI and stores the key.

The command used to import the Host root public key securely as described above is:

• KeyManagement.ImportKey.

Step 4

The Host sends its public key to the Device:

The Host sends its Public Key (PKHOST) and associated Signature. The Device verifies the signature using PKSI (
or PKROOT in the Enhanced Remote Key Loading Scheme) and stores the key.

The command used to import the Host public key securely as described above is:

• KeyManagement.ImportKey.

Step 5

The Device receives its Master Key from the Host:

The Host encrypts the Master Key (KM) with PKDEVICE. A signature for this is then created using SKHOST. The
Device will then validate the signature using PKHOST and then obtain the master key by decrypting using SKDEVICE.

The commands used to exchange master symmetric keys as described above are:

• KeyManagement.StartKeyExchange
• KeyManagement.ImportKey

Step 6 — Alternative including random number

The Host requests the Device to begin the DES key transfer process and generate a random number.

The Host encrypts the Master Key (KM) with PKDEVICE. A signature for the random number and encrypted key is
then created using SKHOST.

The Device will then validate the signature using PKHOST, verify the random number and then obtain the master key
by decrypting using SKDEVICE.

The commands used to exchange master symmetric keys as described above are:

• KeyManagement.StartKeyExchage
• KeyManagement.ImportKey

Initialization Phase – Signature Issuer and ATM PIN
This would typically occur in a secure manufacturing environment.

492

Initialization Phase – Signature Issuer and Host
This would typically occur in a secure offline environment.

Key Exchange – Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key between host and device.

The following is the recommended sequence of interchanges.

493

Key Exchange (with random number) – Host and ATM PIN
This following is a typical interaction for the exchange of the initial symmetric master key when the device
supports the KeyManagement.StartKeyExchange command.

494

Enhanced RKL, Key Exchange (with random number) – Host and ATM PIN

This following is a typical interaction for the exchange of the initial symmetric master key when the host and
device supports the Enhanced Signature Remote Key Loading scheme.

495

Default Keys and Security Item loaded during manufacture
Several keys and a security item which are mandatory for the 2 party/Signature authentication scheme are installed
during manufacture. These items are given fixed names so multi-vendor applications can be developed without the
need for vendor specific configuration tools.

496

Item Name Item Type Signed by Description

"_SigIssuerVendor" Public Key N/A The public key of the signature issuer, i.e.
PKSI

"_DeviceCryptKey" Public/Private
key-pair

The private key
associated with
_SigIssuerVendor

The key-pair used to encrypt and encrypt the
symmetric. key, i.e SKDEVICE and PKDEVICE.
The public key is used for encryption by the
host and the private for decryption by the
Device.

"_DeviceCryptCert" Public/Private
key-pair

CA This key is used for certificate based remote
key loading when transporting symmetric
key. The private key is used for decryption
by the device. i.e. CertDEVICE

"_HostCert" Public Key CA The certificate issued by the host, which
contains a public key to verify the
certificate. i.e. CertHOST

In addition, the following optional keys can be loaded during manufacture.

Item Name Item Type Signed by Description

"_DeviceSignKey" Public/Private
key-pair

The private key associated
with _SigIssuerVendor

A key-pair where the private key is
used to sign data, e.g. other generated
key pairs.

11.1.4 Remote Key Loading Using Certificates
The following sections demonstrate the proper usage of the KeyManagement interface to accomplish Remote Key
Loading using Certificates. There are sequence diagrams to demonstrate how the KeyManagement interface can be
used to complete each of the TR-34 operations.

Certificate Exchange and Authentication
In summary, both end points, the device and the Host, inform each other of their Public Keys. This information is
then used to securely send the Master Key to the device. A trusted third party, Certificate Authority (or a HOST if it
becomes the new CA), is used to generate the certificates for the Public Keys of each end point, ensuring their
validity. NOTE: The KeyManagement.LoadCertificate and KeyManagement.GetCertificate commands do not
necessarily need to be called in the order below. This way though is the recommended way.

The following flow is how the exchange authentication takes place:

• KeyManagement.LoadCertificate is called. In this message contains the host certificate, which has been
signed by the trusted CA. The device uses the Public Key of the CA (loaded at the time of production) to
verify the validity of the certificate. If the certificate is valid, the device stores the HOST’s Public
Verification Key.

• Next, KeyManagement.GetCertificate is called. The device then sends a message that contains a
certificate, which is signed by the CA and is sent to the HOST. The HOST uses the Public Key from the
CA to verify the certificate. If valid then the HOST stores the device’s verification or encryption key
(primary or secondary this depends on the state of the device).

The following diagram shows how the Host and ATM Load and Get each other’s information to make Remote Key
Loading possible:

497

Remote Key Exchange
After the above has been completed, the host is ready to load the key into the device. The following is done to
complete this and the application must complete the Remote Key Exchange in this order:

1. First, the KeyManagement.StartKeyExchange is called. This returns RDEVICE from the device to be used in
the authenticating the KeyManagement.ImportKey message.

2. The Host obtains a Key Transport Key and wants to transfer it to the device. The Host constructs a key
block containing an identifier of the host, IHOST, and the key, KKTK, and enciphers the block, using the
device's Public Encryption Key from the KeyManagement.GetCertificate command.

3. The host generates random data and builds the outer message containing the random number of the host,
RHOST, the random number of the device returned in the KeyManagement.StartKeyExchange command,
RDEVICE, the identifier of the encryptor, IENC, and the enciphered key block. The host signs the whole block
using its private signature key and sends the message to the device using KeyManagement.ImportKey.
The device then verifies the host's signature on the message by using the host's Public Verification Key.
Then the device checks the identifier and the random number of the device passed in the message to make
sure that the device is talking to the right host. The device then deciphers the enciphered block using its
private verification key. After the message has been deciphered, the device checks the Identifier of the
host. Finally, if everything checks out to this point the device will load the Key Transport Key.
NOTE: If one step of this verification occurs the device will return the proper error to the host.

4. After the Key Transport Key has been accepted, the device constructs a message that contains the random
number of the host, the random number of the device and the host identifier all signed by the private
signature key of the device. This message is sent to the host.

5. The host verifies the message sent from the device by using the device's public verification key. The host
then checks the identifier of the host and then compares the identifier in the message with the one stored in
the host. The host then checks the random number sent in the message and to the one stored in the host.
The host finally checks the device's random number with the one received in the
KeyManagement.StartKeyExchange command.

The following diagram below shows how the host and device transmit the Key Transport Key.

498

Replace Certificate
After the key has been loaded into the device, the following can be completed:

• (Optional) KeyManagement.ReplaceCertificate. This is called by entity that would like to take over the job
of being the CA. The new CA requests a Certificate from the previous Certificate Authority. The host must
over-sign the message to take over the role of the CA to ensure that the device accepts the new Certificate
Authority. The host sends the message to the device. The device uses the host's Public Verification Key to
verify the host's signature. The device uses the previous CA's Public Verification Key to verify the
signature on the new Certificate sent in the message. If valid, the device stores the new CA's certificate and
uses the new CA's Public Verification Key as its new CA verification key. The diagram below shows how
the host and the Device communicate to load the new CA.

Primary and Secondary Certificate
Primary and Secondary Certificates for both the Public Verification Key and Public Encipherment Key are pre-
loaded into the device. Primary Certificates will be used until told otherwise by the host via the
KeyManagement.LoadCertificate or KeyManagement.ReplaceCertificate commands. This change in state will be
specified in the PKCS#7 (See [Ref. keymanagement-1]) message of the KeyManagement.LoadCertificate or

499

KeyManagement.ReplaceCertificate commands. The reason why the host would want to change states is because
the host thinks that the Primary Certificates have been compromised.

After the host tells the device to shift to the secondary certificate state, only Secondary Certificates can be used.
The device will no longer be able to go back to the Primary State and any attempts from the host to get or load a
Primary Certificate will return an error. When either Primary or Secondary certificates are compromised it is up to
the vendor on how the device should be handled with the manufacturer.

11.1.5 Remote Key Loading Using TR34

TR34 BIND To Host
This section defines the commands to use when transferring a TR34 BIND token as defined in X9 TR34-2019 [Ref.
keymanagement-9].

This step is a pre-requisite for all other TR34 operations. The device must be bound to a host before any other TR34
operation will succeed.

NB: While the device encryption certificate is not required to build the BIND token, it is recommended that the
encryption certificate is retrieved during this process and is stored for future use. Otherwise, if not stored, it will
need to be requested prior to all other TR34 token transfer requests.

TR34 Key Transport
There are two protocols that can be used to transport symmetric keys under TR34; these are the One Pass and Two
Pass protocols. The use of XFS4IoT commands for these two protocols are shown in the following sections.

• NOTE: The crklLoadOptions capability indicates which protocol the device supports.*

One Pass

This section defines the command to use when transferring a TR34 KEY token (1-pass) as defined in X9 TR34-
2019 [Ref. keymanagement-9].

Pre-condition: A successful BIND command has completed such that the device is bound to the host.

Two Pass

500

This section defines the command to use when transferring a TR34 KEY token (2-pass) as defined in X9 TR34-
2019 [Ref. keymanagement-9].

Pre-condition: A successful BIND command has completed such that the device is bound to the host.

NB: Dotted lines represent commands that are only required if the device encryption certificate has not been
previously stored by the host.

TR34 REBIND To New Host
This section defines the command to use when transferring a TR34 REBIND token as defined in X9 TR34-2019
[Ref. keymanagement-9].

Pre-condition: A successful BIND command has completed such that the device is bound to the host.

NB: Dotted lines represent commands that are only required if the device encryption certificate has not been
previously stored by the host.

TR34 Force REBIND To New Host
This section defines the command to use when transferring a TR34 Force REBIND token as defined in X9 TR34-
2019 [Ref. keymanagement-9].

Pre-condition: A successful BIND command has completed such that the device is bound to the host.

501

NB: Dotted lines represent commands that are only required if the device encryption certificate has not been
previously stored by the host.

Although the random number token is requested as part of this operation, it is discarded by the host and is not
actually used in the Force Rebind token.

TR34 UNBIND From Host
This section defines the command to use when transferring a TR34 UNBIND token as defined in X9 TR34-2019
[Ref. keymanagement-9].

Pre-condition: A successful BIND command has completed such that the device is bound to the host.

NB: Dotted lines represent commands that are only required if the device encryption certificate has not been
previously stored by the host.

TR34 Force UNBIND From Host
This section defines the command to use when transferring a TR34 Force UNBIND token as defined in X9 TR34-
2019 [Ref. keymanagement-9].

Pre-condition: A successful BIND command has completed such that the device is bound to the host.

502

NB: Dotted lines represent commands that are only required if the device encryption certificate has not been
previously stored by the host.

Although the random number token is requested as part of this operation, it is discarded by the host and is not
actually used in the Force Unbind token.

11.1.6 EMV Support
EMV supported consists of the following:

• Import of the Certification Authority and Chip Card Public Keys
• Creating the PIN blocks for offline PIN verification and verifying static and dynamic data.

This section is used to further explain concepts and functionality that needs further clarification.

The service is able to manage the EMV chip card regarding the card authentication and the RSA local PIN
verification. Two steps are mandatory in order to reach these two functions: The loading of the keys which come
from the Certification Authorities or from the card itself, and the EMV PIN block management.

The service is responsible for all key validation during the import process. The application is responsible for
management of the key lifetime and expiry after the key is successfully imported.

Key Loading
The final goal of an application is to retrieve the keys located on card to perform the operations of authentication or
local PIN check (RSA encrypted). These keys are provided by the card using EMV certificates and can be retrieved
using a Public Key provided by a Certification Authority. The application should first load the keys issued by the
Certification Authority. At transaction time the application will use these keys to load the keys that the application
has retrieved from the chip card.

Certification Authority keys

These keys are provided in the following formats:

• Plain text.
• Plain Text with EMV 2000 Verification Data (See [Ref. keymanagement-3]).
• EPI CA (or self signed) format as specified in the Europay International, EPI CA Module Technical –

Interface specification Version 1.4 (See [Ref. keymanagement-4]).
• pkcsV15 encrypted (as used by GIECB in France) (See [Ref. keymanagement-5]).

EPI CA format

The following table corresponds to table 4 of the Europay International, EPI CA Module Technical – Interface
specification Version 1.4 (See [Ref. keymanagement-4]) and identifies the Europay Public Key (self-certified) and
the associated data:

503

Field Name Length Description Format

ID of Certificate Subject 5 RID for Europay Binary

Europay public key Index 1 Europay public key Index Binary

Subject public key Algorithm
Indicator

1 Algorithm to be used with the Europay public key
Index, set to 0x01

Binary

Subject public key Length 1 Length of the Europay public key Modulus (equal to
Nca)

Binary

Subject public key Exponent
Length

1 Length of the Europay public key Exponent Binary

Leftmost Digits of Subject
public key

Nca-37 Nca-37 most significant bytes of the Europay public
key Modulus

Binary

Subject public key Remainder 37 37 least significant bytes of the Europay public key
Modulus

Binary

Subject public key Exponent 1 Exponent for Europay public key Binary

Subject public key Certificate Nca Output of signature algorithm Binary

Table 1

The following table corresponds to table 13 of the Europay International, EPI CA Module Technical – Interface
specification Version 1.4 and identifies the Europay Public Key Hash code and associated data.

Field Name Length Description Format

ID of Certificate Subject 5 RID for Europay Binary

Europay public key Index 1 Europay public key Index Binary

Subject public key Algorithm
Indicator

1 Algorithm to be used with the Europay public key
Index, set to 0x01

Binary

Certification Authority public key
Check Sum

20 Hash-code for Europay public key Binary

Table 2

Table 2 corresponds to table 13 of the Europay International, EPI CA Module Technical – Interface specification
Version 1.4 (See [Ref. keymanagement-4]).

Chip card keys

These keys are provided as EMV certificates which come from the chip card in a multiple layer structure (issuer
key first, then the ICC keys). Two kinds of algorithm are used with these certificates in order to retrieve the keys:
One for the issuer key and the other for the ICC keys (ICC Public Key and ICC PIN encipherment key). The
associated data with these algorithms – The PAN (Primary Account Number) and the SDA (Static Data to be
Authenticated) - come also from the chip card.

PIN Block Management
The PIN block is generated using PinPad.GetPinBlock. The format formEmv is used indicate to the service that the
PIN block must follow the requirements of the EMVCo, Book2 – Security & Key management Version 4.0
document. The property customerData is used in this case to transfer to the PIN service the challenge number
coming from the chip card. The final encryption must be done using a RSA Public Key. Please note that the
application is responsible to send the PIN block to the chip card inside the right APDU.

SHA-1 Digest
The SHA-1 Digest is a hash algorithm used by EMV in validating ICC static and dynamic data item. The SHA-1
Digest is supported through the digest command. The application will pass the data to be hashed to the Service
Provider. Once the device completes the SHA-1 hash code, the Service Provider will return the 20-byte hash value
back to the application.

504

11.1.7 KeyManagement.ImportKey command Input-Output Parameters
This section describes the input/output parameters for various scenarios in which the KeyManagement.ImportKey
command is used.

Importing a 3DES 16-byte Terminal Master Key using Signature-based Remote Key Loading
KeyManagement.ImportKey command payload

{
 "header": {
 "type": "command",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "key": "testKey","
 "keyAttributes": {
 "keyUsage": "K0",
 "algorithm": "T",
 "modeOfUse": "D"
 },
 "value": "<encrypted key value>",
 "decryptKey": "deviceCryptKey",
 "decryptKey": "rsaesOaep",
 "verificationData": "<signature generated by the host>",
 "verifyKey": "hostKey",
 "verifyAttributes": {
 "cryptoMethod": "rsassaPss",
 "hashAlgorithm": "sha256"
 }
 }
}

KeyManagement.ImportKey completion payload

{
 "header": {
 "type": "completion",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "verificationData": "<key check value>",
 "verifyAttributes": {
 "keyUsage": "00",
 "algorithm": "T",
 "modeOfUse": "V",
 "cryptoMethod": "kcvZero"
 },
 "keyLength": 128
 }
}

Importing a 3DES 16-byte Pin Encryption Key with a Key Check Value in the Input
KeyManagement.ImportKey command payload

505

{
 "header": {
 "type": "command",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "key": "testKey",
 "keyAttributes": {
 "keyUsage": "P0",
 "algorithm": "T",
 "modeOfUse": "E"
 },
 "value": "<encrypted key value>",
 "decryptKey": "masterKey",
 "decryptMethod": "ecb",
 "verificationData": "<key check value encoded>",
 "verifyKey": "verifyKey",
 "verifyAttributes": {
 "cryptoMethod": "kcvZero"
 }
 }
}

KeyManagement.ImportKey completion payload

{
 "header": {
 "type": "completion",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "keyLength": 128
 }
}

Importing a 3DES 16-byte MAC (Algorithm 3) Key
KeyManagement.ImportKey command payload

{
 "header": {
 "type": "command",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "key": "testKey","
 "keyAttributes": {
 "keyUsage": "M3",
 "algorithm": "T",
 "modeOfUse": "G"
 }
 "value": "<encrypted key value encoded>",
 "decryptKey": "masterKey",
 "decryptMethod": "ecb"
}

KeyManagement.ImportKey completion payload

506

{
 "header": {
 "type": "completion",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "verificationData": "<key check value>",
 "verifyAttributes": {
 "keyUsage": "00",
 "algorithm": "T",
 "modeOfUse": "V",
 "cryptoMethod": "kcvZero"
 },
 "keyLength": 128
 }
}

Importing a 2048-bit Host RSA public key
KeyManagement.ImportKey command payload

{
 "header": {
 "type": "command",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "key": "hostKey","
 "keyAttributes": {
 "keyUsage": "S0",
 "algorithm": "R",
 "modeOfUse": "V"
 },
 "value": "<key value>",
 "verificationData": "<signature generated by the vendor signature issuer>",
 "verifyKey": "sigIssuerVendor",
 "verifyAttributes": {
 "cryptoMethod": "rsassaPss",
 "hashAlgorithm": "sha256"
 }
 }
}

KeyManagement.ImportKey completion payload

{
 "header": {
 "type": "completion",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "verificationData": "<sha256 digest>",
 "verifyAttributes": {
 "keyUsage": "S0",
 "algorithm": "R",
 "modeOfUse": "V",
 "hashAlgorithm": "sha256"
 },
 "keyLength": 2048
 }
}

Importing a 3DES 24-byte Data Encryption Key via an X9.143 Keyblock
KeyManagement.ImportKey command payload

507

{
 "header": {
 "type": "command",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "key": "testKey","
 "keyAttributes": {
 "keyUsage": "D0",
 "algorithm": "T",
 "modeOfUse": "E"
 },
 "value": "<key block>",
 "decryptKey": "masterKey"
 }
}

KeyManagement.ImportKey completion payload

{
 "header": {
 "type": "completion",
 "name": "KeyManagement.ImportKey",
 "requestId": 12345
 },
 "payload" : {
 "keyLength": 192
 }
}

11.1.8 DUKPT

Definitions and Abbreviations Description

DUKPT Derived Unique Key Per Transaction

BDK Base Derivation Key

IPEK Initial PIN Encryption Key

KSN Key Serial Number.

TRSM Tamper Resistant Security Module.

For additional information see [Ref. keymanagement-10].

The IPEK key is given a fixed name so multi-vendor applications can be developed without the need for vendor
specific configuration tools.

The BDK is used to derive the IPEK. When a IPEK is loaded, derived future keys are stored and the IPEK deleted.
Therefore, while the IPEK is no longer loaded, future keys directly related to it are. Therefore, the IPEK will be
reported as loaded.

The primary use of an IPEK future key is to create a variant for PIN encryption. If the optional variant data
encryption and MAC keys are supported, to use those keys in the Crypto.CryptoData and
Crypto.GenerateAuthentication commands, the IPEK key name must be used as the key name and the algorithm
must be cryptTriDesCbc and cryptTriDesMac respectively.

The optional variant response data encryption and MAC keys are not supported.

If DUKPT is supported, this key must be included in the KeyManagement.GetKeyDetail output.

Item Name Description

_DUKPTIPEK This key represents the IPEK, the derived future keys stored during import of the IPEK and the
variant per transaction keys (PIN and optionally data and MAC).

508

11.1.9 Restricted Encryption Key Command Usage
This example command flow sequence shows how encryption keys can be derived/not derived if the master key has
a restricted use.

In this example the master keys are loaded using the secure key entry. Loading with RKL works in the same way.

Master key restriction prevents import of keys with incorrect usage:

509

11.1.10 Secure Key Entry Command Usage
This section provides an example of the sequence of commands required to enter an encryption key securely. In the
following sequence, the client application retrieves the keyboard secure key entry mode and associated keyboard
layout and displays an image of the keyboard for the user. It then gets the first key part, verifies the KCV for the
key part and stores it. The sequence is repeated for the second key part and then finally the key part is activated.

510

511

11.2 Command Messages

11.2.1 KeyManagement.GetKeyDetail
This command returns extended detailed information about the keys in the encryption module, including DES,
DUKPT, AES, RSA private and public keys.

This command will also return information on all keys loaded during manufacture that can be used by applications.
Details relating to the keys loaded using OPT (via the ZKA ProtIsoPs protocol) are retrieved using the ZKA
hsmLdi protocol. These keys are not reported by this command.

Command Message

Payload (version 2.0) Type Required
{
 "keyName": "Key01" string, null
}

Properties

keyName
Name of the key for which detailed information is requested. If this property is null, detailed information about
all the keys in the encryption module is returned.
default: null

Completion Message

Payload (version 2.0) Type Require
d

{
 "errorCode": "keyNotFound", string, null
 "keyDetails": { object, null
 "exampleProperty1": { object
 "generation": 0, integer,

null

 "version": 0, integer,
null

 "activatingDate": "20210101", string, null
 "expiryDate": "20220101", string, null
 "loaded": "no", string 🗸🗸
 "keyBlockInfo": { object 🗸🗸
 "keyUsage": "K0", string 🗸🗸
 "restrictedKeyUsage": "D0", string, null
 "algorithm": "T", string 🗸🗸
 "modeOfUse": "B", string 🗸🗸
 "keyVersionNumber": "01", string, null
 "exportability": "N", string 🗸🗸
 "optionalBlockHeader": "HM0621", string, null
 "keyLength": 0 integer

512

Payload (version 2.0) Type Require
d

 }
 },
 "exampleProperty2": See keyDetails/exampleProperty1
properties

object

 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyNotFound - The specified key name is not found.
default: null

keyDetails
This property contains key/value pairs where the key is a name of key and the value is the key detail. If there are
no key details, this property is an empty object.
default: null

keyDetails/exampleProperty1 (example name)
The object contains key detail.

keyDetails/exampleProperty1/generation
Specifies the generation of the key. Different generations might correspond to different environments (e.g. test or
production environment). The content is vendor specific. This value can be null if no such information is
available for the key.
Property value constraints:
minimum: 0
maximum: 99
default: null

keyDetails/exampleProperty1/version
Specifies the version of the key (the year in which the key is valid, e.g. 1 for 2001). This value can be null if no
such information is available for the key.
Property value constraints:
minimum: 0
maximum: 99
default: null

keyDetails/exampleProperty1/activatingDate
Specifies the date when the key is activated in the format YYYYMMDD. This value can be null if no such
information is available for the key.
Property value constraints:
pattern: ^[0-9]{4}(0[1-9]|1[0-2])(0[1-9]|[12][0-9]|3[01])$
default: null

keyDetails/exampleProperty1/expiryDate
Specifies the date when the key expires in the format YYYYMMDD. This value can be null if no such
information is available for the key.
Property value constraints:
pattern: ^[0-9]{4}(0[1-9]|1[0-2])(0[1-9]|[12][0-9]|3[01])$
default: null

513

Properties

keyDetails/exampleProperty1/loaded
Specifies whether the key has been loaded (imported from Application or locally from Operator).

• no - The key is not loaded.
• yes - The key is loaded and ready to be used in cryptographic operations.
• unknown - The State of the key is unknown.
• construct - The key is under construction, meaning that at least one key part has been loaded but

the key is not activated and ready to be used in other cryptographic operations.

keyDetails/exampleProperty1/keyBlockInfo
Specifies the key attributes using X9.143 keyblock header definitions.

514

Properties

keyDetails/exampleProperty1/keyBlockInfo/keyUsage
Specifies the intended function of the key. The following values are possible - See [Ref. keymanagement-6] :

• B0 - BDK Base Derivation Key.
• B1 - Initial DUKPT key.
• B2 - Base Key Variant Key.
• B3 - Key Derivation Key (Non ANSI X9.24).
• C0 - CVK Card Verification Key.
• D0 - Symmetric Key for Data Encryption.
• D1 - Asymmetric Key for Data Encryption.
• D2 - Data Encryption Key for Decimalization Table.
• D3 - Data Encryption Key for Sensitive Data.
• E0 - EMV / Chip Issuer Master Key: Application Cryptogram.
• E1 - EMV / Chip Issuer Master Key: Secure Messaging for Confidentiality.
• E2 - EMV / Chip Issuer Master Key: Secure Messaging for Integrity.
• E3 - EMV / Chip Issuer Master Key: Data Authentication Code.
• E4 - EMV / Chip Issuer Master Key: Dynamic.
• E5 - EMV / Chip Issuer Master Key: Card Personalization.
• E6 - EMV / Chip Issuer Master Key: Other Initialization Vector (IV).
• E7 - EMV / Chip Asymmetric Key Pair for EMV/Smart Card based PIN/PIN Block Encryption.
• I0 - Initialization Vector (IV).
• K0 - Key Encryption or wrapping.
• K1 - X9.143 Key Block Protection Key.
• K2 - TR-34 Asymmetric Key.
• K3 - Asymmetric Key for key agreement / key wrapping.
• K4 - Key Block Protection Key, ISO 20038.
• M0 - ISO 16609 MAC algorithm 1 (using TDEA).
• M1 - ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:2011 MAC Algorithm 5.
• M6 - ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• P0 - PIN Encryption.
• P1 - PIN Generation Key (reserved for ANSI X9.132-202x).
• S0 - Asymmetric key pair for digital signature.
• S1 - Asymmetric key pair, CA key.
• S2 - Asymmetric key pair, nonX9.24 key.
• V0 - PIN verification, KPV, other algorithm.
• V1 - PIN verification, IBM 3624.
• V2 - PIN verification, VISA PVV.
• V3 - PIN verification, X9-132 algorithm 1.
• V4 - PIN verification, X9-132 algorithm 2.
• V5 - PIN Verification Key, ANSI X9.132 algorithm 3.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^B[0-3]$|^C0$|^D[0-3]$|^E[0-7]$|^I0$|^K[0-4]$|^M[0-8]$|^P[0-1]$|^S[0-
2]$|^V[0-5]$|^[0-9][0-9]$

515

Properties

keyDetails/exampleProperty1/keyBlockInfo/restrictedKeyUsage
If the keyUsage is a key encryption usage (e.g. 'K0') this specifies the key usage of the keys that can be
encrypted by the key.
The following values are possible:

• B0 - BDK Base Derivation Key.
• B1 - Initial DUKPT key.
• B2 - Base Key Variant Key.
• B3 - Key Derivation Key (Non ANSI X9.24).
• C0 - CVK Card Verification Key.
• D0 - Symmetric Key for Data Encryption.
• D1 - Asymmetric Key for Data Encryption.
• D2 - Data Encryption Key for Decimalization Table.
• D3 - Data Encryption Key for Sensitive Data.
• E0 - EMV / Chip Issuer Master Key: Application Cryptogram.
• E1 - EMV / Chip Issuer Master Key: Secure Messaging for Confidentiality.
• E2 - EMV / Chip Issuer Master Key: Secure Messaging for Integrity.
• E3 - EMV / Chip Issuer Master Key: Data Authentication Code.
• E4 - EMV / Chip Issuer Master Key: Dynamic.
• E5 - EMV / Chip Issuer Master Key: Card Personalization.
• E6 - EMV / Chip Issuer Master Key: Other Initialization Vector (IV).
• E7 - EMV / Chip Asymmetric Key Pair for EMV/Smart Card based PIN/PIN Block Encryption.
• I0 - Initialization Vector (IV).
• K0 - Key Encryption or wrapping.
• K1 - X9.143 Key Block Protection Key.
• K2 - TR-34 Asymmetric Key.
• K3 - Asymmetric Key for key agreement / key wrapping.
• K4 - Key Block Protection Key, ISO 20038.
• M0 - ISO 16609 MAC algorithm 1 (using TDEA).
• M1 - ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:2011 MAC Algorithm 5.
• M6 - ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• P0 - PIN Encryption.
• P1 - PIN Generation Key (reserved for ANSI X9.132-202x).
• S0 - Asymmetric key pair for digital signature.
• S1 - Asymmetric key pair, CA key.
• S2 - Asymmetric key pair, nonX9.24 key.
• V0 - PIN verification, KPV, other algorithm.
• V1 - PIN verification, IBM 3624.
• V2 - PIN verification, VISA PVV.
• V3 - PIN verification, X9-132 algorithm 1.
• V4 - PIN verification, X9-132 algorithm 2.
• V5 - PIN Verification Key, ANSI X9.132 algorithm 3.
• 00 - 99 - These numeric values are reserved for proprietary use.

This value can be null if the key usage is not an key encryption usage or restricted key encryption keys are not
supported or required.
Property value constraints:
pattern: ^B[0-3]$|^C0$|^D[0-3]$|^E[0-7]$|^I0$|^K[0-4]$|^M[0-8]$|^P[0-1]$|^S[0-
2]$|^V[0-5]$|^[0-9][0-9]$
default: null

516

Properties

keyDetails/exampleProperty1/keyBlockInfo/algorithm
Specifies the algorithm for which the key can be used. See [Ref. keymanagement-6] for all possible values:

• A - AES.
• D - DEA.
• E - Elliptic Curve.
• H - HMAC.
• R - RSA.
• S - DSA.
• T - Triple DEA (also referred to as TDEA).
• 0 - 9 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^[0-9ADEHRST]$

keyDetails/exampleProperty1/keyBlockInfo/modeOfUse
Specifies the operation that the key can perform. See [Ref. keymanagement-6] for all possible values:

• B - Both Encrypt and Decrypt / Wrap and unwrap.
• C - Both Generate and Verify.
• D - Decrypt / Unwrap Only.
• E - Encrypt / Wrap Only.
• G - Generate Only.
• N - No special restrictions.
• S - Signature Only.
• T - Both Sign and Decrypt.
• V - Verify Only.
• X - Key used to derive other keys(s).
• Y - Key used to create key variants.
• 0 - 9 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^[0-9BCDEGNSTVXY]$

keyDetails/exampleProperty1/keyBlockInfo/keyVersionNumber
Specifies a two-digit ASCII character version number, which is optionally used to indicate that contents of the
key block are a component, or to prevent re-injection of old keys. See [Ref. keymanagement-6] for all possible
values. This value can be null if Key versioning is not used.
Property value constraints:
pattern: ^[0-9a-zA-Z][0-9a-zA-Z]$
default: null

keyDetails/exampleProperty1/keyBlockInfo/exportability
Specifies whether the key may be transferred outside of the cryptographic domain in which the key is found. See
[Ref. keymanagement-6] for all possible values:

• E - Exportable under a KEK in a form meeting the requirements of X9.24 Parts 1 or 2.
• N - Non-exportable by the receiver of the key block, or from storage. Does not preclude exporting keys

derived from a non-exportable key.
• S - Sensitive, Exportable under a KEK in a form not necessarily meeting the requirements of

X9.24 Parts 1 or 2.
• 0 - 9 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^[0-9ESN]$

keyDetails/exampleProperty1/keyBlockInfo/optionalBlockHeader
Contains any optional header blocks, as defined in [Ref. keymanagement-6]. This value can be null if there are
no optional block headers.
default: null

517

Properties

keyDetails/exampleProperty1/keyBlockInfo/keyLength
Specifies the length, in bits, of the key. 0 if the key length is unknown.
Property value constraints:
minimum: 0
default: 0

Event Messages
None

518

11.2.2 KeyManagement.Initialization
The encryption module must be initialized before any encryption function can be used. Every call to
KeyManagement.Initialization destroys all application keys that have been loaded or imported; it does not affect
those keys loaded during manufacturing.

Usually this command is called by an operator task and not by the application program.

Public keys imported under the RSA Signature based remote key loading scheme when public key deletion
authentication is required will not be affected. However, if this command is requested in authenticated mode, public
keys that require authentication for deletion will be deleted. This includes public keys imported under either the
RSA Signature based remote key loading scheme or the TR34 RSA Certificate based remote key loading scheme.

Initialization also involves loading 'initial' application keys and local vendor dependent keys. These can be
supplied, for example, by an operator through a keyboard, a local configuration file, remote RSA key management
or possibly by means of some secure hardware that can be attached to the device. The application 'initial' keys
would normally get updated by the application during a KeyManagement.ImportKey command as soon as possible.
Local vendor dependent static keys (e.g. storage, firmware and offset keys) would normally be transparent to the
application and by definition cannot be dynamically changed.

Where initial keys are not available immediately when this command is issued (i.e. when operator intervention is
required), the Service returns accessDenied and the application must await the KeyManagement.InitializedEvent.

This function also resets the HSM terminal data, except session key index and trace number.

This function resets all certificate data and authentication public/private keys back to their initial states at the time
of production (except for those public keys imported under the RSA Signature based remote key loading scheme
when public key deletion authentication is required). Key-pairs created with
KeyManagement.GenerateRSAKeyPair are deleted.

Any keys installed during production, which have been permanently replaced, will not be reset.

Any Verification certificates that may have been loaded must be reloaded. The Certificate state will remain the
same, but the KeyManagement.LoadCertificate or KeyManagement.ReplaceCertificate commands must be called
again.

When multiple ZKA HSMs are present, this command deletes all keys loaded within all ZKA logical HSMs.

Command Message

Payload (version 2.0) Type Required
{
 "authentication": { object, null
 "method": "certhost", string 🗸🗸
 "key": "Key01", string, null
 "data": "QXV0aGVudGljYXRpb25EYXRh" string 🗸🗸
 }
}

Properties

authentication
This property can be used to include authentication data if required by the command.
Additionally, if the command requires authentication:

• The KeyManagement.StartAuthenticate command must be called before this command.
• Commands which do not clear or modify the authentication data from the device may be executed

between the KeyManagement.StartAuthenticate and the authenticated command requests.
• If prior to this command request, KeyManagement.StartAuthenticate is not called or a command clears

the authentication data from the device, sequenceError will be returned.
default: null

519

Properties

authentication/method
Specifies the method used to generate the authentication data. The possible values are:

• certhost - The data is signed by the current Host, using the RSA certificate-based scheme.
• sigHost - The data is signed by the current Host, using the RSA signature-based scheme.
• ca - The data is signed by the Certificate Authority (CA).
• hl - The data is signed by the Higher Level (HL) Authority.
• cbcmac - A MAC is calculated over the data using key property and the CBC MAC algorithm.
• cmac - A MAC is calculated over the data using key and the CMAC algorithm.
• certHostTr34 - The data is signed by the current Host, using TR-34.
• caTr34 - The data is signed by the Certificate Authority (CA), using TR-34.
• hlTr34 - The data is signed by the Higher Level (HL) Authority, using TR-34.
• reserved1 - Reserved for a vendor-defined signing method.
• reserved2 - Reserved for a vendor-defined signing method.
• reserved3 - Reserved for a vendor-defined signing method.

authentication/key
If method is cbcmac or mac, then this is the name of a key which has a MAC key usage e.g. M0.
If method is sigHost, then this specifies the name of a previously loaded asymmetric key (i.e. an RSA Public
Key). If null, the default Signature Issuer or if null, the default Signature Issuer public key (installed in a secure
environment during manufacture) will be used.
default: null

authentication/data
This property contains the authenticated data (MAC, Signature) generated from the previous call to
KeyManagement.StartAuthenticate.
The authentication method specified by method is used to generate this data. Both this authentication data and
the data used to generate the authentication data must be verified before the operation is performed.
If certHost, ca, or hl is specified in the method property, this contains a PKCS#7 signedData structure which
includes the data that was returned by KeyManagement.StartAuthenticate. The optional CRL field may or may
not be included in the PKCS#7 signedData structure.
If certHostTr34, caTr34 or hlTr34 is specified in the method property, please refer to the X9 TR34-2019 [Ref.
keymanagement-9] for more details.
If sigHost is specified in the method property, this is a PKCS#7 structure which includes the data that was
returned by the KeyManagement.StartAuthenticate command.
If cbcmac or cmac is specified in the method property, then key must refer to a key with a MAC key usage key
e.g. M0.
If method is none, this property is not required.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied" string, null
}

520

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor specific
reason.

• randomInvalid - The encrypted random number in authentication/data does not match the one
previously provided by the device.

• keyNoValue - A required key was not specified in authentication.key.
• keyNotFound - The key specified in authentication.key was not found.
• useViolation - The key specified in authentication.key can not be used for the specified

authentication.method.
• modeOfUseNotSupported - The key specified in authentication.key can not be used for

authentication.
• macInvalid - The MAC included in authentication/data is invalid.
• signatureInvalid - The signature included in authentication/data is invalid.

default: null

Event Messages
None

521

11.2.3 KeyManagement.DeriveKey
A key is derived from input data using a key generating key and an initialization vector.

The input data can be expanded with a fill-character to the necessary length (mandated by the encryption algorithm
being used). The derived key is imported into the encryption module and can then be used for further operations.

Command Message

Payload (version 2.0) Type Required
{
 "derivationAlgorithm": "chipZka", string 🗸🗸
 "key": "Key01", string 🗸🗸
 "keyGenKey": "Key02", string 🗸🗸
 "storedKey": "StoredIVKey", string, null
 "iv": { object, null
 "key": "KeyToDecrypt", string, null
 "value": "VGhlIGluaXRpYWxpemF0 ..." string 🗸🗸
 },
 "padding": 255, integer
 "inputData": "a2V5IGRlcml2YXRpb24g ..." string 🗸🗸
}

Properties

derivationAlgorithm
Specifies the algorithm that is used for derivation. See derivationAlgorithms) for the supported valued.

key
Specifies the name where the derived key will be stored.

keyGenKey
Specifies the name of the key generating key that is used for the derivation.

storedKey
This specifies the name of a key (usage 'I0') used as the Initialization Vector (IV). This property is null if not
required.
default: null

iv
Specifies the Initialization Vector. This property is null if storedKey is used.
default: null

iv/key
The name of a key used to decrypt the value. This specifies the name of a key (usage 'K0') used to decrypt the
value. This is only used when the key usage is 'D0' and cryptoMethod is either CBC or CFB. if this property is
null, value is used as the Initialization Vector.
default: null

iv/value
The plaintext or encrypted IV for use with the CBC or CFB encryption methods.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

522

Properties

padding
Specifies the padding character to use for symmetric key encryption.
Property value constraints:
minimum: 0
maximum: 255
default: 0

inputData
Data to be used for key derivation.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• keyNotFound - The specified keyGenKey was not found.
• keyNoValue - The specified keyGenKey is not loaded.
• algorithmNotSupported - The specified derivationAlgorithm is not supported.
• duplicateKey - A key exists with that name and cannot be overwritten.
• useViolation - The specified keyGenKey usage does not support key derivation.
• invalidKeyLength - The length of iv is not supported or the length of an encryption key

is not compatible with the encryption operation required.
default: null

Event Messages
None

523

11.2.4 KeyManagement.Reset
Sends a service reset to the Service.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

524

11.2.5 KeyManagement.ImportKey
The encryption key passed by the application is loaded in the encryption module.

For secret keys, the key must be passed encrypted with an accompanying "key encrypting key" or "key block
protection key".

For public keys, they key is not required to be encrypted but is required to have verification data in order to be
loaded.

Command Message

Payload (version 2.0) Type Required
{
 "key": "Key01", string 🗸🗸
 "keyAttributes": { object, null
 "keyUsage": "P0", string 🗸🗸
 "algorithm": "T", string 🗸🗸
 "modeOfUse": "G", string 🗸🗸
 "restrictedKeyUsage": "K0" string
 },
 "value": "a2V5IHZhbHVl", string, null
 "constructing": false, boolean
 "decryptKey": "Key01", string, null
 "decryptMethod": "ecb", string, null
 "verificationData": "ZGF0YSB0byBiZSB2ZXJp ...", string, null
 "verifyKey": "VerifyKey01", string, null
 "verifyAttributes": { object, null
 "cryptoMethod": "kcvNone", string, null
 "hashAlgorithm": "sha1" string, null
 },
 "vendorAttributes": "See vendor documentation" string, null
}

Properties

key
Specifies the name of key being loaded.

keyAttributes
This parameter specifies the encryption algorithm, cryptographic method, and mode to be used for the key
imported by this command. For a list of valid values see the keyAttribute capability. The values specified must
be compatible with the key identified by key. If a keyblock is being imported, this property can be null.
default: null

525

Properties

keyAttributes/keyUsage
Specifies the key usage. The following values are possible:

• B0 - BDK Base Derivation Key.
• B1 - Initial DUKPT key.
• B2 - Base Key Variant Key.
• B3 - Key Derivation Key (Non ANSI X9.24).
• C0 - CVK Card Verification Key.
• D0 - Symmetric Key for Data Encryption.
• D1 - Asymmetric Key for Data Encryption.
• D2 - Data Encryption Key for Decimalization Table.
• D3 - Data Encryption Key for Sensitive Data.
• E0 - EMV / Chip Issuer Master Key: Application Cryptogram.
• E1 - EMV / Chip Issuer Master Key: Secure Messaging for Confidentiality.
• E2 - EMV / Chip Issuer Master Key: Secure Messaging for Integrity.
• E3 - EMV / Chip Issuer Master Key: Data Authentication Code.
• E4 - EMV / Chip Issuer Master Key: Dynamic.
• E5 - EMV / Chip Issuer Master Key: Card Personalization.
• E6 - EMV / Chip Issuer Master Key: Other Initialization Vector (IV).
• E7 - EMV / Chip Asymmetric Key Pair for EMV/Smart Card based PIN/PIN Block Encryption.
• I0 - Initialization Vector (IV).
• K0 - Key Encryption or wrapping.
• K1 - X9.143 Key Block Protection Key.
• K2 - TR-34 Asymmetric Key.
• K3 - Asymmetric Key for key agreement / key wrapping.
• K4 - Key Block Protection Key, ISO 20038.
• M0 - ISO 16609 MAC algorithm 1 (using TDEA).
• M1 - ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:2011 MAC Algorithm 5.
• M6 - ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• P0 - PIN Encryption.
• P1 - PIN Generation Key (reserved for ANSI X9.132-202x).
• S0 - Asymmetric key pair for digital signature.
• S1 - Asymmetric key pair, CA key.
• S2 - Asymmetric key pair, nonX9.24 key.
• V0 - PIN verification, KPV, other algorithm.
• V1 - PIN verification, IBM 3624.
• V2 - PIN verification, VISA PVV.
• V3 - PIN verification, X9-132 algorithm 1.
• V4 - PIN verification, X9-132 algorithm 2.
• V5 - PIN Verification Key, ANSI X9.132 algorithm 3.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^B[0-2]$|^C0$|^D[0-2]$|^E[0-6]$|^I0$|^K[0-4]$|^M[0-8]$|^P0$|^S[0-2]$|^V[0-
4]$|^[0-9][0-9]$

526

Properties

keyAttributes/algorithm
Specifies the encryption algorithm. The following values are possible:

• A - AES.
• D - DEA.
• R - RSA.
• T - Triple DEA (also referred to as TDEA).
• "0" - "9" - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^[0-9ADRT]$

keyAttributes/modeOfUse
Specifies the encryption mode. The following values are possible:

• B - Both Encrypt and Decrypt / Wrap and unwrap.
• C - Both Generate and Verify.
• D - Decrypt / Unwrap Only.
• E - Encrypt / Wrap Only.
• G - Generate Only.
• S - Signature Only.
• T - Both Sign and Decrypt.
• V - Verify Only.
• X - Key used to derive other keys(s).
• Y - Key used to create key variants.
• 0 - 9 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^[0-9BCDEGSTVXY]$

527

Properties

keyAttributes/restrictedKeyUsage
This property should only be included if the keyUsage is an key encryption key usage (K* e.g. 'K0') and the key
can only be used as the decryptKey for keys with one of the following usages:

• B0 - BDK Base Derivation Key.
• B1 - Initial DUKPT key.
• B2 - Base Key Variant Key.
• B3 - Key Derivation Key (Non ANSI X9.24).
• C0 - CVK Card Verification Key.
• D0 - Symmetric Key for Data Encryption.
• D1 - Asymmetric Key for Data Encryption.
• D2 - Data Encryption Key for Decimalization Table.
• D3 - Data Encryption Key for Sensitive Data.
• E0 - EMV / Chip Issuer Master Key: Application Cryptogram.
• E1 - EMV / Chip Issuer Master Key: Secure Messaging for Confidentiality.
• E2 - EMV / Chip Issuer Master Key: Secure Messaging for Integrity.
• E3 - EMV / Chip Issuer Master Key: Data Authentication Code.
• E4 - EMV / Chip Issuer Master Key: Dynamic.
• E5 - EMV / Chip Issuer Master Key: Card Personalization.
• E6 - EMV / Chip Issuer Master Key: Other Initialization Vector (IV).
• E7 - EMV / Chip Asymmetric Key Pair for EMV/Smart Card based PIN/PIN Block Encryption.
• I0 - Initialization Vector (IV).
• K0 - Key Encryption or wrapping.
• K1 - X9.143 Key Block Protection Key.
• K2 - TR-34 Asymmetric Key.
• K3 - Asymmetric Key for key agreement / key wrapping.
• K4 - Key Block Protection Key, ISO 20038.
• M0 - ISO 16609 MAC algorithm 1 (using TDEA).
• M1 - ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:2011 MAC Algorithm 5.
• M6 - ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• P0 - PIN Encryption.
• P1 - PIN Generation Key (reserved for ANSI X9.132-202x).
• S0 - Asymmetric key pair for digital signature.
• S1 - Asymmetric key pair, CA key.
• S2 - Asymmetric key pair, nonX9.24 key.
• V0 - PIN verification, KPV, other algorithm.
• V1 - PIN verification, IBM 3624.
• V2 - PIN verification, VISA PVV.
• V3 - PIN verification, X9-132 algorithm 1.
• V4 - PIN verification, X9-132 algorithm 2.
• V5 - PIN Verification Key, ANSI X9.132 algorithm 3.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^B[0-2]$|^C0$|^D[0-2]$|^E[0-6]$|^I0$|^K[0-4]$|^M[0-8]$|^P0$|^S[0-2]$|^V[0-
4]$|^[0-9][0-9]$

528

Properties

value
Specifies the Base64 encoded value of key to be loaded. If it is an RSA key the first 4 bytes contain the exponent
and the following 128 the modulus. This property is not required for secure key entry and can be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

constructing
If the key is under construction through the import of multiple parts from a secure encryption key entry buffer,
then this property is set to true.
default: false

decryptKey
Specifies the name of the key used to decrypt the key being loaded.
If value contains a X9.143 key block, then decryptKey is the name of the key block protection key that is used to
verify and decrypt the key block. This property is null if the data in value is not encrypted or the constructing
property is true.
default: null

decryptMethod
Specifies the cryptographic method that shall be used with the key specified by decryptKey.
This property is not required if a keyblock is being imported, as the decrypt method is contained within the
keyblock.
This property specifies the cryptographic method that will be used to decrypt the encrypted value.
This property should be null if the constructing property is true or if decryptKey is null.
For a list of valid values see this property in the decryptAttribute capability.
If the decryptKey algorithm is 'A', 'D', or 'T', then this property can be one of the following values:

• ecb - The ECB encryption method.
• cbc - The CBC encryption method.
• cfb - The CFB encryption method.
• ofb - The OFB encryption method.
• ctr - The CTR method defined in NIST SP800-38A (See [Ref. keymanagement-11]).
• xts - The XTS method defined in NIST SP800-38E (See [Ref. keymanagement-12]).

If the decryptKey algorithm is 'R', then this property can be one of the following values:
• rsaesPkcs1V15 - Use the RSAES_PKCS1-v1.5 algorithm.
• rsaesOaep - Use the RSAES OAEP algorithm.

If the specified decryptKey is key usage 'K1', then this property can be null. X9.143 defines the cryptographic
methods used for each key block version.
default: null

verificationData
Contains the data to be verified before importing.
This property can be null if no verification is needed before importing the key, the constructing property is true
or value contains verification data.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

verifyKey
Specifies the name of the previously loaded key which will be used to verify the verificationData. This property
can be null when no verification is needed before importing the key or the constructing property is true.
default: null

529

Properties

verifyAttributes
This parameter specifies the encryption algorithm, cryptographic method, and mode to be used to verify this
command or to generate verification output data. Verifying input data will result in no verification output data.
For a list of valid values see the verifyAttributes capability.
This property can be null if verificationData is not required or the constructing property is true.
default: null

verifyAttributes/cryptoMethod
This parameter specifies the cryptographic method cryptomethod that will be used with encryption algorithm.
If the verifyKey algorithm is 'A', 'D', or 'T' and specified verifyKey is MAC key usage (i.e. 'M1'), this property
can be null.
If the verifyKey algorithm is 'A', 'D', or 'T' and specified verifyKey is key usage '00', this property can be one of
the following values:

• kcvNone - There is no key check value verification required.
• kcvSelf - The key check value (KCV) is created by an encryption of the key with itself.
• kcvZero - The key check value (KCV) is created by encrypting a zero value with the key.

If the verifyKey algorithm is 'R' and specified verifyKey is not key usage '00', then this property can be one of
the following values:

• sigNone - No signature algorithm specified. No signature verification will take place and
the content of verificationData is not required.

• rsassaPkcs1V15 - Use the RSASSA-PKCS1-v1.5 algorithm.
• rsassaPss - Use the RSASSA-PSS algorithm.

default: null

verifyAttributes/hashAlgorithm
For asymmetric signature verification methods (Specified verifyKey usage is 'S0', 'S1', or 'S2'), this can be one of
the following values:

• sha1 - The SHA 1 digest algorithm.
• sha256 - The SHA 256 digest algorithm, as defined in ISO/IEC 10118-3:2004

[Ref. keymanagement-7] and FIPS 180-2 [Ref. keymanagement-8].
If the specified verifyKey is key usage any of the MAC usages (i.e. 'M1'), then this property can be null.
default: null

vendorAttributes
Specifies the vendor attributes of the key to be imported. Refer to vendor documentation for details.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyNotFound", string, null
 "verificationData": "dmVyaWZpY2F0aW9uIGRh ...", string, null
 "verifyAttributes": { object, null
 "keyUsage": "M0", string 🗸🗸
 "algorithm": "T", string 🗸🗸
 "modeOfUse": "V", string 🗸🗸
 "cryptoMethod": "kcvNone", string, null
 "hashAlgorithm": "sha1" string, null
 },

530

Payload (version 2.0) Type Required
 "keyLength": 0 integer
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyNotFound - One of the keys specified was not found.
• accessDenied - The encryption module is either not initialized or not ready for any vendor specific

reason.
• duplicateKey - A key exists with that name and cannot be overwritten.
• keyNoValue - One of the specified keys is not loaded.
• useViolation - The use specified by keyUsage is not supported or conflicts with a previously loaded

key with the same name as key or the usage of decryptKey is not supported.
• formatNotSupported - The specified format is not supported.
• invalidKeyLength - The length of value is not supported.
• noKeyRam - There is no space left in the key RAM for a key of the specified type.
• signatureNotSupported - The cryptoMethod of the verifyAttributes is not supported. The key is not

stored in the device.
• signatureInvalid - The verification data in verificationData the input data is invalid. The key is not

stored in the device.
• randomInvalid - The encrypted random number in the input data does not match the one previously

provided by the device. The key is not stored in the device.
• algorithmNotSupported - The algorithm specified by algorithm is not supported by this command.
• modeNotSupported - The mode specified by modeOfUse is not supported.
• cryptoMethodNotSupported - The cryptographic method specified by cryptoMethod for

keyAttributes or verifyAttributes is not supported.
• invalidValue - The key value contains a key block which failed its authentication check. The key is

not stored in the device.
• formatInvalid - The format of the key block is invalid.
• contentInvalid - The content of the key block is invalid.
• formatNotSupported - The key block version or content is not supported.

default: null

verificationData
The verification data.
This property can be null if there is no verification data.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

verifyAttributes
This parameter specifies the encryption algorithm, cryptographic method, and mode used to verify this
command. For a list of valid values see the verifyAttributes capability properties.
This property should be null if there is no verification data.
default: null

531

Properties

verifyAttributes/keyUsage
Specifies the key usage. The following values are possible:

• M0 - ISO 16609 MAC Algorithm 1 (using TDEA).
• M1 - ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:1999 MAC Algorithm 5.
• M6 - ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• S0 - Asymmetric key pair or digital signature.
• S1 - Asymmetric key pair, CA key.
• S2 - Asymmetric key pair, nonX9.24 key.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^M[0-8]$|^S[0-2]$|^[0-9][0-9]$

verifyAttributes/algorithm
Specifies the encryption algorithm. The following values are possible:

• A - AES.
• D - DEA.
• R - RSA.
• T - Triple DEA (also referred to as TDEA).
• "0" - "9" - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^[0-9ADRT]$

verifyAttributes/modeOfUse
Specifies the encryption mode. The following values are possible:

• S - Signature.
• V - Verify Only.
• 0 - 9 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^[0-9SV]$

verifyAttributes/cryptoMethod
This parameter specifies the cryptographic method cryptomethod that will be used with encryption algorithm.
If the algorithm property is 'A', 'D', or 'T' and specified keyUsage property is MAC key usage (i.e. 'M1'), this
property can be null.
If the algorithm property is 'A', 'D', or 'T' and specified keyUsage property is '00', this property can be one of the
following values:

• kcvNone - There is no key check value verification required.
• kcvSelf - The key check value (KCV) is created by an encryption of the key with itself.
• kcvZero - The key check value (KCV) is created by encrypting a zero value with the key.

If the algorithm property is 'R' and specified keyUsage property is not '00', this property can be one of the
following values:

• sigNone - No signature algorithm specified. No signature verification will take place and
the content of verificationData is not required.

• rsassaPkcs1V15 - Use the RSASSA-PKCS1-v1.5 algorithm.
• rsassaPss - Use the RSASSA-PSS algorithm.

default: null

532

Properties

verifyAttributes/hashAlgorithm
For asymmetric signature verification methods (Specified keyUsage property is 'S0', 'S1', or 'S2'), this can be one
of the following values:

• sha1 - The SHA 1 digest algorithm.
• sha256 - The SHA 256 digest algorithm, as defined in ISO/IEC 10118-3:2004

[Ref. keymanagement-7] and FIPS 180-2 [Ref. keymanagement-8].
If the keyUsage property is any of the MAC usages (e.g. 'M1'), this property can be null.
default: null

keyLength
Specifies the length, in bits, of the key. Zero if the key length is unknown.
Property value constraints:
minimum: 0
default: 0

Event Messages
None

533

11.2.6 KeyManagement.DeleteKey
This command deletes a key. If authentication data is required the KeyManagement.StartAuthenticate command
should be used to obtain the data to sign.

Deletion of the key may cause other keys to be deleted. On successful completion of this command, it is
recommended that clients use the KeyManagement.GetKeyDetail command to check which keys remain loaded.

Command Message

Payload (version 2.0) Type Required
{
 "key": "Key01", string 🗸🗸
 "authentication": { object, null
 "method": "certhost", string 🗸🗸
 "key": "Key01", string, null
 "data": "QXV0aGVudGljYXRpb25EYXRh" string 🗸🗸
 }
}

Properties

key
The name of key being deleted.

authentication
This property can be used to include authentication data if required by the command.
Additionally, if the command requires authentication:

• The KeyManagement.StartAuthenticate command must be called before this command.
• Commands which do not clear or modify the authentication data from the device may be executed

between the KeyManagement.StartAuthenticate and the authenticated command requests.
• If prior to this command request, KeyManagement.StartAuthenticate is not called or a command clears

the authentication data from the device, sequenceError will be returned.
default: null

authentication/method
Specifies the method used to generate the authentication data. The possible values are:

• certhost - The data is signed by the current Host, using the RSA certificate-based scheme.
• sigHost - The data is signed by the current Host, using the RSA signature-based scheme.
• ca - The data is signed by the Certificate Authority (CA).
• hl - The data is signed by the Higher Level (HL) Authority.
• cbcmac - A MAC is calculated over the data using key property and the CBC MAC algorithm.
• cmac - A MAC is calculated over the data using key and the CMAC algorithm.
• certHostTr34 - The data is signed by the current Host, using TR-34.
• caTr34 - The data is signed by the Certificate Authority (CA), using TR-34.
• hlTr34 - The data is signed by the Higher Level (HL) Authority, using TR-34.
• reserved1 - Reserved for a vendor-defined signing method.
• reserved2 - Reserved for a vendor-defined signing method.
• reserved3 - Reserved for a vendor-defined signing method.

authentication/key
If method is cbcmac or mac, then this is the name of a key which has a MAC key usage e.g. M0.
If method is sigHost, then this specifies the name of a previously loaded asymmetric key (i.e. an RSA Public
Key). If null, the default Signature Issuer or if null, the default Signature Issuer public key (installed in a secure
environment during manufacture) will be used.
default: null

534

Properties

authentication/data
This property contains the authenticated data (MAC, Signature) generated from the previous call to
KeyManagement.StartAuthenticate.
The authentication method specified by method is used to generate this data. Both this authentication data and
the data used to generate the authentication data must be verified before the operation is performed.
If certHost, ca, or hl is specified in the method property, this contains a PKCS#7 signedData structure which
includes the data that was returned by KeyManagement.StartAuthenticate. The optional CRL field may or may
not be included in the PKCS#7 signedData structure.
If certHostTr34, caTr34 or hlTr34 is specified in the method property, please refer to the X9 TR34-2019 [Ref.
keymanagement-9] for more details.
If sigHost is specified in the method property, this is a PKCS#7 structure which includes the data that was
returned by the KeyManagement.StartAuthenticate command.
If cbcmac or cmac is specified in the method property, then key must refer to a key with a MAC key usage key
e.g. M0.
If method is none, this property is not required.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• randomInvalid - The encrypted random number in authentication/data does not match the one
previously provided by the device.

• keyNoValue - A required key was not specified in authentication/key.
• keyNotFound - The key specified in authentication/key was not found.
• useViolation - The key specified in authentication/key can not be used for the specified

authentication/method.
• modeOfUseNotSupported - The key specified in authentication/key can not be used for

authentication.
• macInvalid - The MAC included in authentication/data is invalid.
• signatureInvalid - The signature included in authentication/data is invalid.

default: null

Event Messages
None

535

11.2.7 KeyManagement.ExportRSAIssuerSignedItem
This command is used to export data elements from the device, which have been signed by an offline Signature
Issuer. This command is used when the default keys and Signature Issuer signatures, installed during manufacture,
are to be used for remote key loading.

This command allows the following data items are to be exported:

• The Security Item which uniquely identifies the device. This value may be used to uniquely identify a
device and therefore confer trust upon any key or data obtained from this device.

• The RSA public key component of a public/private key pair that exists within the device. These
public/private key pairs are installed during manufacture. Typically, an exported public key is used by the
host to encipher the symmetric key.

See section Default Keys and Security Item loaded during manufacture for the default names and the description of
the keys installed during manufacture. These names are defined to ensure multi-vendor applications can be
developed.

The KeyManagement.GetKeyDetail command can be used to determine the valid uses for the exported public key.

Command Message

Payload (version 2.0) Type Required
{
 "exportItemType": "deviceId", string
 "name": "PKey01" string, null
}

Properties

exportItemType
Defines the type of data item to be exported from the device. The possible values are:

• deviceId - The Unique ID for the device will be exported.
• publicKey - The public key identified by name will be exported.

default: "deviceId"

name
Specifies the name of the public key to be exported.
The private/public key pair was installed during manufacture; see section Default Keys and Security Item loaded
during manufacture for a definition of these default keys. If this is null, then the default EPP public key that is
used for symmetric key encryption is exported.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noRSAKeyPair", string, null
 "value": "aXRlbSBkYXRhIHJlcXVl ...", string, null
 "rsaSignatureAlgorithm": "na", string
 "signature": "U2lnbmF0dXJlIGRhdGE=" string, null
}

536

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noRSAKeyPair - The device does not have a private key.
• accessDenied - The device is either not initialized or not ready for any vendor specific reason.
• keyNotFound - The data item identified by name was not found.

default: null

value
If a public key was requested then value contains the PKCS#1 formatted RSA public key represented in DER
encoded ASN.1 format. If the security item was requested then value contains the device's Security Item, which
may be vendor specific.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

rsaSignatureAlgorithm
Specifies the algorithm, used to generate the Signature returned in signature, as one of the following:

• na - No signature algorithm used, no signature will be provided in signature, the data item may still be
exported.

• rsassaPkcs1V15 - RSASSA-PKCS1-v1.5 algorithm used.
• rsassaPss - RSASSA-PSS algorithm used.

default: "na"

signature
The RSA signature of the data item exported.
This should be null when the key signature is not supported.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

537

11.2.8 KeyManagement.GenerateRSAKeyPair
This command will generate a new RSA key pair. The public key generated as a result of this command can
subsequently be obtained by calling KeyManagement.ExportRSADeviceSignedItem. The newly generated key pair
can only be used for the use defined in the use flag. This flag defines the use of the private key; its public key can
only be used for the inverse function.

Command Message

Payload (version 2.0) Type Required
{
 "key": "Key02", string 🗸🗸
 "use": "rsaPrivate", string 🗸🗸
 "modulusLength": 0, integer
 "exponentValue": "device" string
}

Properties

key
Specifies the name of the new key-pair to be generated. Details of the generated key-pair can be obtained
through the KeyManagement.GetKeyDetail command.

use
Specifies what the private key component of the key pair can be used for. The public key part can only be used
for the inverse function. For example, if the rsaPrivateSign use is specified, then the private key can only be
used for signature generation and the partner public key can only be used for verification. The following values
are possible:

• rsaPrivate - Key is used as a private key for RSA decryption.
• rsaPrivateSign - Key is used as a private key for RSA Signature generation. Only data generated

within the device can be signed.

modulusLength
Specifies the number of bits for the modulus of the RSA key pair to be generated. When zero is specified then
the device will be responsible for defining the length.
Property value constraints:
minimum: 0
default: 0

exponentValue
Specifies the value of the exponent of the RSA key pair to be generated. The following values are possible:

• device - The device will decide the exponent.
• exponent1 - Exponent of 21+1 (3).
• exponent4 - Exponent of 24+1 (17).
• exponent16 - Exponent of 216+1 (65537).

default: "device"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied" string, null
}

538

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• invalidModulusLength - The modulus length specified is invalid.
• useViolation - The specified use is not supported by this key.
• duplicateKey - A key exists with that name and cannot be overwritten.
• keyGenerationError - The device is unable to generate a key pair.

default: null

Event Messages
None

539

11.2.9 KeyManagement.ExportRSADeviceSignedItem
This command is used to export data elements from the device that have been signed by a private key within the
device. This command allows an application to define which of the following data items are to be exported.

• The Security Item which uniquely identifies the device. This value may be used to uniquely identify a
device and therefore confer trust upon any key or data obtained from this device.

• The RSA public key component of a public/private key pair that exists within the device.

Command Message

Payload (version 2.0) Type Required
{
 "exportItemType": "deviceId", string
 "name": "PKey01", string 🗸🗸
 "sigKey": "SigKey01", string 🗸🗸
 "signatureAlgorithm": "na" string
}

Properties

exportItemType
Defines the type of data item to be exported from the device. The possible values are:

• deviceId - The Unique ID for the device will be exported.
• publicKey - The public key identified by name will be exported.

default: "deviceId"

name
Specifies the name of the public key to be exported. This can either be the name of a key-pair generated through
KeyManagement.GenerateRsaKeyPair or the name of one of the default key-pairs installed during manufacture.

sigKey
Specifies the name of the private key to use to sign the exported item.

signatureAlgorithm
Specifies the algorithm to use to generate the Signature, returned in both the selfSignature and signature fields,
as one of the following:

• na - No signature will be provided in selfSignature or signature. The requested item may still be
exported.

• rsassaPkcs1V15 - RSASSA-PKCS1-v1.5 algorithm used.
• rsassaPss - RSASSA-PSS algorithm used.

default: "na"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noRSAKeyPair", string, null
 "value": "aXRlbSBkYXRhIHJlcXVl ...", string, null
 "selfSignature": "c2lnbmF0dXJlIG9mIHRo ...", string, null
 "signature": "c2lnbmF0dXJlIG9mIHRo ..." string, null
}

540

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noRSAKeyPair - The device does not have a private key.
• accessDenied - The device is either not initialized or not ready for any vendor specific reason.
• keyNotFound - The data item identified by name was not found.

default: null

value
If a public key was requested then value contains the PKCS#1 formatted RSA Public Key represented in DER
encoded ASN.1 format. If the security item was requested then value contains the device's Security Item, which
may be vendor specific.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

selfSignature
If a public key was requested then selfSignature contains the RSA signature of the public key exported,
generated with the key-pair's private component.
This should be null if not supported or required.
Property value constraints:
format: base64
default: null

signature
Specifies the RSA signature of the data item exported.
This should be null if not supported or required.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

541

11.2.10 KeyManagement.GetCertificate
This command is used to read out the encryptor's certificate, which has been signed by the trusted Certificate
Authority and is sent to the host. This command only needs to be called once if no new Certificate Authority has
taken over. The output of this command will specify in the PKCS#7 (See [Ref. keymanagement-1]) message the
resulting Primary or Secondary certificate.

Command Message

Payload (version 2.0) Type Required
{
 "getCertificate": "enckey" string 🗸🗸
}

Properties

getCertificate
Specifies which public key certificate is requested. If the KeyManagement.Status command indicates Primary
Certificates are accepted, then the Primary Public Encryption Key or the Primary Public Verification Key will be
read out. If the KeyManagement.Status command indicates Secondary Certificates are accepted, then the
Secondary Public Encryption Key or the Secondary Public Verification Key will be read out. The following
values are possible:

• enckey - The corresponding encryption key is to be returned.
• verificationkey - The corresponding verification key is to be returned.
• hostkey - The host public key is to be returned.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "certificate": "Y2VydGlmaWNhdGUgREVS ..." string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• invalidCertificateState - The certificate module is in a state in which the request is invalid.
• keyNotFound - The specified public key was not found.

default: null

certificate
Contains the certificate that is to be loaded represented in DER encoded ASN.1 notation. This data should be in a
binary encoded PKCS#7 (See [Ref. keymanagement-1]) using the degenerate certificate only case of the signed-
data content type in which the inner content's data file is omitted and there are no signers.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

542

543

11.2.11 KeyManagement.ReplaceCertificate
This command is used to replace the existing primary or secondary Certificate Authority certificate already loaded
into the KeyManagement. This operation must be done by an Initial Certificate Authority or by a Sub-Certificate
Authority. These operations will replace either the primary or secondary Certificate Authority public verification
key inside of the KeyManagement. After this command is complete, the application should send the
KeyManagement.LoadCertificate and KeyManagement.GetCertificate commands to ensure that the new HOST and
the encryptor have all the information required to perform the remote key loading process.

Command Message

Payload (version 2.0) Type Required
{
 "replaceCertificate": "UEtDUyAjNyBkYXRh" string 🗸🗸
}

Properties

replaceCertificate
The PKCS#7 (See [Ref. keymanagement-1]) message that will replace the current Certificate Authority. The
outer content uses the Signed-data content type, the inner content is a degenerate certificate only content
containing the new CA certificate and Inner Signed Data type The certificate should be in a format represented
in DER encoded ASN.1 notation.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "newCertificateData": "UEtDUyAjNyB0aHVtYiBw ..." string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• formatInvalid - The format of the message is invalid.
• invalidCertificateState - The certificate module is in a state in which the request is invalid.

default: null

newCertificateData
The PKCS#7 (See [Ref. keymanagement-1]) using a Digested-data content type. The digest parameter should
contain the thumb print value.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}?$
format: base64
default: null

Event Messages
None

544

11.2.12 KeyManagement.StartKeyExchange
This command is used to start communication with the host, including transferring the host's Key Transport Key,
replacing the Host certificate, and requesting initialization remotely. This output value is returned to the host and is
used in the

KeyManagement.ImportKey and

KeyManagement.LoadCertificate

to verify that the encryptor is talking to the proper host.

The KeyManagement.ImportKey command end the key exchange process.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "randomItem": "Tm9uY2U=" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.
default: null

randomItem
The randomly generated number created by the device.
This value is null if the device does not support random number generation for data authentication.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

545

11.2.13 KeyManagement.GenerateKCV
This command returns the Key Check Value (KCV) for the specified key.

Command Message

Payload (version 2.0) Type Required
{
 "key": "Key01", string 🗸🗸
 "keyCheckMode": "self" string 🗸🗸
}

Properties

key
Specifies the name of key that should be used to generate the KCV.

keyCheckMode
Specifies the mode that is used to create the key check value. The following values are possible:

• self - The key check value (KCV) is created by an encryption of the key with itself. For the
description refer to the self literal described in the keyCheckModes.

• zero - The key check value (KCV) is created by encrypting a zero value with the key. Unless
otherwise specified, ECB encryption is used The encryption algorithm used (i.e. DES, 3DES, AES) is
determined by the type of key used to generate the KCV.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyNotFound", string, null
 "kcv": "a2N2" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyNotFound - The specified key encryption key was not found.
• keyNoValue - The specified key exists but has no value loaded.
• accessDenied - The encryption module is either not initialized or not ready for any vendor

specific reason.
• modeNotSupported - The KCV mode is not supported.

default: null

kcv
Contains KCV data that can be used for verification of the key. If the command fails, this will be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

546

11.2.14 KeyManagement.LoadCertificate
This command is used to load a host certificate to make remote key loading possible. This command can be used to
load a host certificate when there is not already one present in the encryptor as well as replace the existing host
certificate with a new host certificate. The type of certificate (Primary or Secondary) to be loaded will be embedded
within the actual certificate structure.

Command Message

Payload (version 2.0) Type Required
{
 "loadOption": "newHost", string 🗸🗸
 "signer": "certHost", string 🗸🗸
 "certificateData": "Y2VydGlmaWNhdGUgaW4g ..." string 🗸🗸
}

Properties

loadOption
Specifies the method to use to load the certificate. The following values are possible:

• newHost - Load a new Host certificate, where one has not already been loaded.
• replaceHost - Replace (or rebind) the device to a new Host certificate, where the new Host

certificate is signed by signer.

signer
Specifies the signer of the certificate to be loaded. The following values are possible:

• certHost - The certificate to be loaded is signed by the current Host. Cannot be combined with
newHost.

• ca - The certificate to be loaded is signed by the Certificate Authority (CA).
• hl - The certificate to be loaded is signed by the Higher Level (HL) Authority.

certificateData
The structure that contains the certificate that is to be loaded represented in DER encoded ASN.1 notation.
For newHost, this data should be in a binary encoded PKCS#7 (See [Ref. keymanagement-1]) using the
'degenerate certificate only' case of the SignedData content type in which the inner content's data file is omitted
and there are no signers.
For replaceHost, the message has an outer SignedData content type with the SignerInfo encryptedDigest field
containing the signature of signer. The inner content is binary encoded PKCS#7 (See [Ref. keymanagement-1])
using the degenerate certificate.
The optional CRL field may or may not be included in the PKCS#7 (See [Ref. keymanagement-1]) signed-data
structure.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "rsaKeyCheckMode": "none", string
 "rsaData": "UEtDUyAjNyBkYXRh" string, null
}

547

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• formatInvalid - The format of the message is invalid.
• invalidCertificateState - The certificate module is in a state in which the request is invalid.
• signatureInvalid - The verification data in the input data is invalid.
• randomInvalid - The encrypted random number in the input data does not match the one previously

provided by the device.
• modeNotSupported - The loadOption and signer are not supported.

default: null

rsaKeyCheckMode
Defines algorithm/method used to generate the public key check value/thumb print. The check value can be used
to verify that the public key has been imported correctly.
The following values are possible:

• none - No check value is returned in rsaData property.
• sha1 - The rsaData property contains a sha-1 digest of the public key.
• sha256 - The rsaData contains a sha-256 digest of the public key.

default: "none"

rsaData
The PKCS#7 (See [Ref. keymanagement-1]) structure using a Digested-data content type. The digest parameter
should contain the thumb print value calculated by the algorithm specified by rsaKeyCheckMode. If
rsaKeyCheckMode is none, this property is null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

548

11.2.15 KeyManagement.StartAuthenticate
For commands which may require authentication data, this command retrieves the data to be signed. If this
command returns data to be signed the signed data must be included in the authenticate property of the command.

If authentication data is required but not provided, the command will complete with completionCode
authorizationRequired.

Command Message

Payload (version 2.0) Type Required
{
 "command": { object 🗸🗸
 "deleteKey": { object, null
 "key": "Key01" string 🗸🗸
 },
 "initialization": { object, null
 }
 }
}

Properties

command
The command and associated command specific input properties which for which data to sign is requested. This
must be one of:

• deleteKey - The KeyManagement.DeleteKey command.
• initialization - KeyManagement.Initialization command.

Property value constraints:
minProperties: 1
maxProperties: 1

command/deleteKey
See KeyManagement.DeleteKey description.
default: null

command/deleteKey/key
The name of key being deleted.

command/initialization
See KeyManagement.Initialization description.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "dataToSign": "QXV0aGVudGljYXRpb24g ...", string, null
 "signers": { object, null
 "certHost": false, boolean
 "sigHost": false, boolean
 "ca": false, boolean
 "hl": false, boolean

549

Payload (version 2.0) Type Required
 "cbcmac": false, boolean
 "cmac": false, boolean
 "certHostTr34": false, boolean
 "caTr34": false, boolean
 "hlTr34": false, boolean
 "reserved1": false, boolean
 "reserved2": See signers/reserved1, boolean
 "reserved3": See signers/reserved1 boolean
 }
}

Properties

dataToSign
The data that must be authenticated by one of the authorities indicated by methods before the command can be
executed. If the command does not require authentication, this property is null and the command result is
success.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

signers
Specifies the methods which may be used to generate authentication data. If dataToSign is not null, at least one
method must be true.
default: null

signers/certHost
The current host can be used to generate authentication data, using the RSA certificate-based scheme.
default: false

signers/sigHost
The current host can be used to generate authentication data, using the RSA signature-based scheme.
default: false

signers/ca
The Certificate Authority (CA) can be used to generate authentication data.
default: false

signers/hl
The Higher Level (HL) Authority can be used to generate authentication data.
default: false

signers/cbcmac
A CBC MAC key can be used to generate authentication data.
default: false

signers/cmac
A CMAC key can be used to generate authentication data.
default: false

signers/certHostTr34
The current host can be used to generate authentication data compliant with TR-34.
default: false

550

Properties

signers/caTr34
The Certificate Authority (CA) can be used to generate the authentication data compliant with TR-34.
default: false

signers/hlTr34
The Higher Level (HL) Authority can be used to generate authentication data compliant with TR-34.
default: false

signers/reserved1
The authentication data is generated using a vendor specific generation method.
default: false

Event Messages
None

551

11.2.16 KeyManagement.ImportKeyToken
This command is used to load a DES (56, 112, 168) or AES (128, 192, 256) key included in a key transport token.
The Key Transport Key should be destroyed if the entire process is not completed. In addition, a new Key
Transport Key should be generated each time this protocol is executed. This command ends the Key Exchange
process.

Command Message

Payload (version 2.0) Type Required
{
 "keyToken": "UGluYmxvY2sgZGF0YQ==", string 🗸🗸
 "key": "Key01", string 🗸🗸
 "keyUsage": "P0", string, null
 "loadOption": "noRandom" string
}

Properties

keyToken
Pointer to a binary encoded PKCS #7 represented in DER encoded ASN.1 notation. This allows the Host to
verify that key was imported correctly and to the correct device. The message has an outer Signed-data content
type with the SignerInfo encryptedDigest field containing the HOST’s signature. The inner content is an
Enveloped-data content type. The device identifier is included as the issuerAndSerialNumber within the
RecipientInfo.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

key
Specifies the name of the key to be stored.

552

Properties

keyUsage
Specifies the key usage. The following values are possible:

• B0 - BDK Base Derivation Key.
• B1 - Initial DUKPT key.
• B2 - Base Key Variant Key.
• B3 - Key Derivation Key (Non ANSI X9.24).
• C0 - CVK Card Verification Key.
• D0 - Symmetric Key for Data Encryption.
• D1 - Asymmetric Key for Data Encryption.
• D2 - Data Encryption Key for Decimalization Table.
• D3 - Data Encryption Key for Sensitive Data.
• E0 - EMV / Chip Issuer Master Key: Application Cryptogram.
• E1 - EMV / Chip Issuer Master Key: Secure Messaging for Confidentiality.
• E2 - EMV / Chip Issuer Master Key: Secure Messaging for Integrity.
• E3 - EMV / Chip Issuer Master Key: Data Authentication Code.
• E4 - EMV / Chip Issuer Master Key: Dynamic.
• E5 - EMV / Chip Issuer Master Key: Card Personalization.
• E6 - EMV / Chip Issuer Master Key: Other Initialization Vector (IV).
• E7 - EMV / Chip Asymmetric Key Pair for EMV/Smart Card based PIN/PIN Block Encryption.
• I0 - Initialization Vector (IV).
• K0 - Key Encryption or wrapping.
• K1 - X9.143 Key Block Protection Key.
• K2 - TR-34 Asymmetric Key.
• K3 - Asymmetric Key for key agreement / key wrapping.
• K4 - Key Block Protection Key, ISO 20038.
• M0 - ISO 16609 MAC algorithm 1 (using TDEA).
• M1 - ISO 9797-1 MAC Algorithm 1.
• M2 - ISO 9797-1 MAC Algorithm 2.
• M3 - ISO 9797-1 MAC Algorithm 3.
• M4 - ISO 9797-1 MAC Algorithm 4.
• M5 - ISO 9797-1:2011 MAC Algorithm 5.
• M6 - ISO 9797-1:2011 MAC Algorithm 5 / CMAC.
• M7 - HMAC.
• M8 - ISO 9797-1:2011 MAC Algorithm 6.
• P0 - PIN Encryption.
• P1 - PIN Generation Key (reserved for ANSI X9.132-202x).
• S0 - Asymmetric key pair for digital signature.
• S1 - Asymmetric key pair, CA key.
• S2 - Asymmetric key pair, nonX9.24 key.
• V0 - PIN verification, KPV, other algorithm.
• V1 - PIN verification, IBM 3624.
• V2 - PIN verification, VISA PVV.
• V3 - PIN verification, X9-132 algorithm 1.
• V4 - PIN verification, X9-132 algorithm 2.
• V5 - PIN Verification Key, ANSI X9.132 algorithm 3.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^B[0-2]$|^C0$|^D[0-2]$|^E[0-6]$|^I0$|^K[0-4]$|^M[0-8]$|^P0$|^S[0-2]$|^V[0-
4]$|^[0-9][0-9]$
default: null

553

Properties

loadOption
Specifies the method to use to load the key token as one of the following values:

• noRandom - Import a key without generating a using a random number.
• random - Import a key by generating and using a random number. This option is used for Remote Key

Exchange
• noRandomCrl - Import a key with a Certificate Revocation List included in the token. A random

number is not generated nor used. This option is used for the One-Pass Protocol described in X9 TR34-
2019 [Ref. keymanagement-9]

• randomCrl - Import a key with a Certificate Revocation List included in the token. A random number
is generated and used. This option is used for the Two-Pass Protocol described in X9 TR34-2019 [Ref.
keymanagement-9]

If random or randomCrl, the random number is included as an authenticated attribute within SignerInfo
SignedAttributes.
If noRandom or noRandomCrl, a timestamp is included as an authenticated attribute within SignerInfo
SignedAttributes.
If noRandomCrl or randomCrl, keyUsage must be null as the key usage is embedded in the keyToken.
default: "noRandom"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "keyLength": 0, integer
 "keyAcceptAlgorithm": "sha1", string, null
 "keyAcceptData": "UGluYmxvY2sgZGF0YQ==", string, null
 "keyCheckMode": "kcvSelf", string, null
 "keyCheckValue": "MDEwMjAz" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• duplicateKey - A key exists with that name and cannot be overwritten.
• invalidKeyLength - The length of the Key Transport Key is not valid.
• noKeyRam - There is no space left in the key RAM for a key of the specified type.
• formatInvalid - The format of the message or key block is invalid.
• contentInvalid - The content of the message or key block is invalid.
• useViolation - The specified use is not supported, or if a key with the same name has already

been loaded, the specified use conflicts with the use of the key previously loaded.
• randomInvalid - The encrypted random number in the input data does not match the one

previously provided by the PIN device. Only applies to CRKL load options that use a random number.
• signatureInvalid - The signature in the input data is invalid.
• invalidCertState - A Host certificate has not been previously loaded.

default: null

554

Properties

keyLength
Specifies the length, in bits, of the key. Zero if the key length is unknown.
Property value constraints:
minimum: 0
default: 0

keyAcceptAlgorithm
Defines the algorithm used to generate the signature contained in the message keyAcceptData sent to the host.
The following values are possible:

• sha1 - keyAcceptData contains a SHA-1 digest of concatenated data using the device signing key.
• sha256 - keyAcceptData contains a SHA-256 digest of concatenated data using the device signing

key.
default: null

keyAcceptData
If loadOption is random or randomCrl, this data is a binary encoded PKCS #7, represented in DER encoded
ASN.1 notation. The message has an outer Signed-data content type with the SignerInfo encryptedDigest field
containing the ATM’s signature. The random numbers are included as authenticatedAttributes within the
SignerInfo. The inner content is a data content type, which contains the HOST identifier as an
issuerAndSerialNumber sequence.
If keyAcceptAlgorithm is null, then this will also be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]*={0,2}$
format: base64
default: null

keyCheckMode
Specifies the mode that is used to create the key check value. The following values are possible:

• kcvSelf - The key check value (KCV) is created by an encryption of the key with itself.
• kcvZero - The key check value (KCV) is created by encrypting a zero value with the key.

default: null

keyCheckValue
Contains the key verification code data that can be used for verification of the loaded key. This will be null if the
device does not have that capability.
If keyCheckMode is null, then this will also be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]*={0,2}$
format: base64
default: null

Event Messages
None

555

11.2.17 KeyManagement.ImportEmvPublicKey
The Certification Authority and the Chip Card RSA public keys needed for EMV are loaded or deleted in/from the
encryption module. This command is similar to the KeyManagement.ImportKey, but it is specifically designed to
address the key formats and security features defined by EMV. Mainly the extensive use of "signed certificate" or
"EMV certificate" (which is a compromise between signature and a pure certificate) to provide the public key is
taken in account. The Service is responsible for all EMV public key import validation. Once loaded, the Service is
not responsible for key/certificate expiry, this is an application responsibility.

Command Message

Payload (version 2.0) Type Required
{
 "key": "Key01", string 🗸🗸
 "keyUsage": "E0", string 🗸🗸
 "importScheme": "plainCA", string 🗸🗸
 "value": "string", string 🗸🗸
 "verifyKey": "Key01" string, null
}

Properties

key
Specifies the name of key being loaded.

keyUsage
Specifies the type of access for which the key can be used. The following values are possible:

• E0 - EMV / Chip Issuer Master Key: Application Cryptogram.
• E1 - EMV / Chip Issuer Master Key: Secure Messaging for Confidentiality.
• E2 - EMV / Chip Issuer Master Key: Secure Messaging for Integrity.
• E3 - EMV / Chip Issuer Master Key: Data Authentication Code.
• E4 - EMV / Chip Issuer Master Key: Dynamic.
• E5 - EMV / Chip Issuer Master Key: Card Personalization.
• E6 - EMV / Chip Issuer Master Key: Other Initialization Vector (IV).
• E7 - EMV / Chip Asymmetric Key Pair for EMV/Smart Card based PIN/PIN Block Encryption.
• 00 - 99 - These numeric values are reserved for proprietary use.

Property value constraints:
pattern: ^E[0-7]$|^[0-9][0-9]$

importScheme
Defines the import scheme used. The following values are possible:

• plainCA - This scheme is used by VISA. A plain text CA public key is imported with no verification.
The two parts of the key (modulus and exponent) are passed in clear mode as a DER encoded PKCS#1 public
key. The key is loaded directly in the security module.

• checksumCA - This scheme is used by VISA. A plain text CA public key is imported using the EMV
2000

Book II verification algorithm and it is verified before being loaded in the security module.
• epiCA - This scheme is used by MasterCard Europe. A CA public key is imported using the self-signed

scheme.
• issuer - An Issuer public key is imported as defined in EMV 2000 Book II.
• icc - An ICC public key is imported as defined in EMV 2000 Book II.
• iccPIN - An ICC PIN public key is imported as defined in EMV 2000 Book II.
• pkcsV1_5_CA - A CA public key is imported and verified using a signature generated with a private

key for which the public key is already loaded.

556

Properties

value
Contains all the necessary data to complete the import using the scheme specified within importScheme.
If importScheme is plainCA then value contains a DER encoded PKCS#1 public key. No verification is possible.
verifyKey is ignored.
If importScheme is checksumCA then value contains table 23 data, as specified in EMV 2000 Book 2 (See [Ref.
keymanagement-3]). The plain text key is verified as defined within EMV 2000 Book 2, page 73. verifyKey is
ignored (See [Ref. keymanagement-3]).
If importScheme is WFS_PIN_EMV_IMPORT_EPI_CA then value contains the concatenation of tables 4 and
13, as specified in [Ref. keymanagement-4], Europay International, EPI CA Module Technical – Interface
specification Version 1.4. These tables are also described in the EMV Support Appendix. The self-signed public
key is verified as defined by the reference document. sigKey is ignored.
If importScheme is issuer then value contains the EMV public key certificate. Within the following descriptions
tags are documented to indicate the source of the data, but they are not sent down to the service. The data
consists of the concatenation of: the key exponent length (1 byte), the key exponent value (variable length –
EMV Tag value: ‘9F32’), the EMV certificate length (1 byte), the EMV certificate value (variable length – EMV
Tag value: ‘90’), the remainder length (1 byte). The remainder value (variable length – EMV Tag value: ‘92’), the
PAN length (1 byte) and the PAN value (variable length – EMV Tag value: ‘5A’). The service will compare the
leftmost three to eight hex digits (where each byte consists of two hex digits) of the PAN to the Issuer
Identification Number retrieved from the certificate. For more explanations, the reader can refer to EMVCo,
Book2 – Security & Key Management Version 4.0, Table 4 (See [Ref. keymanagement-3]). verifyKey defines
the previously loaded key used to verify the signature.
If importScheme is icc then value contains the EMV public key certificate. Within the following descriptions
tags are documented to indicate the source of the data, but they are not sent down to the service. The data
consists of the concatenation of: the key exponent length (1 byte), the key exponent value (variable length–
EMV Tag value: ‘9F47’), the EMV certificate length (1 byte), the EMV certificate value (variable length – EMV
Tag value:’9F46’), the remainder length (1 byte), the remainder value (variable length – EMV Tag value: ‘9F48’),
the SDA length (1 byte), the SDA value (variable length), the PAN length (1 byte) and the PAN value (variable
length – EMV Tag value: ‘5A’). The service will compare the PAN to the PAN retrieved from the certificate. For
more explanations, the reader can refer to EMVCo, Book2 – Security & Key Management Version 4.0, Table 9
(See [Ref. keymanagement-3]). verifyKey defines the previously loaded key used to verify the signature.
If importScheme is iccPIN then value contains the EMV public key certificate. Within the following descriptions
tags are documented to indicate the source of the data, but they are not sent down to the service. The data
consists of the concatenation of: the key exponent length (1 byte), the key exponent value (variable length –
EMV Tag value: ‘9F2E’), the EMV certificate length (1 byte), the EMV certificate value (variable length – EMV
Tag value:’9F2D’), the remainder length (1 byte), the remainder value (variable length – EMV Tag value:
‘9F2F’), the SDA length (1 byte), the SDA value (variable length), the PAN length (1 byte) and the PAN value
(variable length – EMV Tag value: ‘5A’). The service will compare the PAN to the PAN retrieved from the
certificate. For more explanations, the reader can refer to EMVCo, Book2 – Security & Key Management
Version 4.0, Table 9 (See [Ref. keymanagement-3]). verifyKey defines the previously loaded key used to verify
the signature.
If importScheme is pkcsV1_5_CA then value contains the CA public key signed with the previously loaded
public key specified in verifyKey. value consists of the concatenation of EMV 2000 Book II Table 23 + 8 byte
random number + Signature (See [Ref. keymanagement-3]). The 8-byte random number is not used for
validation; it is used to ensure the signature is unique. The Signature consists of all the bytes in the value buffer
after table 23 and the 8-byte random number.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

verifyKey
Specifies the name of the previously loaded key used to verify the signature, as detailed in the descriptions
above.
default: null

557

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "expiryDate": "0123" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• duplicateKey - A key exists with that name and cannot be overwritten.
• noKeyRam - There is no space left in the key RAM for a key of the specified type.
• emvVerifyFailed - The verification of the imported key failed and the key was discarded.
• keyNotFound - The specified key was not found.
• useViolation - The specified keyUsage is not supported by this key.

default: null

expiryDate
Contains the expiry date of the certificate in the following format MMYY. If null, the certificate does not have
an expiry date.
default: null

Event Messages
None

558

11.3 Event Messages

11.3.1 KeyManagement.DUKPTKSNEvent
This event sends the DUKPT KSN of the key used in the command. The receiving TRSM uses this to derive the
key from the BDK.

Event Message

Payload (version 2.0) Type Required
{
 "key": "Key01", string 🗸🗸
 "ksn": "S1NORGF0YQ==" string 🗸🗸
}

Properties

key
Specifies the name of the DUKPT Key derivation key.

ksn
The KSN.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

559

11.4 Unsolicited Messages

11.4.1 KeyManagement.InitializedEvent
This is generated when a KeyManagement.Initialization command completed successfully.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

560

11.4.2 KeyManagement.IllegalKeyAccessEvent
This event specifies that an error occurred accessing an encryption key. Possible situations for generating this event
are listed in the description of the errorCode property.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "keyName": "Key02", string 🗸🗸
 "errorCode": "keyNotFound" string 🗸🗸
}

Properties

keyName
Specifies the name of the key that caused the error.

errorCode
Specifies the type of illegal key access that occurred The following values are possible:

• keyNotFound - The specified key was not loaded or attempting to delete a non-existent key.
• keyNoValue - The specified key is not loaded.
• useViolation - The specified use is not supported by this key.
• algorithmNotSupported - The specified algorithm is not supported by this key.
• dukptOverflow - The DUKPT KSN encryption counter has overflowed to zero. A new IPEK must be

loaded.

561

11.4.3 KeyManagement.CertificateChangeEvent
This event indicates that the certificate module state has changed from Primary to Secondary.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "certificateChange": "secondary" string
}

Properties

certificateChange
Specifies change of the certificate state inside of the KeyManagement. The following values are possible:

• secondary - The certificate state of the encryptor is now Secondary and Primary Certificates will
no longer be accepted.
default: "secondary"

562

12. Crypto Interface
This chapter defines the Crypto interface functionality and messages.

12.1 General Information

12.1.1 References

ID Description

crypto-
1

ISO/IEC 10118-3:2004 Information technology – Security techniques – Hash-functions – Part 3:
Dedicated hash-functions

crypto-
2

FIPS 180-2 Secure Hash Signature Standard

crypto-
3

ANSI X9.24-1:2009, Retail Financial Services Symmetric Key Management Part 1: Using Symmetric
Techniques

crypto-
4

NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation

crypto-
5

NIST Special Publication 800-38E: Recommendation for Block Cipher Modes of Operation: the XTS-
AES Mode for Confidentiality on Storage Devices

563

12.2 Command Messages

12.2.1 Crypto.GenerateRandom
This command is used to generate a random number.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "randomNumber": "VGhlIGdlbmVyYXRlZCBy ..." string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.
default: null

randomNumber
The random number. If the command fails, this will be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

564

12.2.2 Crypto.CryptoData
This command is used to encrypt or decrypt data. The key Mode of Use and optional modeOfUse property
determines whether encryption or decryption will be performed.

If padding is required, the service will add it using the padding parameter. Clients can use an alternative padding
method by pre-formatting the data and combining this with the standard padding method.

For symmetric key encryption using the CBC or CFB cryptoMethod, the Initialization Vector (iv) can be provided
as input to this command, or a pre-imported IV referenced by name can be used. The ivKey and iv are both optional
properties.

Command Message

Payload (version 2.0) Type Required
{
 "key": "Key001", string 🗸🗸
 "storedKey": "StoredIVKey", string, null
 "iv": { object, null
 "key": "KeyToDecrypt", string, null
 "value": "VGhlIGluaXRpYWxpemF0 ..." string 🗸🗸
 },
 "padding": 255, integer
 "modeOfUse": "E", string, null
 "cryptoMethod": "ecb", string 🗸🗸
 "data": "U2FtcGxlIERhdGE=" string 🗸🗸
}

Properties

key
Specifies the name of the encryption key. The key usage must one of the supported cryptoAttributes.

storedKey
This specifies the name of a key (usage 'I0') used as the Initialization Vector (IV). This property is null if not
required.
default: null

iv
Specifies the Initialization Vector. This property is null if storedKey is used.
default: null

iv/key
The name of a key used to decrypt the value. This specifies the name of a key (usage 'K0') used to decrypt the
value. This is only used when the key usage is 'D0' and cryptoMethod is either CBC or CFB. if this property is
null, value is used as the Initialization Vector.
default: null

iv/value
The plaintext or encrypted IV for use with the CBC or CFB encryption methods.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

565

Properties

padding
Specifies the padding character to use for symmetric key encryption.
Property value constraints:
minimum: 0
maximum: 255
default: 0

modeOfUse
The key Mode of Use qualifier.
If the key Mode Of Use is 'B', this qualifies the Mode of Use as one of the following values:

• D - Decrypt / Unwrap Only.
• E - Encrypt / Wrap Only.

If the key Mode of Use is not 'B', this should be null.
Property value constraints:
pattern: ^[DE]$
default: null

cryptoMethod
Specifies the cryptographic method to use.
If the key usage is 'D0', this can be one of the following values:

• ecb - The ECB encryption method.
• cbc - The CBC encryption method.
• cfb - The CFB encryption method.
• ofb - The OFB encryption method.
• ctr - The CTR method defined in NIST SP800-38A.
• xts - The XTS method defined in NIST SP800-38E.

If the key usage is 'D1', this can be one of the following values:
• rsaesPkcs1V15 - Use the RSAES_PKCS1-v1.5 algorithm.
• rsaesOaep - Use the RSAES OAEP algorithm.

data
The data to be encrypted or decrypted.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "data": "U2FtcGxlIERhdGE=" string, null
}

566

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• keyNotFound - The key name does not exist.
• keyNoValue - The key name exists but the key is not loaded.
• useViolation - The key usage is not supported.
• modeOfUseNotSupported - The key Mode of Use or the modeOfUse qualifier is not supported.
• invalidKeyLength - The length of iv is not supported or the length of an encryption key is

not compatible with the encryption operation required.
• cryptoMethodNotSupported - The cryptographic method specified by cryptoMethod is not

supported.
• noChipTransactionActive - A chipcard key is used as encryption key and there is no chip

transaction active.
default: null

data
The encrypted or decrypted data. If the command fails, this will be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages

• KeyManagement.DUKPTKSNEvent

567

12.2.3 Crypto.GenerateAuthentication
This command is used to generate a Message Authentication Code (MAC) or Signature.

If padding is required, the service will add it using the padding parameter. Clients can use an alternative padding
method by pre-formatting the data and combining this with the standard padding method.

For MAC generation using the CBC or CFB cryptoMethod, the Initialization Vector (iv) can be provided as input to
this command, or a pre-imported IV referenced by name can be used. The ivKey and iv are both optional properties.

Command Message

Payload (version 2.0) Type Required
{
 "key": "Key001", string 🗸🗸
 "data": "VGhlIEJhc2U2NCBlbmNv ...", string 🗸🗸
 "storedKey": "StoredIVKey", string, null
 "iv": { object, null
 "key": "KeyToDecrypt", string, null
 "value": "VGhlIGluaXRpYWxpemF0 ..." string 🗸🗸
 },
 "padding": 255, integer
 "compression": "@", string, null
 "cryptoMethod": "rsassaPkcs1V15", string, null
 "hashAlgorithm": "sha1", string, null
 "authenticationDatalength": 4 integer
}

Properties

key
Specifies the name of a key. The key usage must one of the supported authenticationAttributes.

data
The data used to generate the authentication data.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

storedKey
This specifies the name of a key (usage 'I0') used as the Initialization Vector (IV). This property is null if not
required.
default: null

iv
Specifies the Initialization Vector. This property is null if storedKey is used.
default: null

iv/key
The name of a key used to decrypt the value. This specifies the name of a key (usage 'K0') used to decrypt the
value. This is only used when the key usage is 'D0' and cryptoMethod is either CBC or CFB. if this property is
null, value is used as the Initialization Vector.
default: null

568

Properties

iv/value
The plaintext or encrypted IV for use with the CBC or CFB encryption methods.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

padding
Specifies the padding character to use for symmetric key encryption.
Property value constraints:
minimum: 0
maximum: 255
default: 0

compression
Specifies whether the data is to be compressed (blanks removed) before building the MAC. If this property is
null, the compression is not applied. Otherwise this property value is the blank character (e.g. ' ' in ASCII or '@'
in EBCDIC).
Property value constraints:
pattern: ^[@]$
default: null

cryptoMethod
Specifies the. cryptographic method to use.
If the key usage is an asymmetric key pair signature usage (e.g. 'S0') this can be one of the following values:

• rsassaPkcs1V15 - Use the RSASSA-PKCS1-v1.5 algorithm.
• rsassaPss - Use the RSASSA-PSS algorithm.

If the key usage is a MAC usage (e.g. 'M0') this property should be null.
default: null

hashAlgorithm
Specifies the hash algorithm to use.
If the key usage is an asymmetric key pair signature usage (e.g. 'S0') this can be one of the following values:

• sha1 - The SHA1 digest algorithm.
• sha256 - The SHA 256 digest algorithm, as defined in ISO/IEC 10118-3:2004.
• na - Not applicable.

[Ref. crypto-1] and FIPS 180-2 [Ref. crypto-2].
If the key usage is a MAC usage (e.g. 'M0') this property will be ignored.
default: null

authenticationDatalength
The required authentication data length.
If the key usage is an asymmetric key pair signature usage (e.g. 'S0') this property will be ignored.
Property value constraints:
minimum: 4
maximum: 8
default: 4

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "authenticationData": "VGhlIG1hYyB2YWx1ZSBv ..." string, null
}

569

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• keyNotFound - The key name does not exist.
• keyNoValue - The key name exists but the key is not loaded.
• useViolation - The key usage is not supported.
• modeOfUseNotSupported - The key Mode of Use is not supported.
• invalidKeyLength - The length of iv is not supported or the length of an encryption key is

not compatible with the encryption operation required.
• algorithmNotSupported - The hash algorithm ins not supported.
• cryptoMethodNotSupported - The cryptographic method specified by cryptoMethod is not

supported.
• noChipTransactionActive - A chipcard key is used as encryption key and there is no chip

transaction active. active.
default: null

authenticationData
The generated authentication data. If the command fails, this will be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages

• KeyManagement.DUKPTKSNEvent

570

12.2.4 Crypto.VerifyAuthentication
This command is used for Message Authentication Code (MAC) and signature verification.

The authentication data is verified using the specified verification attributes. The supported verification attributes
are defined in verifyAttributes.

If padding is required, the service will add it using the padding parameter. Clients can use an alternative padding
method by pre-formatting the data and combining this with the standard padding method.

For MAC verification using the CBC or CFB cryptoMethod, the Initialization Vector (iv) can be provided as input
to this command, or a pre-imported IV referenced by name can be used. The ivKey and iv are both optional
properties.

Command Message

Payload (version 2.0) Type Required
{
 "key": "Key001", string 🗸🗸
 "data": "R2VuZXJhdGUgYSBNQUMg ...", string 🗸🗸
 "verifyData": "RGF0YSB0byBiZSB2ZXJp ...", string 🗸🗸
 "storedKey": "StoredIVKey", string, null
 "iv": { object, null
 "key": "KeyToDecrypt", string, null
 "value": "VGhlIGluaXRpYWxpemF0 ..." string 🗸🗸
 },
 "padding": 255, integer
 "compression": "@", string, null
 "cryptoMethod": "rsassaPkcs1V15", string, null
 "hashAlgorithm": "sha1" string, null
}

Properties

key
Specifies the name of the verification key. The key usage must one of the supported verifyAttributes.

data
The data to be authenticated. The service will generate authentication data (MAC or signature) using the key,
cryptoMethod and "hashAlgorithm* then compare with verifyData.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

verifyData
The authentication data to verify.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

storedKey
This specifies the name of a key (usage 'I0') used as the Initialization Vector (IV). This property is null if not
required.
default: null

571

Properties

iv
Specifies the Initialization Vector. This property is null if storedKey is used.
default: null

iv/key
The name of a key used to decrypt the value. This specifies the name of a key (usage 'K0') used to decrypt the
value. This is only used when the key usage is 'D0' and cryptoMethod is either CBC or CFB. if this property is
null, value is used as the Initialization Vector.
default: null

iv/value
The plaintext or encrypted IV for use with the CBC or CFB encryption methods.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

padding
Specifies the padding character to use for symmetric key encryption.
Property value constraints:
minimum: 0
maximum: 255
default: 0

compression
Specifies whether the data is to be compressed (blanks removed) before building the MAC. If this property is
null, the compression is not applied. Otherwise this property value is the blank character (e.g. ' ' in ASCII or '@'
in EBCDIC).
Property value constraints:
pattern: ^[@]$
default: null

cryptoMethod
Specifies the. cryptographic method to use.
If the key usage is an asymmetric key pair signature usage (e.g. 'S0') this can be one of the following values:

• rsassaPkcs1V15 - Use the RSASSA-PKCS1-v1.5 algorithm.
• rsassaPss - Use the RSASSA-PSS algorithm.
• na - Not applicable.

If the key usage is a MAC usage (e.g. 'M0') this property should be null.
default: null

hashAlgorithm
Specifies the hash algorithm to use.
If the key usage is an asymmetric key pair signature usage (e.g. 'S0') this can be one of the following values:

• sha1 - The SHA1 digest algorithm.
• sha256 - The SHA 256 digest algorithm, as defined in ISO/IEC 10118-3:2004.
• na - Not applicable.

[Ref. crypto-1] and FIPS 180-2 [Ref. crypto-2].
If the key usage is a MAC usage (e.g. 'M0') this property will be ignored.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied" string, null

572

Payload (version 2.0) Type Required
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• keyNotFound - The key name does not exist.
• keyNoValue - The key name exists but the key is not loaded.
• useViolation - The key usage is not supported.
• modeOfUseNotSupported - The key Mode of Use is not supported.
• invalidKeyLength - The length of iv is not supported or the length of an encryption key is

not compatible with the encryption operation required.
• algorithmNotSupported - The hash algorithm ins not supported.
• cryptoMethodNotSupported - The cryptographic method specified by cryptoMethod is not

supported.
• noChipTransactionActive - A chipcard key is used as encryption key and there is no chip

transaction active. active.
• macInvalid - The MAC verification failed.
• signatureInvalid - The signature verification failed.

default: null

Event Messages

• KeyManagement.DUKPTKSNEvent

573

12.2.5 Crypto.Digest
This command is used to compute a hash code on a stream of data using the specified hash algorithm.

This command can be used to verify EMV static and dynamic data.

Command Message

Payload (version 2.0) Type Required
{
 "hashAlgorithm": "sha1", string 🗸🗸
 "data": "U2FtcGxlIERhdGE=" string 🗸🗸
}

Properties

hashAlgorithm
Specifies which hash algorithm should be used to calculate the hash. See the verifyAttributes capability for valid
algorithms. The following values are possible:

• sha1 - The SHA-1 digest algorithm.
• sha256 - The SHA-256 digest algorithm, as defined in ISO/IEC 10118-3:2004 and FIPS 180-2.

data
The data to be hashed.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "digest": "OTNjYzE2Y2FkNzYwMTY3 ..." string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor specific
reason.

default: null

digest
Contains the generated digest. If the command fails, this will be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

574

13. Keyboard Interface
This chapter defines the Keyboard interface functionality and messages.

This section describes the general interface for the following functions:

• Entering Personal Identification Numbers (PINs)
• Clear text data handling
• Function key handling

If the device has local display capability, display handling should be handled using the TextTerminal
interface. The adoption of this specification does not imply the adoption of a specific security standard.

• Only numeric PIN pads are handled in this specification.

13.1 General Information

13.1.1 Encrypting Touch Screen (ETS)
An encrypting touch screen device is a touch screen securely attached to a cryptographic device. It can be used as
an alternative to an encrypting pin pad (EPP). It supports key management, encryption and decryption.

It is assumed that the ETS is a combined device. It overlays a display monitor which is used to display lead-through
for a transaction. It is assumed that the display monitor is part of the operating system desktop, and can be the
primary monitor or any other monitor on the desktop. E.g. the following diagram shows 2 monitors extended across
the desktop, with monitor 1 being the primary monitor and the ETS being overlaid on monitor 2 whose origin is (-
1680.0).

The touch screen can optionally be used as a “mouse” for application purposes, while PIN operations are not in
progress or optionally when non-secure PIN commands are in progress.

The CEN interface supports two types of ETS:

• Those which activate touch areas defined by the application.
• Those which activate a random variation of touch areas defined by the application.

The Service Provider, when reporting its capabilities, reports the absolute position of the ETS in desktop
coordinates. This allows the application to locate the ETS device in a multi-monitor system and relate it to a
monitor on the desktop.

At any point in time, a single touch area of the ETS can operate in one of 4 modes:

• Mouse mode - a "touch" simulates a mouse click. This mode is optional. This may not be supported by
some ETS devices. Configuration of the click is vendor specific. This is also the mode that, if supported, is
active when none of the other modes are active.

575

• Data mode - a "touch" maps to a key and the value of the key is returned in an event (as in clear numeric
entry using Keyboard.DataEntry).

• PIN mode - a "touch" maps to a key and the value of the key is returned in an event only if the key
pressed is not zero through nine (as in PIN entry using Keyboard.PinEntry).

• Secure mode - a "touch" maps to a key and the value of the key is returned in an event only if the key
pressed is not zero through nine and not a through f (as in key entry using Keyboard.SecureKeyEntry).

The following concepts are introduced to define the relationship between the monitor and the ETS:

• Touch Key – an area of the monitor which reacts to touch in Data, PIN and Secure modes.
• Touch Frame – an area of the monitor onto which Touch Keys can be placed. There can be one or more

Touch Frames. There may be just one Touch Frame which covers the whole monitor. Areas within a
Touch Frame, not defined as a Touch Key, do not react to touch. Generally in PIN and Secure modes,
there would be only one Touch Frame covering the whole monitor. An empty Touch Frame disables that
part of the monitor.

• Mouse area – an area outside of all Touch Frames in which touches behave like a mouse.
• Thus Data, PIN and Secure modes operate in a single Touch Frame or multiple Touch Frames. Mouse

mode operates outside a Touch Frame, and is optional.

Note that there is a perceived risk in separating the drawing functionality from the touch functionality, but this type
of risk is present in today’s keyboard based systems. e.g. An application can draw on a monitor to prompt the user
to enter a PIN and then enables the EPP for clear data entry. So the risk is no different than with an EPP – the
application has to be trusted.

Depending upon the type of device, the application must then either inform the Service Provider as to the active key
positions in the form of Touch Frames and Touch Keys using the Keyboard.DefineLayout command, or obtain
them from the Service Provider using the Keyboard.GetLayout command. This collection is now referred to as a
"Touch Keyboard definition".

The application then uses the following commands to enable the touch keyboard definition on the ETS device:

• Keyboard.PinEntry
• Keyboard.DataEntry
• Keyboard.SecureKeyEntry

These commands are referred to as "keyboard entry commands" throughout the remainder of this document.

PCI compliance means that Keyboard.PinEntry and Keyboard.SecureKeyEntry can only be used with a single
Touch Frame that covers the entire monitor. i.e. Mouse mode cannot be mixed with either PIN or Secure mode. If a
Touch Key (or areas) is defined for a key value and that key value is not subsequently specified as active in a
Keyboard.PinEntry, Keyboard.DataEntry or Keyboard.SecureKeyEntry command, then the Touch Key is made
inactive.

Layouts defined with the Keyboard.DefineLayout command are persistent.

Example 1 – this screen only uses Data mode – the entire screen is a Touch Frame. Mouse mode is not used.

Example 2 – this shows a monitor with two Touch Frames and 14 Touch Keys. The space within the Touch Frames
not defined by a Touch Key are inactive (do not respond to touch). All areas outside a Touch Frame operate in

576

Mouse mode. This example shows two Mouse mode "keys". e.g. "Button", HTML "BUTTON" or a custom control.
Other touches in Mouse mode are normally dealt with by the application event engine. However, this can be
restricted – see example 3.

Example 3 - this screen uses Mouse and Data modes – Mouse mode is used only in a restricted area. The touch
keyboard definition has 3 frames. Frame 1 has no Touch Keys. Frame 2 has 2 Touch Keys; Frame 3 has 12 Touch
Keys.

13.1.2 Layout
A Physical Frame can only contain Physical Keys. It can contain Physical Keys positioned on the edge of the screen
(for example, FDKs) or Physical Keys not positioned on the edge of the screen (for example EPP) but cannot
contain both. An ETS can only contain Touch Keys. To determine the frame type, frame xSize and frame ySize
should be checked.

The following tables define the possible size and position values that apply to each frame type.

Frame size and position:

Frame Type Frame xSize Frame ySize Frame xPos Frame yPos

Physical Keys on EPP 0 0 0 0

Touch Keys on ETS > 0 > 0 >= 0 >= 0

Physical Keys on Left Boundary of Screen 0 > 0 0 0

Physical Keys on Right Boundary of Screen 0 > 0 > 0 0

Physical Keys on Top Boundary of Screen > 0 0 0 0

Physical Keys on Bottom Boundary of Screen > 0 0 0 > 0

Key size and position:

577

Frame Type Key xSize Key ySize Key xPos Key yPos

Physical Keys on EPP 1 to 10001 1 to 10002 0 to 9993 0 to 9994

Touch Keys on ETS 0 to (Frame xSize -
Key xPos)

0 to (Frame ySize -
Key yPos)

0 to Frame
xSize

0 to Frame
ySize

Physical Keys on Left Boundary
of Screen

0 0 to (Frame ySize -
Key yPos)

0 0 to Frame
ySize

Physical Keys on Right
Boundary of Screen

0 0 to (Frame ySize -
Key yPos)

Frame xSize 0 to Frame
ySize

Physical Keys on Top Boundary
of Screen

0 to (Frame xSize -
Key xPos)

0 0 to Frame
xSize

0

Physical Keys on Bottom
Boundary of Screen

0 to (Frame xSize -
Key xPos)

0 0 to Frame
xSize

Frame ySize

1: 1 is the smallest possible size and 1000 is the full width of the frame
2: 1 is the smallest possible size and 1000 is the full height of the frame
3: 0 is the left edge and 999 is the right edge of the frame
4: 0 is the top edge and 999 is the bottom edge of the frame

The following diagram shows an example configuration consisting of an EPP and Physical FDKs to the left and
right of the screen. 3 frames contain the Physical Keys.

578

13.2 Command Messages

13.2.1 Keyboard.GetLayout
This command allows an application to retrieve layout information for any device. Either one layout or all defined
layouts can be retrieved with a single request of this command.

There can be a layout for each of the different types of keyboard entry modes, if the vendor and the hardware
support these different methods. The types of keyboard entry modes are:

• Data Entry mode which corresponds to the Keyboard.DataEntry command.
• PIN Entry mode which corresponds to the Keyboard.PinEntry command.
• Secure Key Entry mode which corresponds to the Keyboard.SecureKeyEntry command.

The layouts can be preloaded into the device, if the device supports this, or a single layout can be loaded into the
device immediately prior to the keyboard command being requested.

Command Message

Payload (version 2.0) Type Required
{
 "entryMode": "data" string, null
}

Properties

entryMode
Specifies entry mode to be returned. If this property is null, all layouts for the Keyboard.DataEntry,
Keyboard.PinEntry and Keyboard.SecureKeyEntry command are returned.
The following values are possible:

• data - Get the layout for the Keyboard.DataEntry command.
• pin - Get the layout for the Keyboard.PinEntry command.
• secure - Get the layout for the Keyboard.SecureKeyEntry command.

default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "modeNotSupported", string, null
 "layout": { object, null
 "data": [{ array (object), null
 "xPos": 0, integer 🗸🗸
 "yPos": 0, integer 🗸🗸
 "xSize": 0, integer 🗸🗸
 "ySize": 0, integer 🗸🗸
 "float": { object, null
 "x": false, boolean
 "y": false boolean
 },
 "keys": [{ array (object) 🗸🗸
 "key": "one", string 🗸🗸

579

Payload (version 2.0) Type Required
 "xPos": 0, integer 🗸🗸
 "yPos": 0, integer 🗸🗸
 "xSize": 1, integer 🗸🗸
 "ySize": 1, integer 🗸🗸
 "shiftKey": "a" string 🗸🗸
 }]
 }],
 "pin": See layout/data properties array (object), null
 "secure": See layout/data properties array (object), null
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• modeNotSupported - The specified entry mode is not supported.
default: null

layout
Return supported layouts specified by the entryMode property.
default: null

layout/data
The layout for the Keyboard.DataEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

layout/data/xPos
If the frame contains Touch Keys, specifies the left edge of the frame as an offset from the left edge of the screen
in pixels and will be less than the width of the screen.
If the frame contains Physical Keys on the boundary of the screen, specifies the left coordinate of the frame as an
offset from the left edge of the screen in pixels and will be 0 or the width of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

layout/data/yPos
If the frame contains Touch Keys, specifies the top edge of the frame as an offset from the top edge of the screen
in pixels and will be less than the height of the screen.
If the frame contains Physical Keys on the boundary of the screen, specifies the top edge of the frame as an
offset from the top edge of the screen in pixels and will be 0 or the height of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

580

Properties

layout/data/xSize
If the frame contains Touch Keys, specifies the width of the frame in pixels and will be greater than 0 and less
than the width of the screen minus the frame xPos.
If the frame contains Physical Keys on the boundary of the screen, specifies the width of the frame in pixels and
will be 0 or the width of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

layout/data/ySize
If the frame contains Touch Keys, specifies the height of the frame in pixels and will be greater than 0 and less
than the height of the screen minus the frame yPos.
If the frame contains Physical Keys on the boundary of the screen, specifies the height of the frame in pixels and
will be 0 or the height of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

layout/data/float
Specifies if the device can float the touch keyboards. If etsCaps is null or float is null, this property is null. If this
property is null, the device cannot randomly shift the layout in both horizontal and vertical direction.
default: null

layout/data/float/x
Specifies that the device will randomly shift the layout in a horizontal direction.
default: false

layout/data/float/y
Specifies that the device will randomly shift the layout in a vertical direction.
default: false

layout/data/keys
Defining details of the keys in the keyboard.
Property value constraints:
minItems: 1

581

Properties

layout/data/keys/key
Specifies the Function Key associated with the physical area in non-shifted mode.
The following standard values are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• [a-f] - Hex digit A to F for secure key entry
• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• decPoint - Decimal point
• shift - Shift key used during hex entry
• doubleZero - 00
• tripleZero - 000
• fdk[01-32] - 32 FDK keys

Additional non-standard values are also allowed:
• oem[a-zA-Z0-9]* - A non-standard value

Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

layout/data/keys/xPos
Specifies the position of the left edge of the key relative to the left side of the frame.
Property value constraints:
minimum: 0
maximum: 999

layout/data/keys/yPos
Specifies the position of the top edge of the key relative to the top edge of the frame.
Property value constraints:
minimum: 0
maximum: 999

layout/data/keys/xSize
Specifies the Function Key (FK) width.
Property value constraints:
minimum: 1
maximum: 1000

layout/data/keys/ySize
Specifies the Function Key (FK) height.
Property value constraints:
minimum: 1
maximum: 1000

582

Properties

layout/data/keys/shiftKey
Specifies the Function Key associated with the physical key in shifted mode.
See key for the valid property values.
Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

layout/pin
The layout for the Keyboard.PinEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

layout/secure
The layout for the Keyboard.SecureKeyEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

Event Messages
None

583

13.2.2 Keyboard.PinEntry
This function stores the PIN entry via the device. From the point this function is invoked, PIN digit entries are not
passed to the application. For each PIN digit, or any other active key entered, a notification Keyboard.KeyEvent is
sent in order to allow an application to perform the appropriate display action (i.e. when the PIN pad has no
integrated display). The application is not informed of the value entered. The event only informs that a key has been
depressed.

The Keyboard.EnterDataEvent will be generated when the Keyboard is ready for the user to start entering data.

Some devices do not inform the application as each PIN digit is entered, but locally process the PIN entry based
upon minimum PIN length and maximum PIN length input parameters.

When the maximum number of PIN digits is entered and the flag autoEnd is true, or a terminating key is pressed
after the minimum number of PIN digits is entered, the command completes. If the key is a terminator key and is
pressed, then the command will complete successfully even if the minimum number of PIN digits has not been
entered.

Terminating Function Descriptor Keys (FDKs) can have the functionality of (terminates only if minimum length
has been reached) or (can terminate before minimum length is reached). The configuration of this functionality is
vendor specific.

If maxLen is zero, the Service Provider does not terminate the command unless the application sets terminate
property. In the event that terminate property is set to false all active keys and maxLen is zero, the command will
not terminate and the application must issue a Common.Cancel command.

If active the 'cancel' and 'clear' keys will cause the PIN buffer to be cleared. The backspace key will cause the last
key in the PIN buffer to be removed.

Terminating keys have to be active keys to operate.

If this command is cancelled by a Common.Cancel command the PIN buffer is not cleared.

If maxLen has been met and autoEnd is set to false, then all numeric keys will automatically be disabled. If the
'clear' or 'backspace' key is pressed to reduce the number of entered keys, the numeric keys will be re-enabled.

If the 'enter' key (or FDK representing the 'enter' key - note that the association of an FDK to enter functionality is
vendor specific) is pressed prior to minLen being met, then the enter key or FDK is ignored. In some cases the
device cannot ignore the enter key then the command will complete normally. To handle these types of devices the
application should use the output parameter digits property to check that sufficient digits have been entered. The
application should then get the user to re-enter their PIN with the correct number of digits.

If the application makes a call to PinPad.GetPinblock or a local verification command without the minimum PIN
digits having been entered, either the command will fail or the PIN verification will fail.

It is the responsibility of the application to identify the mapping between the FDK code and the physical location of
the FDK.

Command Message

Payload (version 2.0) Type Required
{
 "minLen": 0, integer 🗸🗸
 "maxLen": 0, integer
 "autoEnd": false, boolean
 "echo": "X", string
 "activeKeys": { object 🗸🗸
 "one": { object
 "terminate": false boolean
 },
 "backspace": See activeKeys/one properties object

584

Payload (version 2.0) Type Required
 }
}

Properties

minLen
Specifies the minimum number of digits which must be entered for the PIN. A value of zero indicates no
minimum PIN length verification.
Property value constraints:
minimum: 0

maxLen
Specifies the maximum number of digits which can be entered for the PIN. A value of zero indicates no
maximum PIN length verification.
Property value constraints:
minimum: 0
default: 0

autoEnd
If autoEnd is set to true, the Service Provider terminates the command when the maximum number of digits are
entered. Otherwise, the input is terminated by the user using one of the termination keys. autoEnd is ignored
when maxLen is set to zero.
default: false

echo
Specifies the replace character to be echoed on a local display for the PIN digit. This property will be ignored by
the service if the device doesn't have a local display.
Property value constraints:
minLength: 1
maxLength: 1
default: "X"

activeKeys
Specifies all Function Keys which are active during the execution of the command. This should be the complete
set or a subset of the keys returned in the payload of the Keyboard.GetLayout command.

585

Properties

activeKeys/one (example name)
An active key.
The following standard names are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• [a-f] - Hex digit A to F for secure key entry
• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• decPoint - Decimal point
• shift - Shift key used during hex entry
• doubleZero - 00
• tripleZero - 000
• fdk[01-32] - 32 FDK keys

Additional non-standard key names are also allowed:
• oem[a-zA-Z0-9]* - A non-standard key name

Property name constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

activeKeys/one/terminate
The key is a terminate key.
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyInvalid", string, null
 "digits": 0, integer
 "completion": "auto" string, null
}

586

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyInvalid - At least one of the specified function keys or FDKs is invalid.
• keyNotSupported - At least one of the specified function keys or FDKs is not supported by the

Service Provider.
• noActivekeys - There are no active function keys specified, or there is no defined layout definition.
• noTerminatekeys - There are no terminate keys specified and maxLen is not set to zero and autoEnd

is false.
• minimumLength - The minimum PIN length property is invalid or greater than the maximum PIN

length property when the maximum PIN length is not zero.
• tooManyFrames - The device requires that only one frame is used for this command.
• partialFrame - The single Touch Frame does not cover the entire monitor.
• entryTimeout - The timeout for entering data has been reached. This is a timeout which may be due

to hardware limitations or legislative requirements (for example PCI).
default: null

digits
Specifies the number of PIN digits entered.
Property value constraints:
minimum: 0
default: 0

completion
Specifies the reason for completion of the entry. Unless otherwise specified the following values must not be
used in the execute event Keyboard.PinEntry or in the array of keys in the completion of Keyboard.DataEntry.
The following values are possible:

• auto - The command terminated automatically, because maximum length was reached.
• enter - The ENTER Function Key was pressed as terminating key.
• cancel - The CANCEL Function Key was pressed as terminating key.
• continue - A function key was pressed and input may continue unless the command completes (this

value is only used in the execute event Keyboard.KeyEvent and in the array of keys in the completion
of Keyboard.DataEntry).

• clear - The clear function Key was pressed as terminating key and the previous input is cleared.
• backspace - The last input digit was cleared and the key was pressed as terminating key.
• fdk - Indicates input is terminated only if the FDK pressed was set to be a terminating FDK.
• help - The HELP Function Key was pressed as terminating key.
• fk - A Function Key (FK) other than ENTER, CLEAR, CANCEL, BACKSPACE, HELP was pressed

as terminating key.
• contFdk - A Function Descriptor Key (FDK) was pressed and input may continue unless the command

completes (this value is only used in the Keyboard.KeyEvent and in the array of keys in the completion
of Keyboard.DataEntry).

default: null

Event Messages

• Keyboard.KeyEvent
• Keyboard.EnterDataEvent
• Keyboard.LayoutEvent

587

13.2.3 Keyboard.DataEntry
This function is used to return keystrokes entered by the user. It will automatically set the PIN pad to echo
characters on the display if there is a display. For each keystroke a notification Keyboard.KeyEvent is sent in order
to allow an application to perform the appropriate display action (i.e. when the PIN pad has no integrated display).

The Keyboard.EnterDataEvent will be generated when the PIN pad is ready for the user to start entering data.

When the maximum number of digits is entered and the autoEnd property is true, or a terminate key is pressed after
the minimum number of digits is entered, the command completes. If the key is a terminator key and is pressed, the
command will complete successfully even if the minimum number of digits has not been entered.

Terminating Function Descriptor Keys(FDKs) can have the functionality of (terminates only if minimum length
has been reached) or (can terminate before minimum length is reached). The configuration of this functionality is
vendor specific.

If maxLen is zero, the Service Provider does not terminate the command unless the application sets terminate
property. In the event that terminate property is set to false all active keys and maxLen is zero, the command will
not terminate and the application must issue a Common.Cancel command.

If maxLen has been met and autoEnd is set to False, then all keys or FDKs that add data to the contents of the
output parameter will automatically be disabled. If the CLEAR or BACKSPACE key is pressed to reduce the
number of entered keys below maxLen, the same keys will be re-enabled.

Where applications want direct control of the data entry and the key interpretation, maxLen can be set to zero
allowing the application to provide tracking and counting of key presses until a terminate key is pressed or
Common.Cancel has been issued.

The following keys may affect the contents of the output parameter but are not returned in it:

• 'enter'
• 'cancel'
• 'clear'
• 'backspace'

The 'cancel' and 'clear' keys will cause the output buffer to be cleared. The 'backspace' key will cause the last key in
the buffer to be removed.

Terminating keys have to be active keys to operate.

It is the responsibility of the application to identify the mapping between the FDK code and the physical location of
the FDK.

Command Message

Payload (version 2.0) Type Required
{
 "maxLen": 0, integer
 "autoEnd": false, boolean
 "activeKeys": { object 🗸🗸
 "one": { object
 "terminate": false boolean
 },
 "backspace": See activeKeys/one properties object
 }
}

588

Properties

maxLen
Specifies the maximum number of digits which can be returned to the application in the output parameter.
Property value constraints:
minimum: 0
default: 0

autoEnd
If autoEnd is set to true, the Service Provider terminates the command when the maximum number of digits are
entered. Otherwise, the input is terminated by the user using one of the termination keys. autoEnd is ignored
when maxLen is set to zero.
default: false

activeKeys
Specifies all Function Keys which are active during the execution of the command. This should be the complete
set or a subset of the keys returned in the payload of the Keyboard.GetLayout command.

activeKeys/one (example name)
An active key.
The following standard names are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• [a-f] - Hex digit A to F for secure key entry
• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• decPoint - Decimal point
• shift - Shift key used during hex entry
• doubleZero - 00
• tripleZero - 000
• fdk[01-32] - 32 FDK keys

Additional non-standard key names are also allowed:
• oem[a-zA-Z0-9]* - A non-standard key name

Property name constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

activeKeys/one/terminate
The key is a terminate key.
default: false

Completion Message

Payload (version 2.0) Type Required
{

589

Payload (version 2.0) Type Required
 "errorCode": "keyInvalid", string, null
 "keys": 0, integer
 "pinKeys": [{ array (object), null
 "completion": "auto", string, null
 "digit": "five" string 🗸🗸
 }],
 "completion": See pinKeys/completion string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyInvalid - At least one of the specified function keys or FDKs is invalid.
• keyNotSupported - At least one of the specified function keys or FDKs is not supported by the

Service Provider.
• noActivekeys - There are no active keys specified, or there is no defined layout definition.

default: null

keys
Number of keys entered by the user
Property value constraints:
minimum: 0
default: 0

pinKeys
Array contains the keys entered by the user
default: null

pinKeys/completion
Specifies the reason for completion of the entry. Unless otherwise specified the following values must not be
used in the execute event Keyboard.PinEntry or in the array of keys in the completion of Keyboard.DataEntry.
The following values are possible:

• auto - The command terminated automatically, because maximum length was reached.
• enter - The ENTER Function Key was pressed as terminating key.
• cancel - The CANCEL Function Key was pressed as terminating key.
• continue - A function key was pressed and input may continue unless the command completes (this

value is only used in the execute event Keyboard.KeyEvent and in the array of keys in the completion
of Keyboard.DataEntry).

• clear - The clear function Key was pressed as terminating key and the previous input is cleared.
• backspace - The last input digit was cleared and the key was pressed as terminating key.
• fdk - Indicates input is terminated only if the FDK pressed was set to be a terminating FDK.
• help - The HELP Function Key was pressed as terminating key.
• fk - A Function Key (FK) other than ENTER, CLEAR, CANCEL, BACKSPACE, HELP was pressed

as terminating key.
• contFdk - A Function Descriptor Key (FDK) was pressed and input may continue unless the command

completes (this value is only used in the Keyboard.KeyEvent and in the array of keys in the completion
of Keyboard.DataEntry).

default: null

590

Properties

pinKeys/digit
Specifies the digit entered by the user. When working in encryption mode or secure key entry mode
(Keyboard.PinEntry and Keyboard.SecureKeyEntry), this property is null for the function keys 'one' to 'nine' and
'a' to 'f'. Otherwise, for each key pressed, the corresponding key value is stored in this property.
The following standard values are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• [a-f] - Hex digit A to F for secure key entry
• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• decPoint - Decimal point
• shift - Shift key used during hex entry
• doubleZero - 00
• tripleZero - 000
• fdk[01-32] - 32 FDK keys

Additional non-standard values are also allowed:
• oem[a-zA-Z0-9]* - A non-standard value

Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

Event Messages

• Keyboard.KeyEvent
• Keyboard.EnterDataEvent
• Keyboard.LayoutEvent

591

13.2.4 Keyboard.Reset
Sends a service reset to the Service Provider.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

592

13.2.5 Keyboard.SecureKeyEntry
This command allows a full length symmetric encryption key part to be entered directly into the device without
being exposed outside of the device. From the point this function is invoked, encryption key digits ('zero' to 'nine'
and 'a' to 'f') are not passed to the application. For each encryption key digit, or any other active key entered (except
for 'shift'), a notification Keyboard.KeyEvent is sent in order to allow an application to perform the appropriate
display action (i.e. when the device has no integrated display). When an encryption key digit is entered the
application is not informed of the value entered, instead zero is returned.

The Keyboard.EnterDataEvent will be generated when the device is ready for the user to start entering data.

The keys that can be enabled by this command are defined by the Keyboard.GetLayout command. Function keys
which are not associated with an encryption key digit may be enabled but will not contribute to the secure entry
buffer (unless they are Cancel, Clear or Backspace) and will not count towards the length of the key entry. The
Cancel and Clear keys will cause the encryption key buffer to be cleared. The Backspace key will cause the last
encryption key digit in the encryption key buffer to be removed.

If autoEnd is true the command will automatically complete when the required number of encryption key digits
have been added to the buffer.

If autoEnd is false then the command will not automatically complete and Enter, Cancel or any terminating key
must be pressed. When keyLen hex encryption key digits have been entered then all encryption key digits keys are
disabled. If the Clear or Backspace key is pressed to reduce the number of entered encryption key digits below
keyLen, the same keys will be reenabled.

Terminating keys have to be active keys to operate.

If a Function Descriptor Key (FDK) is associated with Enter, Cancel, Clear or Backspace then the FDK must be
activated to operate. The Enter and Cancel FDKs must also be marked as a terminator if they are to terminate entry.
These FDKs are reported as normal FDKs within the Keyboard.KeyEvent, applications must be aware of those
FDKs associated with Cancel, Clear, Backspace and Enter and handle any user interaction as required. For
example, if the 'fdk01' is associated with Clear, then the application must include the 'fdk01' FDK code in the
activeKeys parameter (if the clear functionality is required). In addition when this FDK is pressed the
Keyboard.KeyEvent will contain the 'fdk01' mask value in the digit property. The application must update the user
interface to reflect the effect of the clear on the encryption key digits entered so far.

On some devices that are configured as all the function keys on the device will be associated with hex digits and
there may be no FDKs available either. On these devices there may be no way to correct mistakes or cancel the key
encryption entry before all the encryption key digits are entered, so the application must set the autoEnd flag to true
and wait for the command to auto-complete. Applications should check the KCV to avoid storing an incorrect key
component.

Encryption key parts entered with this command are stored through either the KeyManagement.ImportKey. Each
key part can only be stored once after which the secure key buffer will be cleared automatically.

Command Message

Payload (version 2.0) Type Required
{
 "keyLen": 0, integer 🗸🗸
 "autoEnd": false, boolean
 "activeKeys": { object 🗸🗸
 "one": { object
 "terminate": false boolean
 },
 "backspace": See activeKeys/one properties object
 },
 "verificationType": "self", string 🗸🗸
 "cryptoMethod": "des" string, null

593

Payload (version 2.0) Type Required
}

Properties

keyLen
Specifies the number of digits which must be entered for the encryption key, 16 for a single-length key, 32 for a
double-length key and 48 for a triple-length key. The only valid values are 16, 32 and 48.

autoEnd
If autoEnd is set to true, the Service Provider terminates the command when the maximum number of encryption
key digits are entered. Otherwise, the input is terminated by the user using Enter, Cancel or any terminating key.
When keyLen is reached, the Service Provider will disable all keys associated with an encryption key digit.
default: false

activeKeys
Specifies all Function Keys which are active during the execution of the command. This should be the complete
set or a subset of the keys returned in the payload of the Keyboard.GetLayout command. This should include
'zero' to 'nine' and 'a' to 'f' for all modes of secure key entry, but should also include 'shift' on shift based systems.
The 'doubleZero', 'tripleZero' and 'decPoint' function keys must not be included in the list of active or terminate
keys.
For FDKs which must terminate the execution of the command. This should include the FDKs associated with
Cancel and Enter.

activeKeys/one (example name)
An active key.
The following standard names are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• [a-f] - Hex digit A to F for secure key entry
• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• decPoint - Decimal point
• shift - Shift key used during hex entry
• doubleZero - 00
• tripleZero - 000
• fdk[01-32] - 32 FDK keys

Additional non-standard key names are also allowed:
• oem[a-zA-Z0-9]* - A non-standard key name

Property name constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

activeKeys/one/terminate
The key is a terminate key.
default: false

594

Properties

verificationType
Specifies the type of verification to be done on the entered key. The following values are possible:

• self - The key check value is created by an encryption of the key with itself. For a double-length or
triple-length key the KCV is generated using 3DES encryption using the first 8 bytes of the key as the
source data for the encryption.

• zero - The key check value is created by encrypting a zero value with the key.

cryptoMethod
Specifies the cryptographic method to be used for the verification. If this property is null, keyLen will determine
the cryptographic method used. If keyLen is 16, the cryptographic method will be Single DES. If keyLen is 32 or
48, the cryptographic method will be Triple DES The following values are possible:

• des - Single DES
• tripleDes - Triple DES
• aes - AES

default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "digits": 0, integer
 "completion": "auto", string, null
 "kcv": "S2V5IENoZWNrIFZhbHVl" string
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor specific
reason.

• keyInvalid - At least one of the specified function keys or FDKs is invalid.
• keyNotSupported - At least one of the specified function keys or FDKs is not supported by the

Service Provider.
• noActiveKeys - There are no active function keys specified, or there is no defined layout definition.
• noTerminatekeys - There are no terminate keys specified and autoEnd is false.
• invalidKeyLength - The keyLen key length is not supported.
• modeNotSupported - The KCV mode is not supported.
• tooManyFrames - The device requires that only one frame is used for this command.
• partialFrame - The single Touch Frame does not cover the entire monitor.
• missingKeys - The single frame does not contain a full set of hexadecimal key definitions.
• entryTimeout - The timeout for entering data has been reached. This is a timeout which may be due

to hardware limitations or legislative requirements (for example PCI).
default: null

digits
Specifies the number of key digits entered. Applications must ensure all required digits have been entered before
trying to store the key.
Property value constraints:
minimum: 0
default: 0

595

Properties

completion
Specifies the reason for completion of the entry. Unless otherwise specified the following values must not be
used in the execute event Keyboard.PinEntry or in the array of keys in the completion of Keyboard.DataEntry.
The following values are possible:

• auto - The command terminated automatically, because maximum length was reached.
• enter - The ENTER Function Key was pressed as terminating key.
• cancel - The CANCEL Function Key was pressed as terminating key.
• continue - A function key was pressed and input may continue unless the command completes (this

value is only used in the execute event Keyboard.KeyEvent and in the array of keys in the completion
of Keyboard.DataEntry).

• clear - The clear function Key was pressed as terminating key and the previous input is cleared.
• backspace - The last input digit was cleared and the key was pressed as terminating key.
• fdk - Indicates input is terminated only if the FDK pressed was set to be a terminating FDK.
• help - The HELP Function Key was pressed as terminating key.
• fk - A Function Key (FK) other than ENTER, CLEAR, CANCEL, BACKSPACE, HELP was pressed

as terminating key.
• contFdk - A Function Descriptor Key (FDK) was pressed and input may continue unless the command

completes (this value is only used in the Keyboard.KeyEvent and in the array of keys in the completion
of Keyboard.DataEntry).

default: null

kcv
Contains the key check value data that can be used for verification of the entered key formatted in Base64. This
value is null if device does not have this capability, or the key entry was not fully entered, e.g. the entry was
terminated by Enter before the required number of digits was entered.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: ""

Event Messages

• Keyboard.KeyEvent
• Keyboard.EnterDataEvent
• Keyboard.LayoutEvent

596

13.2.6 Keyboard.KeypressBeep
This command is used to enable or disable the device from emitting a beep tone on subsequent key presses of active
or inactive keys. This command is valid only on devices which have the capability to support application control of
automatic beeping. See autoBeep capability for information.

Command Message

Payload (version 2.0) Type Required
{
 "mode": { object 🗸🗸
 "active": false, boolean
 "inactive": false boolean
 }
}

Properties

mode
Specifies whether automatic generation of key press beep tones should be activated for any active or inactive key
subsequently pressed on the PIN. This selectively turns beeping on and off for active, inactive or both types of
keys.

mode/active
Specifies whether beeping should be enabled for active keys.
default: false

mode/inactive
Specifies whether beeping should be enabled for inactive keys.
default: false

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

597

13.2.7 Keyboard.DefineLayout
This command allows an application to configure a layout for any device. One or more layouts can be defined with
a single request of this command.

There can be a layout for each of the different types of keyboard entry modes, if the vendor and the hardware
supports these different methods.

The types of keyboard entry modes are:

• Mouse mode.
• Data mode which corresponds to the Keyboard.DataEntry command.
• PIN mode which corresponds to the Keyboard.PinEntry command.
• Secure mode which corresponds to the Keyboard.SecureKeyEntry command.

One or more layouts can be preloaded into the device, if the device supports this, or a single layout can be loaded
into the device immediately prior to the keyboard command being requested.

If a Keyboard.DataEntry, Keyboard.PinEntry, or Keyboard.SecureKeyEntry command is already in progress (or
queued), then this command is rejected with a command result of sequenceError.

It is recommended that the Keyboard.GetLayout command is used before this command to check for the presence
of frames containing Physical Keys (FKs or FDKs). If a layout includes one or more frames containing Physical
Keys, the number of frames containing Physical Keys, the size and position of the frame, and the size, position and
order of the keys contained in the frame, cannot be changed.

Layouts defined with this command are persistent.

Command Message

Payload (version 2.0) Type Required
{
 "layout": { object 🗸🗸
 "data": [{ array (object), null
 "xPos": 0, integer 🗸🗸
 "yPos": 0, integer 🗸🗸
 "xSize": 0, integer 🗸🗸
 "ySize": 0, integer 🗸🗸
 "float": { object, null
 "x": false, boolean
 "y": false boolean
 },
 "keys": [{ array (object) 🗸🗸
 "key": "one", string 🗸🗸
 "xPos": 0, integer 🗸🗸
 "yPos": 0, integer 🗸🗸
 "xSize": 1, integer 🗸🗸
 "ySize": 1, integer 🗸🗸
 "shiftKey": "a" string 🗸🗸
 }]
 }],
 "pin": See layout/data properties array (object), null

598

Payload (version 2.0) Type Required
 "secure": See layout/data properties array (object), null
 }
}

Properties

layout
Specify layouts to define.

layout/data
The layout for the Keyboard.DataEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

layout/data/xPos
If the frame contains Touch Keys, specifies the left edge of the frame as an offset from the left edge of the screen
in pixels and will be less than the width of the screen.
If the frame contains Physical Keys on the boundary of the screen, specifies the left coordinate of the frame as an
offset from the left edge of the screen in pixels and will be 0 or the width of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

layout/data/yPos
If the frame contains Touch Keys, specifies the top edge of the frame as an offset from the top edge of the screen
in pixels and will be less than the height of the screen.
If the frame contains Physical Keys on the boundary of the screen, specifies the top edge of the frame as an
offset from the top edge of the screen in pixels and will be 0 or the height of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

layout/data/xSize
If the frame contains Touch Keys, specifies the width of the frame in pixels and will be greater than 0 and less
than the width of the screen minus the frame xPos.
If the frame contains Physical Keys on the boundary of the screen, specifies the width of the frame in pixels and
will be 0 or the width of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

layout/data/ySize
If the frame contains Touch Keys, specifies the height of the frame in pixels and will be greater than 0 and less
than the height of the screen minus the frame yPos.
If the frame contains Physical Keys on the boundary of the screen, specifies the height of the frame in pixels and
will be 0 or the height of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

layout/data/float
Specifies if the device can float the touch keyboards. If etsCaps is null or float is null, this property is null. If this
property is null, the device cannot randomly shift the layout in both horizontal and vertical direction.
default: null

599

Properties

layout/data/float/x
Specifies that the device will randomly shift the layout in a horizontal direction.
default: false

layout/data/float/y
Specifies that the device will randomly shift the layout in a vertical direction.
default: false

layout/data/keys
Defining details of the keys in the keyboard.
Property value constraints:
minItems: 1

layout/data/keys/key
Specifies the Function Key associated with the physical area in non-shifted mode.
The following standard values are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• [a-f] - Hex digit A to F for secure key entry
• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• decPoint - Decimal point
• shift - Shift key used during hex entry
• doubleZero - 00
• tripleZero - 000
• fdk[01-32] - 32 FDK keys

Additional non-standard values are also allowed:
• oem[a-zA-Z0-9]* - A non-standard value

Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

layout/data/keys/xPos
Specifies the position of the left edge of the key relative to the left side of the frame.
Property value constraints:
minimum: 0
maximum: 999

layout/data/keys/yPos
Specifies the position of the top edge of the key relative to the top edge of the frame.
Property value constraints:
minimum: 0
maximum: 999

600

Properties

layout/data/keys/xSize
Specifies the Function Key (FK) width.
Property value constraints:
minimum: 1
maximum: 1000

layout/data/keys/ySize
Specifies the Function Key (FK) height.
Property value constraints:
minimum: 1
maximum: 1000

layout/data/keys/shiftKey
Specifies the Function Key associated with the physical key in shifted mode.
See key for the valid property values.
Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

layout/pin
The layout for the Keyboard.PinEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

layout/secure
The layout for the Keyboard.SecureKeyEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "modeNotSupported" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• modeNotSupported - The device does not support the float action.
• frameCoordinate - A frame coordinate or size field is out of range.
• keyCoordinate - A key coordinate or size field is out of range.
• frameOverlap - Frames are overlapping.
• keyOverlap - Keys are overlapping.
• tooManyFrames -There are more frames defined than allowed.
• tooManyKeys - There are more keys defined than allowed.
• keyAlreadyDefined - The values for key and shiftKey can only be used once per layout.

default: null

Event Messages
None

601

602

13.3 Event Messages

13.3.1 Keyboard.KeyEvent
This event specifies that any active key has been pressed at the PIN pad. It is used if the device has no internal
display unit and the application has to manage the display of the entered digits. It is the responsibility of the
application to identify the mapping between the FDK code and the physical location of the FDK.

Event Message

Payload (version 2.0) Type Required
{
 "completion": "auto", string, null
 "digit": "five" string 🗸🗸
}

Properties

completion
Specifies the reason for completion of the entry. Unless otherwise specified the following values must not be
used in the execute event Keyboard.PinEntry or in the array of keys in the completion of Keyboard.DataEntry.
The following values are possible:

• auto - The command terminated automatically, because maximum length was reached.
• enter - The ENTER Function Key was pressed as terminating key.
• cancel - The CANCEL Function Key was pressed as terminating key.
• continue - A function key was pressed and input may continue unless the command completes (this

value is only used in the execute event Keyboard.KeyEvent and in the array of keys in the completion
of Keyboard.DataEntry).

• clear - The clear function Key was pressed as terminating key and the previous input is cleared.
• backspace - The last input digit was cleared and the key was pressed as terminating key.
• fdk - Indicates input is terminated only if the FDK pressed was set to be a terminating FDK.
• help - The HELP Function Key was pressed as terminating key.
• fk - A Function Key (FK) other than ENTER, CLEAR, CANCEL, BACKSPACE, HELP was pressed

as terminating key.
• contFdk - A Function Descriptor Key (FDK) was pressed and input may continue unless the command

completes (this value is only used in the Keyboard.KeyEvent and in the array of keys in the completion
of Keyboard.DataEntry).

default: null

603

Properties

digit
Specifies the digit entered by the user. When working in encryption mode or secure key entry mode
(Keyboard.PinEntry and Keyboard.SecureKeyEntry), this property is null for the function keys 'one' to 'nine' and
'a' to 'f'. Otherwise, for each key pressed, the corresponding key value is stored in this property.
The following standard values are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• [a-f] - Hex digit A to F for secure key entry
• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• decPoint - Decimal point
• shift - Shift key used during hex entry
• doubleZero - 00
• tripleZero - 000
• fdk[01-32] - 32 FDK keys

Additional non-standard values are also allowed:
• oem[a-zA-Z0-9]* - A non-standard value

Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

604

13.3.2 Keyboard.EnterDataEvent
This mandatory event notifies the application when the device is ready for the user to start entering data.

Event Message

Payload (version 2.0)
This message does not define any properties.

605

13.3.3 Keyboard.LayoutEvent
This event sends the layout for a specific keyboard entry mode if the layout has changed since it was loaded (i.e. if
a float action is being used).

Event Message

Payload (version 2.0) Type Required
{
 "data": [{ array (object), null
 "xPos": 0, integer 🗸🗸
 "yPos": 0, integer 🗸🗸
 "xSize": 0, integer 🗸🗸
 "ySize": 0, integer 🗸🗸
 "float": { object, null
 "x": false, boolean
 "y": false boolean
 },
 "keys": [{ array (object) 🗸🗸
 "key": "one", string 🗸🗸
 "xPos": 0, integer 🗸🗸
 "yPos": 0, integer 🗸🗸
 "xSize": 1, integer 🗸🗸
 "ySize": 1, integer 🗸🗸
 "shiftKey": "a" string 🗸🗸
 }]
 }],
 "pin": See data properties array (object), null
 "secure": See data properties array (object), null
}

Properties

data
The layout for the Keyboard.DataEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

data/xPos
If the frame contains Touch Keys, specifies the left edge of the frame as an offset from the left edge of the screen
in pixels and will be less than the width of the screen.
If the frame contains Physical Keys on the boundary of the screen, specifies the left coordinate of the frame as an
offset from the left edge of the screen in pixels and will be 0 or the width of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

606

Properties

data/yPos
If the frame contains Touch Keys, specifies the top edge of the frame as an offset from the top edge of the screen
in pixels and will be less than the height of the screen.
If the frame contains Physical Keys on the boundary of the screen, specifies the top edge of the frame as an
offset from the top edge of the screen in pixels and will be 0 or the height of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

data/xSize
If the frame contains Touch Keys, specifies the width of the frame in pixels and will be greater than 0 and less
than the width of the screen minus the frame xPos.
If the frame contains Physical Keys on the boundary of the screen, specifies the width of the frame in pixels and
will be 0 or the width of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

data/ySize
If the frame contains Touch Keys, specifies the height of the frame in pixels and will be greater than 0 and less
than the height of the screen minus the frame yPos.
If the frame contains Physical Keys on the boundary of the screen, specifies the height of the frame in pixels and
will be 0 or the height of the screen in pixels.
If the frame contains Physical Keys not positioned on the screen boundary, this value is 0.
Property value constraints:
minimum: 0

data/float
Specifies if the device can float the touch keyboards. If etsCaps is null or float is null, this property is null. If this
property is null, the device cannot randomly shift the layout in both horizontal and vertical direction.
default: null

data/float/x
Specifies that the device will randomly shift the layout in a horizontal direction.
default: false

data/float/y
Specifies that the device will randomly shift the layout in a vertical direction.
default: false

data/keys
Defining details of the keys in the keyboard.
Property value constraints:
minItems: 1

607

Properties

data/keys/key
Specifies the Function Key associated with the physical area in non-shifted mode.
The following standard values are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• [a-f] - Hex digit A to F for secure key entry
• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• decPoint - Decimal point
• shift - Shift key used during hex entry
• doubleZero - 00
• tripleZero - 000
• fdk[01-32] - 32 FDK keys

Additional non-standard values are also allowed:
• oem[a-zA-Z0-9]* - A non-standard value

Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

data/keys/xPos
Specifies the position of the left edge of the key relative to the left side of the frame.
Property value constraints:
minimum: 0
maximum: 999

data/keys/yPos
Specifies the position of the top edge of the key relative to the top edge of the frame.
Property value constraints:
minimum: 0
maximum: 999

data/keys/xSize
Specifies the Function Key (FK) width.
Property value constraints:
minimum: 1
maximum: 1000

data/keys/ySize
Specifies the Function Key (FK) height.
Property value constraints:
minimum: 1
maximum: 1000

608

Properties

data/keys/shiftKey
Specifies the Function Key associated with the physical key in shifted mode.
See key for the valid property values.
Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|[a-
f]|enter|cancel|clear|backspace|help|decPoint|shift|doubleZero|tripleZero|fdk(0[1-
9]|[12][0-9]|3[0-2])|oem[a-zA-Z0-9]*)$

pin
The layout for the Keyboard.PinEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

secure
The layout for the Keyboard.SecureKeyEntry command.
There can be one or more frames included.
Refer to the layout section for the different types of frames, and see the diagram for an example.
default: null

609

14. PinPad Interface
This chapter defines the PinPad interface functionality and messages.

This section describes the general interface for the following functions:

• Administration of encryption devices
• PIN verification
• PIN block generation (encrypted PIN)
• PIN presentation to chipcard
• EMV 4.0 PIN blocks, EMV 4.0 public key loading, static and dynamic data verification

14.1 General Information

14.1.1 References

ID Description

pinpad-
1

SHA-1 Hash algorithm ANSI X9.30-2:1993, Public Key Cryptography for Financial Services
Industry Part2

pinpad-
2

ANSI X3.92, American National Standard for Data Encryption Algorithm (DEA), American National
Standards Institute, 1983

pinpad-
3

ANSI X9.8-1995, Banking – Personal Identification Number Management and Security, Part 1 + 2,
American National Standards Institute

pinpad-
4

IBM, Common Cryptographic Architecture: Cryptographic Application Programming Interface,
SC40-1675-1, IBM Corp., Nov 1990

pinpad-
5

Oliself2 Specifiche Tecniche, PIN Block Detail for FormAp

pinpad-
6

ANSI X9.24-1:2009, Retail Financial Services Symmetric Key Management Part 1: Using Symmetric
Techniques

pinpad-
7

NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation

pinpad-
8

NIST Special Publication 800-38E: Recommendation for Block Cipher Modes of Operation: the
XTS-AES Mode for Confidentiality on Storage Devices

610

14.2 Command Messages

14.2.1 PinPad.GetQueryPCIPTSDeviceId
This command is used to report information in order to verify the PCI Security Standards Council PIN transaction
security (PTS) certification held by the PIN device. The command provides detailed information in order to verify
the certification level of the device. Support of this command by the Service does not imply in anyway the
certification level achieved by the device.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "manufacturerIdentifier": "Manufacturer ID", string, null
 "modelIdentifier": "Model ID", string, null
 "hardwareIdentifier": "Hardware ID", string, null
 "firmwareIdentifier": "Firmware ID", string, null
 "applicationIdentifier": "Application ID" string, null
}

Properties

manufacturerIdentifier
Returns the manufacturer identifier of the PIN device. This value is null if the manufacturer identifier is not
available. This property is distinct from the HSM key pair that may be reported in the extra property by the
Capabilities command.
default: null

modelIdentifier
Returns the model identifier of the PIN device. This value is null if the model identifier is not available.
default: null

hardwareIdentifier
Returns the hardware identifier of the PIN device. This value is null if the hardware identifier is not available.
default: null

firmwareIdentifier
Returns the firmware identifier of the PIN device. This value is null if the firmware identifier is not available.
default: null

applicationIdentifier
Returns the application identifier of the PIN device. This value is null if the application identifier is not
available.
default: null

Event Messages
None

611

14.2.2 PinPad.LocalDES
The PIN, which was entered with the GetPin command, is combined with the requisite data specified by the DES
validation algorithm and locally verified for correctness. The result of the verification is returned to the application.
This command will clear the PIN unless the application has requested that the PIN be maintained through the
PinPad.MaintainPin command.

Command Message

Payload (version 2.0) Type Required
{
 "validationData": "0812746533758375", string 🗸🗸
 "offset": "0000000000000000", string, null
 "padding": "00", string
 "maxPIN": 0, integer 🗸🗸
 "valDigits": 0, integer 🗸🗸
 "noLeadingZero": false, boolean 🗸🗸
 "key": "Key01", string 🗸🗸
 "keyEncKey": "Key02", string, null
 "decTable": "3183042102277795" string 🗸🗸
}

Properties

validationData
Customer specific data (normally obtained from card track data) used to validate the correctness of the PIN. The
validation data should be an ASCII string.
Property value constraints:
pattern: ^[0-9]{16}$

offset
ASCII string defining the offset data for the PIN block as an ASCII string. if this property is null then no offset is
used. The character must be in the ranges '0' to '9', 'a' to 'f' and 'A' to 'F'.
Property value constraints:
pattern: ^[0-9a-fA-F]{1,16}$
default: null

padding
Specifies the padding character for the validation data. If the validation data is less than 16 characters long then
it will be padded with this character. If padding is in the range 00 to 0F in 16 character string, padding is applied
after the validation data has been compressed. If the character is in the range 30 to 39 ('0' to '9'), 41 to 46 ('a' to
'f'), or 61 to 66 ('A' to 'F'), padding is applied before the validation data is compressed.
Property value constraints:
pattern: ^0[0-9a-fA-F]$|^3[0-9]$|^4[1-6]$|^6[1-6]$
default: "00"

maxPIN
Maximum number of PIN digits to be used for validation. This property corresponds to PINMINL in the IBM
3624 specification (see [Ref. pinpad-4]).
Property value constraints:
minimum: 0

612

Properties

valDigits
Number of Validation digits from the validation data to be used for validation. This is the length of the
validationData.
Property value constraints:
minimum: 0

noLeadingZero
If true and the first digit of result of the modulo 10 addition is a 0x0, it is replaced with 0x1 before performing
the verification against the entered PIN. If false, a leading zero is allowed in entered PINs.

key
Name of the key to be used for validation. The key referenced by key must have the keyUsage 'V0' attribute.

keyEncKey
If this value is null, key is used directly for PIN validation. Otherwise, key is used to decrypt the encrypted key
passed in keyEncKey and the result is used for PIN validation.
default: null

decTable
ASCII decimalization table (16 character string containing characters '0' to '9'). This table is used to convert the
hexadecimal digits (0x0 to 0xF) of the encrypted validation data to decimal digits (0x0 to 0x9).
Property value constraints:
pattern: ^[0-9]{16}$

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyNotFound", string, null
 "result": false boolean
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyNotFound - The specified key was not found.
• accessDenied - The encryption module is either not initialized or not ready for any vendor

specific reason.
• keyNoValue - The specified key name was found but the corresponding key value has not been

loaded.
• useViolation - The use specified by

keyUsage is not supported.
• noPin - The PIN has not been entered was not long enough or has been cleared.
• formatNotSupported - The specified format is not supported.
• invalidKeyLength - The length of keyEncKey is not supported or the length of an encryption

key is not compatible with the encryption operation required.
default: null

result
Specifies whether the PIN is correct or not.
default: false

Event Messages
None

613

614

14.2.3 PinPad.LocalVisa
The PIN, which was entered with the GetPin command, is combined with the requisite data specified by the VISA
validation algorithm and locally verified for correctness. The result of the verification is returned to the application.
This command will clear the PIN unless the application has requested that the PIN be maintained using the
PinPad.MaintainPin command.

Command Message

Payload (version 2.0) Type Required
{
 "pan": "01234567890123456789123", string 🗸🗸
 "pvv": "0286", string 🗸🗸
 "key": "Key01", string 🗸🗸
 "keyEncKey": "UGluYmxvY2sgZGF0YQ==" string, null
}

Properties

pan
Primary Account Number from track data, as an ASCII string. The PAN should contain the eleven rightmost
digits of the PAN (excluding the check digit), followed by the PVKI indicator in the 12th byte.
Property value constraints:
pattern: ^[0-9]{23}$

pvv
PIN Validation Value from track data.
Property value constraints:
pattern: ^[0-9]{4,}$

key
Name of the validation key. The key referenced by key must have the keyUsage 'V2' attribute.

keyEncKey
If this value is null, key is used directly for PIN validation. Otherwise, key is used to decrypt the encrypted key
passed in keyEncKey and the result is used for PIN validation.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyNotFound", string, null
 "result": false boolean
}

615

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyNotFound - The specified key was not found.
• accessDenied - The encryption module is either not initialized or not ready for any vendor

specific reason.
• keyNoValue - The specified key name was found but the corresponding key value has not been

loaded.
• useViolation - The use specified by

keyUsage is not supported.
• noPin - The PIN has not been entered was not long enough or has been cleared.
• formatNotSupported - The specified format is not supported.
• invalidKeyLength - The length of keyEncKey is not supported or the length of an encryption

key is not compatible with the encryption operation required.
default: null

result
Specifies whether the PIN is correct or not.
default: false

Event Messages
None

616

14.2.4 PinPad.PresentIDC
The PIN, which was entered with the GetPin command, is combined with the requisite data specified by the IDC
presentation algorithm and presented to the smartcard contained in the ID card unit. The result of the presentation is
returned to the application.

This command will clear the PIN unless the application has requested that the PIN be maintained using the
PinPad.MaintainPin command.

Command Message

Payload (version 2.0) Type Required
{
 "presentAlgorithm": "presentClear", string 🗸🗸
 "chipProtocol": "chipT0", string 🗸🗸
 "chipData": "Y2hpcCBkYXRhIHRvIHNl ...", string 🗸🗸
 "algorithmData": { object 🗸🗸
 "pinPointer": 0, integer 🗸🗸
 "pinOffset": 0 integer 🗸🗸
 }
}

Properties

presentAlgorithm
Specifies the algorithm that is used for presentation. See presentationAlgorithms for possible values.

chipProtocol
Identifies the protocol that is used to communicate with the chip. See chipProtocols for possible values.

chipData
The data to be sent to the chip.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

algorithmData
Contains the data required for the specified presentation algorithm.

algorithmData/pinPointer
The byte offset where to start inserting the PIN into chipData. The leftmost byte is numbered zero.
Property value constraints:
minimum: 0

algorithmData/pinOffset
The bit offset within the byte specified by pinPointer property where to start inserting the PIN. The leftmost bit
numbered zero.
Property value constraints:
minimum: 0

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "accessDenied", string, null
 "chipProtocol": "chipT0", string, null

617

Payload (version 2.0) Type Required
 "chipData": "Y2hpcCBkYXRhIHJlY2Vp ..." string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• accessDenied - The encryption module is either not initialized or not ready for any vendor
specific reason.

• noPin - The PIN has not been entered was not long enough or has been cleared.
• protocolNotSupported - The specified protocol is not supported by the Service.
• invalidData - An error occurred while communicating with the chip.

default: null

chipProtocol
Identifies the protocol that was used to communicate with the chip. This property contains the same value as the
corresponding property in the input. This value is null if there is no data returned from the chip.
default: null

chipData
The data returned from the chip. This value is null if there is no data returned from the chip.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages
None

618

14.2.5 PinPad.Reset
Sends a service reset to the Service.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

619

14.2.6 PinPad.MaintainPin
This command is used to control if the PIN is maintained after a PIN processing command for subsequent use by
other PIN processing commands. This command is also used to clear the PIN buffer when the PIN is no longer
required.

Command Message

Payload (version 2.0) Type Required
{
 "maintainPIN": false boolean
}

Properties

maintainPIN
Specifies if the PIN should be maintained after a PIN processing command. Once set, this setting applies until
changed through another call to this command.
default: false

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

620

14.2.7 PinPad.SetPinBlockData
This function should be used for devices which need to know the data for the PIN block before the PIN is entered
by the user. Keyboard.GetPin and PinPad.GetPinBlock should be called after this command. For all other devices
unsupportedCommand will be returned

If this command is required and it is not called, the Keyboard.GetPin command will fail with the generic error
sequenceError.

If the input parameters passed to this command and PinPad.GetPinBlock are not identical, the PinPad.GetPinBlock
command will fail with the generic error invalidData.

The data associated with this command will be cleared on a PinPad.GetPinBlock command.

Command Message

Payload (version 2.0) Type Required
{
 "customerData": "9385527846382726", string, null
 "padding": 2, integer
 "format": "ibm3624", string 🗸🗸
 "key": "PinKey01", string, null
 "xorData": "0123456789ABCDEF", string, null
 "secondEncKey": "Key01", string, null
 "cryptoMethod": "ecb" string, null
}

Properties

customerData
The customer data should be an ASCII string. Used for ANSI, ISO-0 and ISO-1 algorithm (See [Ref. pinpad-1],
[Ref. pinpad-2], [Ref. pinpad-3]) to build the formatted PIN. For ANSI and ISO-0 the PAN (Primary Account
Number, without the check number) is supplied, for ISO-1 a ten digit transaction field is required. If not used,
this value is null.
Used for DIEBOLD with coordination number, as a two digit coordination number.
Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed as unpacked
string, for example: 0123456789ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42
0x43 0x44 0x45 0x46
For AP PIN blocks, the data must be a concatenation of the PAN (18 digits including the check digit), and the
CCS (8 digits).
Property value constraints:
pattern: ^[0-9a-fA-F]{2,}$
default: null

padding
Specifies the padding character. This property is ignored for PIN block formats with fixed, sequential or random
padding.
Property value constraints:
minimum: 0
maximum: 15
default: 15

format
Specifies the format of the PIN block. For a list of valid values see pinFormats.

621

Properties

key
Specifies the key used to encrypt the formatted PIN for the first time, this property is not required if no
encryption is required. If this specifies a double-length or triple-length key, triple DES encryption will be
performed. The key referenced by key property must have the function or pinRemote attribute. If this specifies
an RSA key, RSA encryption will be performed.
default: null

xorData
If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to modify the
result of the first encryption by an XOR-operation. If this property is null, no XOR-operation will be performed.
The format is a string of case-insensitive hexadecimal data.
If the formatted PIN is not encrypted twice (i.e. if the secondEncKey property is null) this is ignored.
Property value constraints:
pattern: ^[0-9a-fA-F]{2,}?$
default: null

secondEncKey
Specifies the key used to format the once encrypted formatted PIN, this property can be null if no second
encryption required. The key referenced by secondEncKey must have the keyUsage 'P0' attribute. If this specifies
a double-length or triple-length key, triple DES encryption will be performed.
default: null

cryptoMethod
This specifies the cryptographic method to be used for this command, this property is null if no encryption is
required. For a list of valid values see cryptoMethod. If specified, this must be compatible with the key identified
by key.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyNotFound" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyNotFound - The specified key was not found.
• accessDenied - The encryption module is either not initialized or not ready for any vendor

specific reason.
• keyNoValue - The specified key name was found but the corresponding key value has not been

loaded.
• useViolation - The use specified by

keyUsage is not supported.
• noPin - The PIN has not been entered was not long enough or has been cleared.
• formatNotSupported - The specified format is not supported.
• invalidKeyLength - The length of keyEncKey or key is not supported by this key or the length

of an encryption key is not compatible with the encryption operation required.
default: null

Event Messages
None

622

623

14.2.8 PinPad.GetPinBlock
This function takes the account information and a PIN entered by the user to build a formatted PIN. Encrypting this
formatted PIN once or twice returns a PIN block which can be written on a magnetic card or sent to a host. The PIN
block can be calculated using one of the algorithms specified in the pinBlockAttributes capability. This command
will clear the PIN unless the application has requested that the PIN be maintained through the PinPad.MaintainPin
command.

Command Message

Payload (version 2.0) Type Required
{
 "customerData": "9385527846382726", string, null
 "padding": 2, integer
 "format": "ibm3624", string 🗸🗸
 "key": "PinKey01", string, null
 "xorData": "0123456789ABCDEF", string, null
 "secondEncKey": "Key01", string, null
 "cryptoMethod": "ecb" string, null
}

Properties

customerData
The customer data should be an ASCII string. Used for ANSI, ISO-0 and ISO-1 algorithm (See [Ref. pinpad-1],
[Ref. pinpad-2], [Ref. pinpad-3]) to build the formatted PIN. For ANSI and ISO-0 the PAN (Primary Account
Number, without the check number) is supplied, for ISO-1 a ten digit transaction field is required. If not used,
this value is null.
Used for DIEBOLD with coordination number, as a two digit coordination number.
Used for EMV with challenge number (8 bytes) coming from the chip card. This number is passed as unpacked
string, for example: 0123456789ABCDEF = 0x30 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x39 0x41 0x42
0x43 0x44 0x45 0x46
For AP PIN blocks, the data must be a concatenation of the PAN (18 digits including the check digit), and the
CCS (8 digits).
Property value constraints:
pattern: ^[0-9a-fA-F]{2,}$
default: null

padding
Specifies the padding character. This property is ignored for PIN block formats with fixed, sequential or random
padding.
Property value constraints:
minimum: 0
maximum: 15
default: 15

format
Specifies the format of the PIN block. For a list of valid values see pinFormats.

key
Specifies the key used to encrypt the formatted PIN for the first time, this property is not required if no
encryption is required. If this specifies a double-length or triple-length key, triple DES encryption will be
performed. The key referenced by key property must have the function or pinRemote attribute. If this specifies
an RSA key, RSA encryption will be performed.
default: null

624

Properties

xorData
If the formatted PIN is encrypted twice to build the resulting PIN block, this data can be used to modify the
result of the first encryption by an XOR-operation. If this property is null, no XOR-operation will be performed.
The format is a string of case-insensitive hexadecimal data.
If the formatted PIN is not encrypted twice (i.e. if the secondEncKey property is null) this is ignored.
Property value constraints:
pattern: ^[0-9a-fA-F]{2,}?$
default: null

secondEncKey
Specifies the key used to format the once encrypted formatted PIN, this property can be null if no second
encryption required. The key referenced by secondEncKey must have the keyUsage 'P0' attribute. If this specifies
a double-length or triple-length key, triple DES encryption will be performed.
default: null

cryptoMethod
This specifies the cryptographic method to be used for this command, this property is null if no encryption is
required. For a list of valid values see cryptoMethod. If specified, this must be compatible with the key identified
by key.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyNotFound", string, null
 "pinBlock": "UGluYmxvY2sgZGF0YQ==" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyNotFound - The specified key was not found.
• accessDenied - The encryption module is either not initialized or not ready for any vendor

specific reason.
• keyNoValue - The specified key name was found but the corresponding key value has not been

loaded.
• useViolation - The use specified by

keyUsage is not supported.
• noPin - The PIN has not been entered was not long enough or has been cleared.
• formatNotSupported - The specified format is not supported.
• invalidKeyLength - The length of secondEncKey or key is not supported by this key or the

length of an encryption key is not compatible with the encryption operation required.
• algorithmNotSupported - The algorithm specified by algorithm is not supported.
• dukptOverflow - The DUKPT KSN encryption counter has overflowed to zero. A new IPEK must be

loaded.
• cryptoMethodNotSupported - The cryptographic method specified by cryptoMethod is not

supported.
default: null

625

Properties

pinBlock
The encrypted PIN block. This value is null if there is no PIN block.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

Event Messages

• KeyManagement.DUKPTKSNEvent

626

15. Printer Interface
This chapter defines the Printer interface functionality and messages.

This specification describes the functionality of the services provided by banking printers and scanning devices
under XFS4IoT, focusing on the following areas:

• application programming for printing
• print document definition
• scanning images

The XFS4IoT Printer interface is implemented around a forms model which also standardizes the basic document
definition.

15.1 General Information

15.1.1 Banking Printer Types
The XFS4IoT Printer service defines and supports five types of banking printers through a common interface:

• Receipt Printer The receipt printer is used to print cut sheet documents. It may or may not require insert
or eject operations, and often includes an operator identification device, e.g. Teller A and Teller B lights,
for shared operation.

• Journal Printer The journal is a continuous form device used to record a hardcopy audit trail of
transactions, and for certain report printing requirements.

• Passbook Printer The passbook device is physically and functionally the most complex printer. The
XFS4IoT definition supports automatic positioning of the book, as well as read/write capability for an
optional integrated magnetic stripe. The implementation also manages the book geometry - i.e. the margins
and centerfolds - presenting the simplest possible application interface while delivering the full range of
functionality.
Some passbook devices also support the dispensing of new passbooks from up to four passbook paper
sources (upper, aux, aux2, lower). Some passbook devices may also be able to place a full passbook in a
parking station, print the new passbook and return both to the customer. Passbooks can only be dispensed
or moved from the parking station if there is no other media in the print position or in the entry/exit slot.

• Document Printer Document printing is similar to receipt printing - a set of fields are positioned on one
or more inserted sheets of paper - but the focus is on full-size forms. It should be noted that the XFS
environment supports the printing of text and graphic fields from the application. The electronic printing
of the form image (the template portion of the form which is usually pre-printed with dot-matrix style
printers) may also be printed by the application.

• Scanner Printer The scanner printer is a device incorporating both the capabilities to scan inserted
documents and optionally to print on them. These devices may have more than one area where documents
may be retained.

Additional hardware components, like scanners, stripe readers, OCR readers, and stamps, normally attached
directly to the printer are also controlled through this interface. Additionally, the Printer class interface can also be
used for devices that are capable of scanning without necessarily printing.

The specification refers to the terms paper and media. When the term paper is used this refers to paper that is
situated in a paper supply attached to the device. The term media is used for media that is inserted by the customer
(e.g., material that is scanned) or that is issued to the customer (e.g., a receipt or statement). Receipt, document and
passbook printers with white passbook dispensing capability have both. As soon as the paper gets printed it
becomes media. Scanners only have media. The term media does not apply to journal printers. When paper is in the
print position it is classified as media, on some printers that maintain paper under the print head there will always
be both media and paper.

15.1.2 Forms Model

The XFS4IoT printing service functionality is based on a “forms” model for printing. Banking documents are
represented as a series of text and/or graphic fields output from the application and positioned on the document by
the XFS4IoT printing system.

627

The form is an object which includes the positioning and presentation information for each of the fields in the
document. The application selects a form and supplies only the field data and the control parameters to fully define
the print document.

The form objects are owned and managed by the XFS4IoT printing service. To optimize maintainability of the
system, the application can query the service for the list of fields required to print a given form. Through this
mechanism, it is not necessary to duplicate the field contents of forms in application authoring data. The figure
below outlines the printing process from the application's view.

The XFS4IoT implementation recognizes that the form object must be supported by job-specific data to fully
address printing requirements. As an example, a form defining a passbook print line will need to have its origin
defined externally in order to be reused for different passbook lines. These job specific parameters are supplied on
the Printer.PrintForm command.

In some cases, the application wants to print a block of data without considering it as a series of separate fields. One
example is a line of journal data, fully formatted by the application. This can be handled by defining a one field
form, or by use of the Printer.PrintRaw command.

The document definition under XFS4IoT printing is standardized to provide portability across vendor
implementations. The standard has been defined at the source language level for the document definition, allowing
vendor differences at the runtime level to manage implementation specific dependencies, providing several areas
where vendors can provide value-added extensions. As an example, a vendor providing a graphical form definition
tool can produce the field definition object format directly. The XFS4IoT requirements for portability are:

• A vendor must be able to export print format in the standardized field definition source format for
portability to other systems.

• A vendor must be able to import document formats produced on other systems in the standardized field
definition source format.

• A vendor can extend the field definition source language, but any verbs included in the standard must be
implemented strictly as defined by the standard. Import and export facilities must be tolerant of source
language extensions, reporting but ignoring the exceptions.

15.1.3 Command Overview
The basic operation of the print devices is managed using the two primary commands:

• Printer.GetQueryForm This command retrieves the form header information, and the list of fields.
• Printer.PrintForm This command includes as parameter data the name of the form to select and the

required field data values.

This approach combines in the most efficient manner the four logical steps required to print a form:

• Selecting a document form object.
• Querying the service for the list of fields.
• Supplying the data for each field.
• Issuing the print command.

By using Printer.GetQueryForm to retrieve the list of field names, it is possible for an application to assemble the
required set of fields for a form before locking the service. This minimizes the time that each application request
ties up the service. Using Printer.GetQueryForm, it is also possible to query the attributes of a field. This command
is generally not required for most applications.

628

The combination of form selection, field value presentation and the print action make it possible to express a
complete print operation with Printer.PrintForm command. Where these multiple print functions represent a series
of passbook lines (using the INDEX capability in the field definition), the Printer.PrintForm command provides
support for management of the print line number. Note that if a form contains a tabular field (i.e. one with a non-
zero INDEX value), and data is not supplied for some of the lines in the “table”, then those lines are left blank.

For printers with the capability to read from a passbook (OCR, MICR and/or magnetic stripe), the data is read with
the Printer.ReadForm command. The data is written using the Printer.PrintForm command. Since these devices are
usable only for passbook operations, they are not defined as separate logical devices.

Finally, the Printer.PrintNative command can be used to print data that contains a complete print job in the native
printer language. This data will have been created using the native Operating System API (for example, Windows
GDI).

15.1.4 Form, Sub-Form, Field, Frame, Table and Media Definitions
This section outlines the format of the definitions of forms, the fields within them, optional tables and fields within
the form, and the media on which they are printed.

Definition Syntax
The syntactic rules for form, field and media definitions are as follows:

• White space
 Space, Tab

• Line continuation
 Backslash (\)

• Line termination
 CR, LF, CR/LF; line termination ends a "keyword section" (a keyword and its value[s]).

• Keywords
 Must be all upper case.

• Names
 Field, media and font names are case sensitive.

• Strings
 All strings must be enclosed in double quote characters ("). Standard C escape sequences are allowed.

• Comments
 Start with two forward slashes (//), end at line termination

Other Notes:

• The values of a keyword are separated by commas.
• If a keyword is present, all its values must be specified; default values are used only if the keyword is

absent.
• Values that are character strings are marked with * in the definitions below and must be quoted as

specified above.
• The order of attributes within the forms is not mandatory and the attributes may be defined in any order.
• A form and its optional subforms that have multiple XFSFIELDs with the same fieldname are invalid. The

formInvalid error will be returned if specified in the input to the command.
• A form that has multiple XFSSUBFORMs with the same subform name is invalid. The formInvalid error

will be returned if specified in the input to the command.
• A form and its optional subforms that have multiple XFSFRAMEs with the same frame name are invalid.

The formInvalid error will be returned if specified in the input to the command.
• All definitions must be encoded in UTF-8. Keywords are restricted to an internal representation of ISO

646 (ANSI) characters. Values for the INITIALVALUE and FORMAT keywords can have UNICODE
values.

Form and Media Measurements
The UNIT keyword sections of the form and media definitions specify the base horizontal and vertical resolution as
follows:

• The base value specifies the base unit of measurement.

629

• The x and y values specify the horizontal and vertical resolution as fractions of the base value (e.g. an x
value of 10 and a base value of MM means that the base horizontal resolution is 0.1 mm).

The base resolutions thus defined by the UNIT keyword section of the XFSFORM definition are used as the units
of the form definition keyword sections:

• SIZE (width and height values)
• ALIGNMENT (xoffset and yoffset values)

and of the sub-form definition keyword sections:

• POSITION (x and y values)
• SIZE (width and height values)

and of the field definition keyword sections:

• POSITION (x and y values)
• SIZE (width and height values)
• INDEX (xoffset and yoffset values)

and of the frame definition keyword sections:

• POSITION (x and y values)
• SIZE (width and height values)
• REPEATONX (xoffset value)
• REPEATONY (yoffset value)

The base resolutions thus defined by the UNIT keyword section of the XFSMEDIA definition are used as the units
of the media definition keyword sections:

• SIZE (width and height values)
• PRINTAREA (x, y, width and height values)
• RESTRICTED (x, y, width and height values)

NOTE: The origin for coordinate based systems is (0,0). The origin for row/column based systems can be (0,0) or
(1,1) and must be configurable within the service.

Form Definition
Attributes are not required in any mandatory order within a Form definition.

Keyword Nested Keyword Required Names Notes

XFSFORM 🗸🗸 formname*

BEGIN 🗸🗸

 UNIT 🗸🗸 base,x,y base - Base resolution unit for
form definition: MM, INCH or
ROWCOLUMN
x - Horizontal base unit fraction
y - Vertical base unit fraction

 SIZE 🗸🗸 width,height width - Width of form
height - Height of form

630

Keyword Nested Keyword Required Names Notes

 ALIGNMENT alignment,xoffset,yoffset alignment - Alignment of the
form on the physical media
(TOPLEFT (default),
TOPRIGHT, BOTTOMLEFT,
BOTTOMRIGHT). This option
allows the positioning of a form
onto a physical page relative to
any combination of the edges of
the physical media, to support the
variations in how devices sense
the edge of page for positioning
purposes.
xoffset - Horizontal offset relative
to the horizontal alignment
specified by alignment. Always
specified as a positive value (i.e. if
aligned to the right side of the
media, means offset the form to
the left). (default = 0)
yoffset - Vertical offset relative to
the vertical alignment specified by
alignment. Always specified as a
positive value (i.e. if aligned to the
bottom of the media, means offset
the form upward). (default = 0)

 ORIENTATION type Orientation of the form:
PORTRAIT (default) or
LANDSCAPE

 SKEW skewfactor Maximum skew factor in degrees
(default = 0)

 VERSION major,minor,date*,author* major - Major version number
minor - Minor version number
date - Creation/modification date
author - Author of the form

 CPI cpi Characters per inch. This value
specifies the default CPI within
the form. When the
ROWCOLUMN unit is used, the
form CPI and LPI are used to
calculate the position and size of
all fields within a form,
irrespective of the CPI and LPI of
the fields themselves.

 LPI lpi Lines per inch. This value
specifies the default LPI within
the form. When the
ROWCOLUMN unit is used, the
form CPI and LPI are used to
calculate the position and size of
all fields within a form,
irrespective of the CPI and LPI of
the fields themselves.

 POINTSIZE pointsize This value specifies the default
POINTSIZE within the form.

 COPYRIGHT copyright* Copyright entry

 TITLE title* Title of form

631

Keyword Nested Keyword Required Names Notes

 COMMENT comment* Comment section

 USERPROMPT prompt* Prompt string for user interaction

 [XFSFIELD
BEGIN
...
END]

 fieldname* One field definition for each field
in the form. The fieldname within
a form and its optional subforms
must be unique.

 [XFSFRAME
BEGIN
...
END]

 framename* One frame definition for each
frame in the form. The framename
within a form and its optional
subforms must be unique.

 [XFSSUBFORM
BEGIN
...
END]

 subformname* One subform definition for each
subform in the form. The
subformname within a form must
be unique.

END 🗸🗸

SubForm Definition
Attributes are not required in any mandatory order within a SubForm definition.

Keyword Nested
Keyword

Required Names Notes

XFSSUBFORM 🗸🗸 subformname*

BEGIN 🗸🗸

 POSITION 🗸🗸 X,Y or X,Y,Z X - Horizontal position (relative to left side
of form)
Y or Y,Z - Vertical position (relative to top
of form). Format Y,Z is used to indicate
vertical positioning relative to top of form
when top of form is other than 1st page of
form, where Z indicates page number
(relative to 0) and Y indicates base resolution
units relative to top of the form page number
(as indicated by Z). Format Y is used to
indicate vertical positioning relative to top of
the 1st form page.

 SIZE 🗸🗸 width,height width - Width of subform. Width must not
exceed width of form.
height - Height of subform. Height must not
exceed height of form.

 [XFSFIELD
BEGIN
...
END]

 fieldname* One field definition for each field in the
form. The fieldname within a form and its
optional subforms must be unique.

 [XFSFRAME
BEGIN
...
END]

 framename* One frame definition for each frame in the
form. The framename within a form and its
optional subforms must be unique.

END 🗸🗸

The XFSSUBFORM definition provides a means to isolate a selected area of a form where the user may want to
have a select group of fields, frames, and/or running headers and footers. All field and frame definitions within a
subform are relative to the POSITION of the subform. A form definition with an imbedded subform will have a
series of statements illustrated as follows:

632

XFSFORM
BEGIN
 *
 *
 XFSSUBFORM
 BEGIN
 XFSFIELD
 BEGIN
 *
 *
 END
 XFSFIELD
 BEGIN
 *
 *
 END
 END
END

Field Definition

Keyword Nested Keyword Required Names Notes

XFSFIELD 🗸🗸 fieldname* The fieldname within a form and
its optional subforms must be
unique.

BEGIN 🗸🗸

 POSITION 🗸🗸 X,Y or X,Y,Z X - Horizontal position (relative to
left side of form/subform).
Y or Y,Z - Vertical position
(relative to top of form/subform).
Format Y,Z is used to indicate
vertical positioning relative to top
of form/subform when top of
form/subform is other than 1st
page of form/subform, where Z
indicates page number (relative to
0) and Y indicates base resolution
units relative to top of the
form/subform page number (as
indicated by Z). Format Y is used
to indicate vertical positioning
relative to top of the 1st
form/subform.

 FOLLOWS fieldname* Print this field directly following
the field with the name fieldname;
positioning information is ignored.
See the description of
Printer.PrintForm. If FOLLOWS is
omitted, then fields are printed in
the order that they appear in the
form definition.

633

Keyword Nested Keyword Required Names Notes

 HEADER N, N-N or ALL This field is either a form or
subform header field.
N represents a form/subform page
number (relative to 0) the header
field is to print within.
N-N represents a form/subform
page number range the header field
is to print within. Combinations of
N and N-N may exist separated by
commas.
ALL indicates that header field is
to be printed on all pages of
form/subform. The form/subform
page number is intended to
supplement the Z parameter of the
POSITION keyword. For example,
0,2-4,6 indicates that the header
field is to print on relative
form/subform pages 0, 2, 3, 4, and
6.

 FOOTER N, N-N or ALL This field is either a form or
subform footer field.
N represents a form/subform page
number (relative to 0) the footer
field is to print within.
N-N represents a form/subform
page number range the footer field
is to print within. Combinations of
N and N-N may exist separated by
commas.
ALL indicates that footer field is
to be printed on all pages of
form/subform. The form/subform
page number is intended to
supplement the Z parameter of the
POSITION keyword. For example,
0,2-4,6 indicates that the footer
field is to print on relative
form/subform pages 0, 2, 3, 4, and
6.

 SIDE side Side of form where field is
positioned: FRONT (default) or
BACK

 SIZE 🗸🗸 width,height width - Field width.
height - Field height.

 INDEX repeatcount,xoffset,yoffset repeatcount - Count how often
this field is repeated in the form,
INDEX fields are fixed length
(default is no INDEX field).
xoffset - Horizontal offset for next
field.
yoffset - Vertical offset for next
field.

634

Keyword Nested Keyword Required Names Notes

 TYPE fieldtype Type of field:
TEXT (default)
MICR
OCR
MSF
BARCODE
GRAPHIC
PAGEMARK

 SCALING scalingtype Information on how to size the
GRAPHIC within GRAPHIC field
types:
BESTFIT (default): Scale to size
indicated.
ASIS: Render at native size.
MAINTAINASPECT: scale as
close as possible to size indicated
while maintaining the aspect ratio
and not losing graphic information.

 BARCODE hriposition Position of the HRI (Human
Readable Interpretation)
characters:
NONE (default)
ABOVE
BELOW
BOTH

The type of barcode to print is
defined in the FONT field.

 COERCIVITY coercivity Coercivity to be used for writing to
the magnetic stripe of MSF field
types:
AUTO (default): Coercivity is
decided by the service or
hardware.
LOW: Low coercivity.
HIGH: High coercivity.

 CLASS class Field class:
OPTIONAL (default)
STATIC
REQUIRED

 ACCESS access Access rights of field:
WRITE (default)
READ
READWRITE

 OVERFLOW overflow Action of field overflow:
TERMINATE (default)
TRUNCATE
BESTFIT (The service fits the data
into the field as well as it can)
OVERWRITE (a contiguous
write)
WORDWRAP

635

Keyword Nested Keyword Required Names Notes

 STYLE style Display attributes as a
combination, using the | operator,
of the following:
NORMAL (default)
BOLD
ITALIC
UNDER (single underline)
DOUBLEUNDER (double
underline)
DOUBLE (double width)
TRIPLE (triple width)
QUADRUPLE (quadruple width)
STRIKETHROUGH
ROTATE90 (rotate 90 degrees
clockwise)
ROTATE270 (rotate 270 degrees
clockwise)
UPSIDEDOWN (upside down)
PROPORTIONAL (proportional
spacing)
DOUBLEHIGH
TRIPLEHIGH
QUADRUPELHIGH
CONDENSED
SUPERSCRIPT
OVERSCORE
LETTERQUALITY
NEARLETTERQUALITY
DOUBLESTRIKE
OPAQUE (If omitted then the
default attribute is transparent)

Some of these styles may be
mutually exclusive or may
combine to provide unexpected
results.

 CASE case Convert field contents to:
NOCHANGE (default)
UPPER
LOWER

 HORIZONTAL justify Horizontal alignment of field
contents:
LEFT (default)
RIGHT
CENTER
JUSTIFY

 VERTICAL justify Vertical alignment of field
contents:
BOTTOM (default)
CENTER
TOP

636

Keyword Nested Keyword Required Names Notes

 COLOR color Color name:
BLACK (default)
WHITE
GRAY
RED
BLUE
GREEN
YELLOW

 RGBCOLOR R, G, B Color in RGB 8 bits per color
format:
R - Red portion of the RGB value
0-255.
G - Green portion of the RGB
value 0-255.
B - Blue portion of the RGB value
0-255.

RGBCOLOR overrides the
COLOR attribute.

 FONT fontname* Font name: This attribute is
interpreted by the service. In some
cases, it may indicate printer
resident fonts, and in others it may
indicate the name of a
downloadable font. For
BARCODE fields it represents the
barcode font name. In some cases,
this pre-defines the following
parameters:

 POINTSIZE pointsize Point size. If unspecified, the point
size defaults to the POINTSIZE
defined for the form.

 CPI cpi Characters per inch. If unspecified,
the CPI defaults to the CPI defined
for the form.

 LPI lpi Lines per inch. If unspecified, the
LPI defaults to the LPI defined for
the form.

 FORMAT formatstring* This is an application defined input
field describing how the
application should format the data.
This may be interpreted by the
service. For GRAPHIC fields, this
defines the type of the graphic, for
example, "BMP", "PNG" etc.

 INITIALVALUE value* Initial value. For GRAPHIC type
fields, this value may contain
Base64 encoded image data. The
type of this graphic will be
determined by the FORMAT field.

END 🗸🗸

The following diagrams illustrate the positioning and sizing of text fields on a form, and the vertical alignment of
text within a field using VERTICAL=TOP and VERTICAL=BOTTOM values in the field definition.

637

Definition of the character drawing box:

When more than one line of text is to be printed in a field, and the definition includes VERTICAL=BOTTOM, the
vertical position of the first line is calculated using the specified (or implied) LPI value.

Frame Definition

Keyword Nested Keyword Required Names Notes

XFSFRAME 🗸🗸 framename*

BEGIN 🗸🗸

638

Keyword Nested Keyword Required Names Notes

 POSITION 🗸🗸 X,Y or X,Y,Z X - Horizontal position of top left
corner of the frame (relative to left
side of form/subform).
Y or Y,Z - Vertical position of top left
corner of frame (relative to top of
form/subform). Format Y,Z is used to
indicate vertical positioning of the top
left corner of the frame relative to top
of form/subform when top of
form/subform is other than 1st page of
form/subform, where Z indicates page
number (relative to 0) and Y indicates
base resolution units relative to top of
the form/subform page number (as
indicated by Z). Format Y is used to
indicate vertical positioning of the left
corner of frame relative to top of the
1st form/subform.

 FRAMES fieldname* Frames the field with the name
fieldname, positioning and size
information are ignored. The frame
surrounds the complete field, not just
the printed data. If the field is
repeated, the frame surrounds the first
and last fields that are printed.

 HEADER N, N-N or ALL This frame is either a form/subform
header frame.
N represents a form/subform page
number (relative to 0) the header
frame is to print within.
N-N represents a form/subform page
number range the header frame is to
print within. Combinations of N and
N-N may exist separated by commas.
ALL indicates that header frame is to
be printed on all pages of
form/subform. The form/subform page
number is intended to supplement the
Z parameter of the POSITION
keyword. For example, 0,2-4,6
indicates that the header frame is to
print on relative form/subform pages
0, 2, 3, 4, and 6.

639

Keyword Nested Keyword Required Names Notes

 FOOTER N, N-N or ALL This frame is either a form/subform
footer frame.
N represents a form/subform page
number (relative to 0) the footer frame
is to print within.
N-N represents a form/subform page
number range the footer frame is to
print within. Combinations of N and
N-N may exist separated by commas.
ALL indicates that footer frame is to
be printed on all pages of
form/subform. The form/subform page
number is intended to supplement the
Z parameter of the POSITION
keyword. For example, 0,2-4,6
indicates that the footer frame is to
print on relative form/subform pages
0, 2, 3, 4, and 6.

 SIDE side Side of form where this frame is
positioned:
FRONT (default)
BACK

 SIZE 🗸🗸 width,height width - Frame width in base
horizontal units for the form.
height - Frame height in base vertical
units for the form.

 REPEATONX repeatcount,xoffset repeatcount - Count how often this
frame is repeated horizontally in the
form.
xoffset - Horizontal offset for next
frame in base horizontal units.

 REPEATONY repeatcount,yoffset repeatcount - Count how often this
frame is repeated vertically in the
form.
yoffset - Vertical offset for next frame
in base vertical units.

 TYPE frametype Type of frame:
RECTANGLE (default)
ROUNDED_CORNER
ELLIPSE

 CLASS class Frame class:
STATIC (default)
OPTIONAL (The frame is printed
only if its name appears in the list of
field names given as parameter to the
Printer.PrintForm command. In this
case, the name of the frame must be
different from all the names of the
fields.)

 OVERFLOW overflow Action on frame overflowing the form:
TERMINATE (default)
TRUNCATE
BESTFIT (the service fits the frame
into the media as well as it can)

640

Keyword Nested Keyword Required Names Notes

 STYLE style Frame line attributes:
SINGLE_THIN (default)
DOUBLE_THIN
SINGLE_THICK
DOUBLE_THICK
DOTTED

 COLOR color Color name for frame lines:
BLACK (default)
WHITE
GRAY
RED
BLUE
GREEN
YELLOW

 RGBCOLOR R, G, B Color in RGB 8 bits per color format:
R - Red portion of the RGB value 0-
255.
G - Green portion of the RGB value 0-
255.
B - Blue portion of the RGB value 0-
255.

RGBCOLOR overrides the COLOR
attribute.

 FILLCOLOR color Color name for interior of frame:
BLACK
WHITE (default)
GRAY
RED
BLUE
GREEN
YELLOW

 RGBFILLCOLOR R, G, B Color in RGB 8 bits per color format:
R - Red portion of the RGB value 0-
255.
G - Green portion of the RGB value 0-
255.
B - Blue portion of the RGB value 0-
255.

RGBFILLCOLOR overrides the
FILLCOLOR attribute.

 FILLSTYLE style Style for filling the interior of frame:
NONE (default): No fill
SOLID: Solid color
BDIAGONAL: Downward hatch (left
to right) at 45 degrees
CROSS: Horizontal and vertical
crosshatch
DIAGCROSS: Crosshatch at 45
degrees
FDIAGONAL: Upward hatch (left to
right) at 45 degrees
HORIZONTAL: Horizontal hatch
VERTICAL: Vertical hatch

641

Keyword Nested Keyword Required Names Notes

 SUBSTSIGN substitute sign Character that is used as substitute
sign when a character in a read field
cannot be read

 TITLE fieldname* Uses the field with the name as the
title of the frame. Positioning
information of the field is ignored.

 HORIZONTAL justify Horizontal alignment of the frame
title:
LEFT (default)
CENTER
RIGHT

 VERTICAL justify Vertical alignment of the frame title:
TOP (default)
BOTTOM

END 🗸🗸

The XFSFRAME definition provides a means for framing a XFSFIELD text field. The basic concept of a
XFSFRAME definition and corresponding XFSFIELD definition is illustrated as follows:

When the XFSFRAME frames a field, its positioning and size information are ignored. Instead, Services should
position the top left corner of the frame one horizontal base unit to the left and one vertical base unit to the top of
the top left corner of the field. Similarly, Services should size the frame so that it bottom right corner is one base
unit below and to the right to the field. For instance, if the form units are ROWCOLUMN, and a XFSFRAME
“A” is said to frame the XFSFIELD “B” which is positioned at row 1, column 1 with a size of 1 row and 20
columns, the frame will be drawn from row 0, column 0 to row 3, column 22.

The horizontal and vertical positioning of a frame title overrides the position of the named XFSFIELD. For
instance, if a XFSFRAME “A” is said to have the XFSFIELD “B” as its title, with the default horizontal and
vertical title justification, it is just as if XFSFIELD “B” had been positioned at the top left corner of the frame.
Note that the SIZE information for the title field still is meaningful; it gives the starting and/or ending positions of
the frame lines.

The SIDE attributes of the XFSFRAME and the XFSFIELDs it refers to must agree.

The width of the lines and the interval between the lines of doubled frames are vendor specific. Whether the lines
are drawn using graphics printing or using pseudo-graphic is vendor specific. However, Services are responsible for
rendering intersecting frames.

Depending on the printer technology, framing of fields can substantially slow down the print process.

Support of framing by a Service or the device it controls is not mandatory to be XFS4IoT compliant.

Sample 1 - Simple Framing

The form:

642

XFSFORM "Multiple Balances"
BEGIN
 UNIT INCH, 16, 16
 SIZE 91, 64
 VERSION 1, 0, "13/09/96", "XFS"
 XFSFIELD "Account Title"
 BEGIN
 POSITION 15, 4
 SIZE 30, 4
 CLASS STATIC
 HORIZONTAL CENTER
 INITIALVALUE "Account"
 END
 XFSFIELD "Balance Title"
 BEGIN
 POSITION 45, 4
 SIZE 30, 4
 CLASS STATIC
 HORIZONTAL CENTER
 INITIALVALUE "Balance"
 END
 XFSFIELD "Account"
 BEGIN
 POSITION 15, 8
 SIZE 30, 4
 INDEX 10, 0, 3
 END //"Account"
 XFSFIELD "Balance"
 BEGIN
 POSITION 45, 8
 SIZE 30, 4
 INDEX 10, 0, 3
 HORIZONTAL RIGHT
 END //"Balance"
 XFSFRAME "Account Title"
 BEGIN
 POSITION 15, 4
 FRAMES "Account Title"
 SIZE 30, 4
 STYLE DOUBLE_THIN
 END
 XFSFRAME "Balance Title"
 BEGIN
 POSITION 45, 4
 FRAMES "Balance Title"
 SIZE 30, 4
 STYLE DOUBLE_THIN
 END
 XFSFRAME "Account"
 BEGIN
 POSITION 15, 8
 FRAMES "Account"
 SIZE 30, 34
 STYLE DOUBLE_THIN
 END
 XFSFRAME "Balance"
 BEGIN
 POSITION 45, 8
 FRAMES "Balance"
 SIZE 30, 34
 STYLE DOUBLE_THIN
 END
END

When printed with the following field list:

643

Account[0]=0123456789123001
Account[1]=0123456789123002
Account[2]=0123456789123003
Balance[0]=$17465.12
Balance[1]=$2458.23
Balance[2]=$6542.78

Will print:

Sample 2 - Framing With Title

The form:

XFSFORM "Bank Details"
BEGIN
 UNIT INCH, 16, 16
 SIZE 121, 64
 VERSION 1, 0, "13/09/96", "XFS Editor"
 XFSFIELD "Owner Frame Title"
 BEGIN
 POSITION 24, 9

 SIZE 27, 3
 CLASS STATIC
 HORIZONTAL CENTER
 VERTICAL CENTER

 INITIALVALUE "Account Owner"
 END
 XFSFIELD "Owner"
 BEGIN
 POSITION 20, 11
 SIZE 35, 9
 CLASS REQUIRED
 VERTICAL TOP
 END //"Owner"
 XFSFRAME "Owner Frame"
 BEGIN
 POSITION 19, 10
 FRAMES "Owner"
 SIZE 37, 11
 TITLE "Owner Frame Title"
 HORIZONTAL CENTER
 END
END

When printed with the following field list:

Owner = Mr./Mrs. Jean Leroy
 21560 Hagerty Road
 Troy, MI.

Will print:

644

Sample 3 - Framing With Filled Interior

The form:

XFSFORM "Bank Details"
BEGIN
 UNIT INCH, 16, 16
 SIZE 121, 64
 VERSION 1, 0, "13/09/96", "XFS Editor"
 XFSFIELD "Owner"
 BEGIN
 POSITION 20, 11
 SIZE 35, 9
 CLASS REQUIRED
 VERTICAL TOP
 END
 XFSFRAME "Owner Frame"
 BEGIN
 POSITION 19, 10
 FRAMES "Owner"
 SIZE 37, 11
 FILLCOLOR GRAY
 FILLSTYLE CROSS
 END
END

When printed with the following field list:

Owner = Mr./Mrs. Jean Leroy
 21560 Hagerty Road
 Troy, MI.

Will print:

Sample 4 - Repeated Framing

The form:

645

XFSFORM "Smart Account Number"
BEGIN
 UNIT INCH, 16, 16
 SIZE 121, 64
 VERSION 1, 0, "13/09/96", "XFS Editor"
 XFSFIELD "Account Number"
 BEGIN
 POSITION 20, 8
 SIZE 4, 4
 INDEX 12, 4, 0
 HORIZONTAL CENTER
 VERTICAL CENTER
 END
 XFSFRAME "A/N Frame"
 BEGIN
 POSITION 20, 8
 SIZE 4, 4
 REPEATONX 12, 4
 END
END

When printed with the following field list:

Account Number[0]=0
Account Number[1]=1
Account Number[2]=2
Account Number[3]=3
Account Number[4]=4
Account Number[5]=5
Account Number[6]=6
Account Number[7]=7
Account Number[8]=8
Account Number[9]=9
Account Number[10]=0
Account Number[11]=1

Will print:

Media Definition
The media definition determines those characteristics that result from the combination of a particular media type
together with a particular vendor's printer. The aim is to make it easy to move forms between different vendors'
printers which might have different constraints on how they handle a specific media type. It is the services
responsibility to ensure that the form definition does not specify the printing of any fields that conflict with the
media definition. An example of such a conflict might be that the form definition asks for a field to be printed in an
area that the media definition defines as an unprintable area.

The media definition is also intended to provide the capability of defining media types that are specific to the
financial industry. An example is a passbook as shown below.

646

Keyword Nested
Keyword

Required Names Notes

XFSMEDIA 🗸🗸 medianame*

BEGIN 🗸🗸

 TYPE type Predefined media types are:
GENERIC (default)
MULTIPART
PASSBOOK

 SOURCE source Paper source:
ANY (default)
UPPER
LOWER
EXTERNAL (envelope tray or single sheet
feed tray)
AUX
AUX2
PARK

 UNIT 🗸🗸 base,x,y base - Base resolution unit for form
definition: MM, INCH or ROWCOLUMN
x - Horizontal base unit fraction
y - Vertical base unit fraction

 SIZE 🗸🗸 width,height width - Width of physical media
height - Height of physical media (0 =
unlimited, i.e., roll paper)

 PRINTAREA x,y,width,height Printable area relative to top left corner of
physical media (default = physical size of
media)

 RESTRICTED x,y,width,height Restricted area relative to top left corner of
physical media (default = no restricted area)

 FOLD fold Type of passbook: HORIZONTAL (default)
or VERTICAL

 STAGGERING staggering Staggering of passbook from top (default = 0)

 PAGE count Number of pages in passbook (default = 0)

 LINES count Number of printable lines (default = 0)

END 🗸🗸

647

Form and Media Definitions in Multi-Vendor Environments
In a multi-vendor environment, the capabilities of the service and hardware may be different, therefore the
following should be considered.

• Physical print area dimensions of printers are not identical.
• Graphic printout may not be supported, which may limit the use of the FONT, CPI and LPI keywords.
• Some printers may have a resolution of dots/mm rather than dots/inch, which may result in printouts with a

specific CPI/LPI font resolution to be slightly off size.
• Some form/media definition keywords may not be supported due to limitations of the hardware or

software.

15.1.5 Command and Event Flows during Single and Multi-Page / Wad Printing
It is possible to print a number of pages or bunches of pages (wads) through the Service. The following sections
describe how this is achieved.

Single Page / Single Wad Printing With Immediate Media Control
This illustrates the command and event flows in a successful print command, i.e., Printer.PrintNative,
Printer.PrintForm and Printer.PrintRaw where the following conditions apply. Printer.PrintNative is used as the
example:

• A single page or single wad of pages is presented.
• The mediaPresented capability is true (indicates that the Printer.MediaPresentedEvent event can be

generated).
• The mediaControl in the command data is set to eject.

648

Single Page / Single Wad Printing With Separate Media Control
This illustrates the command and event flows in a successful print command, i.e., Printer.PrintNative,
Printer.PrintForm and Printer.PrintRaw where the following conditions apply. The Printer.PrintNative command is
used as an example:

• A single page or single wad of pages is presented.
• The mediaPresented is true (indicates that the Printer.MediaPresentedEvent event can be generated).
• The mediaControl is null.
• The media is presented to the user through a Printer.ControlMedia command, with the mediaControl

property set to eject.

Multi Page / Multi Wad Printing With Immediate Media Control
This illustrates the command and event flows in a successful print command, i.e., Printer.PrintNative,
Printer.PrintForm and Printer.PrintRaw where the following conditions apply. Printer.PrintNative is used as the
example:

• Multiple pages or multiple wads of pages are presented.
• The mediaPresented capability is true (indicates that the Printer.MediaPresentedEvent event can be

generated).

649

• The mediaControl in the command data is set to eject.
• The previous page/wad must be removed before subsequent pages/wads can be presented.

Multi Page / Multi Wad Printing With Separate Media Control
This illustrates the command and event flows in a successful print command, i.e., Printer.PrintNative,
Printer.PrintForm and Printer.PrintRaw where the following conditions apply. Printer.PrintForm is used as the
example:

• Multiple pages or multiple wads of pages are presented.
• The mediaPresented capability is true (indicates that the Printer.MediaPresentedEvent event can be

generated).
• The mediaControl property is null.

650

• The media is presented to the user through a Printer.ControlMedia command, with the mediaControl
property set to eject.

• The previous page/wad must be removed before subsequent pages/wads can be presented.

651

15.2 Command Messages

15.2.1 Printer.GetFormList
This command is used to retrieve the list of forms available on the device.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "formList": ["Form1", "Form2"] array (string), null
}

Properties

formList
The list of form names. This will be null if no forms are available.
default: null

Event Messages
None

652

15.2.2 Printer.GetMediaList
This command is used to retrieve the list of media definitions available on the device.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "mediaList": ["Media1", "Media2"] array (string), null
}

Properties

mediaList
The list of media definition names. This will be null if no media definitions are available.
default: null

Event Messages
None

653

15.2.3 Printer.GetQueryForm
This command is used to retrieve details of the definition of a specified form.

Command Message

Payload (version 2.0) Type Required
{
 "formName": "example form" string 🗸🗸
}

Properties

formName
The form name for which to retrieve details.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formNotFound", string, null
 "formName": "Form 1", string 🗸🗸
 "base": "na", string
 "unitX": 0, integer
 "unitY": 0, integer
 "width": 0, integer
 "height": 0, integer
 "alignment": "na", string
 "orientation": "na", string
 "offsetX": 0, integer
 "offsetY": 0, integer
 "versionMajor": 0, integer, null
 "versionMinor": 0, integer, null
 "userPrompt": "User prompt1", string, null
 "fields": ["Field1", "Field2"] array (string), null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formNotFound - The specified form cannot be found.
• formInvalid - The specified form is invalid.

default: null

formName
Specifies the name of the form.

654

Properties

base
Specifies the base unit of measurement of the form as one of the following:

• inch - The base unit is inches.
• mm - The base unit is millimeters.
• rowColumn - The base unit is rows and columns.
• na - Not applicable as the specified form cannot be found or is invalid.

default: "na"

unitX
Specifies the horizontal resolution of the base units as a fraction of the base value. For example, a value of 16
applied to the base unit inch means that the base horizontal resolution is 1/16 inch.
Property value constraints:
minimum: 0
default: 0

unitY
Specifies the vertical resolution of the base units as a fraction of the base value. For example, a value of 10
applied to the base unit mm means that the base vertical resolution is 0.1 mm.
Property value constraints:
minimum: 0
default: 0

width
Specifies the width of the form in terms of the base horizontal resolution.
Property value constraints:
minimum: 0
default: 0

height
Specifies the height of the form in terms of the base vertical resolution.
Property value constraints:
minimum: 0
default: 0

alignment
Specifies the relative alignment of the form on the media and can be one of the following values:

• topLeft - The form is aligned relative to the top and left edges of the media.
• topRight - The form is aligned relative to the top and right edges of the media.
• bottomLeft - The form is aligned relative to the bottom and left edges of the media.
• bottomRight - The form is aligned relative to the bottom and right edges of the media.
• na - Not applicable as the specified form cannot be found or is invalid.

default: "na"

orientation
Specifies the orientation of the form as one of the following values:

• portrait - The orientation of the form is portrait.
• landscape - The orientation of the form is landscape.
• na - Not applicable as the specified form cannot be found or is invalid.

default: "na"

offsetX
Specifies the horizontal offset of the position of the top-left corner of the form, relative to the left or right edge
specified by alignment. This value is specified in terms of the base horizontal resolution.
Property value constraints:
minimum: 0
default: 0

655

Properties

offsetY
Specifies the vertical offset of the position of the top-left corner of the form, relative to the top or bottom edge
specified by alignment. This value is specified in terms of the base vertical resolution.
Property value constraints:
minimum: 0
default: 0

versionMajor
Specifies the major version of the form. This is null if the version is not specified in the form.
Property value constraints:
minimum: 0
default: null

versionMinor
Specifies the minor version of the form. This is null if the version is not specified in the form.
Property value constraints:
minimum: 0
default: null

userPrompt
The user prompt string. This will be null if the form does not define a value for the user prompt.
default: null

fields
The field names. This will be null if the specified form cannot be found or is invalid.
default: null

Event Messages
None

656

15.2.4 Printer.GetQueryMedia
This command is used to retrieve details of the definition of a specified media.

Command Message

Payload (version 2.0) Type Required
{
 "mediaName": "example media" string 🗸🗸
}

Properties

mediaName
The media name for which to retrieve details.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "mediaNotFound", string, null
 "mediaType": "generic", string, null
 "base": "inch", string, null
 "unitX": 0, integer
 "unitY": 0, integer
 "sizeWidth": 0, integer
 "sizeHeight": 0, integer
 "pageCount": 0, integer, null
 "lineCount": 0, integer, null
 "printAreaX": 0, integer
 "printAreaY": 0, integer
 "printAreaWidth": 0, integer
 "printAreaHeight": 0, integer
 "restrictedAreaX": 0, integer
 "restrictedAreaY": 0, integer
 "restrictedAreaWidth": 0, integer
 "restrictedAreaHeight": 0, integer
 "stagger": 0, integer, null
 "foldType": "none", string, null
 "paperSources": { object, null
 "upper": false, boolean
 "lower": false, boolean
 "external": false, boolean
 "aux": false, boolean
 "aux2": false, boolean
 "park": false, boolean
 "exampleProperty1": false, boolean

657

Payload (version 2.0) Type Required
 "exampleProperty2": See paperSources/exampleProperty1 boolean
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• mediaNotFound - The specified media definition cannot be found.
• mediaInvalid - The specified media definition is invalid.

default: null

mediaType
Specifies the type of media as one of the following: This property is null if the specified media definition cannot
be found or is invalid.

• generic - The media is generic, i.e. a single sheet.
• passbook - The media is a passbook.
• multipart - The media is a multi-part.

default: null

base
Specifies the base unit of measurement of the form and can be one of the following values: This property is null
if the specified media definition cannot be found or is invalid.

• inch - The base unit is inches.
• mm - The base unit is millimeters.
• rowcolumn - The base unit is rows and columns.

default: null

unitX
Specifies the horizontal resolution of the base units as a fraction of the base value. For example, a value of 16
applied to the base unit inch means that the base horizontal resolution is 1/16th inch.
Property value constraints:
minimum: 0
default: 0

unitY
Specifies the vertical resolution of the base units as a fraction of the base value. For example, a value of 10
applied to the base unit mm means that the base vertical resolution is 0.1 mm.
Property value constraints:
minimum: 0
default: 0

sizeWidth
Specifies the width of the media in terms of the base horizontal resolution.
Property value constraints:
minimum: 0
default: 0

sizeHeight
Specifies the height of the media in terms of the base vertical resolution.
Property value constraints:
minimum: 0
default: 0

658

Properties

pageCount
Specifies the number of pages in media of type passbook. This will be null if not applicable.
Property value constraints:
minimum: 0
default: null

lineCount
Specifies the number of lines on a page for a media of type passbook. This will be null if not applicable.
Property value constraints:
minimum: 0
default: null

printAreaX
Specifies the horizontal offset of the printable area relative to the top left corner of the media in terms of the base
horizontal resolution.
Property value constraints:
minimum: 0
default: 0

printAreaY
Specifies the vertical offset of the printable area relative to the top left corner of the media in terms of the base
vertical resolution.
Property value constraints:
minimum: 0
default: 0

printAreaWidth
Specifies the printable area width of the media in terms of the base horizontal resolution.
Property value constraints:
minimum: 0
default: 0

printAreaHeight
Specifies the printable area height of the media in terms of the base vertical resolution.
Property value constraints:
minimum: 0
default: 0

restrictedAreaX
Specifies the horizontal offset of the restricted area relative to the top left corner of the media in terms of the
base horizontal resolution.
Property value constraints:
minimum: 0
default: 0

restrictedAreaY
Specifies the vertical offset of the restricted area relative to the top left corner of the media in terms of the base
vertical resolution.
Property value constraints:
minimum: 0
default: 0

restrictedAreaWidth
Specifies the restricted area width of the media in terms of the base horizontal resolution.
Property value constraints:
minimum: 0
default: 0

659

Properties

restrictedAreaHeight
Specifies the restricted area height of the media in terms of the base vertical resolution.
Property value constraints:
minimum: 0
default: 0

stagger
Specifies the staggering from the top in terms of the base vertical resolution for media of type passbook. This
will be null if not applicable.
Property value constraints:
minimum: 0
default: null

foldType
Specified the type of fold for media of type passbook as one of the following. This will be null if not applicable.

• none - Passbook has no fold.
• horizontal - Passbook has a horizontal fold.
• vertical - Passbook has a vertical fold.

default: null

paperSources
Specifies the paper sources to use when printing forms using this media. If null, the paper source is determined
by the Service.
default: null

paperSources/upper
The upper paper source.
default: false

paperSources/lower
The lower paper source.
default: false

paperSources/external
The external paper source.
default: false

paperSources/aux
The auxiliary paper source.
default: false

paperSources/aux2
The second auxiliary paper source.
default: false

paperSources/park
The parking station.
default: false

paperSources/exampleProperty1 (example name)
The vendor specific paper source.
Property name constraints:
pattern: ^[a-zA-Z]([a-zA-Z0-9]*)$
default: false

Event Messages
None

660

661

15.2.5 Printer.GetQueryField
This command is used to retrieve details of the definition of a single or all fields on a specified form.

Command Message

Payload (version 2.0) Type Required
{
 "formName": "Form 10", string 🗸🗸
 "fieldName": "Field 3" string, null
}

Properties

formName
The form name.

fieldName
The name of the field about which to retrieve details. If not specified, then details are retrieved for all fields on
the form.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formNotFound", string, null
 "fields": { object, null
 "Field 1": { object
 "indexCount": 0, integer
 "type": "text", string 🗸🗸
 "class": "static", string 🗸🗸
 "access": "read", string 🗸🗸
 "overflow": "terminate", string 🗸🗸
 "initialValue": "This is Field 1", string
 "format": "Format 1", string
 "coercivity": "na" string
 }
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formNotFound - The specified form cannot be found.
• fieldNotFound - The specified field cannot be found.
• formInvalid - The specified form is invalid.
• fieldInvalid - The specified field is invalid.

default: null

662

Properties

fields
Details of the field(s) requested. For each object, the key is the field name. This property is null if the form or
field cannot be found or is invalid.
default: null

fields/Field 1 (example name)
Details of a single field.

fields/Field 1/indexCount
Specifies the number of entries for an index field. A value of 0 indicates that this field is not an index field.
Index fields are typically used to present information in a tabular fashion.
Property value constraints:
minimum: 0
default: 0

fields/Field 1/type
Specifies the type of field as one of the following:

• text - The field is a text field.
• micr - The field is a Magnetic Ink Character Recognition field.
• ocr - The field is an Optical Character Recognition field.
• msf - The field is a Magnetic Stripe Facility field.
• barcode - The field is a barcode field.
• graphic - The field is a Graphic field.
• pagemark - The field is a Page Mark field.

fields/Field 1/class
Specifies the class of the field as one of the following:

• static - The field data cannot be set by the application.
• optional - The field data can be set by the application.
• required - The field data must be set by the application.

fields/Field 1/access
Specifies the field access as one of the following:

• read - The field is used for input.
• write - The field is used for output.
• readWrite - The field is used for both input and output.

fields/Field 1/overflow
Specifies how an overflow of field data should be handled as one of the following:

• terminate - Return an error and terminate printing of the form.
• truncate - Truncate the field data to fit in the field.
• bestFit - Fit the text in the field.
• overwrite - Print the field data beyond the extents of the field boundary.
• wordWrap - If the field can hold more than one line the text is wrapped around. Wrapping is performed,

where possible, by splitting the line on a space character or a hyphen character or any other character
which is used to join two words together.

fields/Field 1/initialValue
The initial value of the field. When the form is printed (using Printer.PrintForm), this value will be used if
another value is not provided. This value will be an empty string if the parameter is not specified in the field
definition.
default: ""

fields/Field 1/format
Format string as defined in the form for this field. This value will be an empty string if the parameter is not
specified in the field definition.
default: ""

663

Properties

fields/Field 1/coercivity
Specifies the coercivity to be used for writing the magnetic stripe as one of the following:

• auto - The coercivity is decided by the Service or the hardware.
• low - A low coercivity is to be used for writing the magnetic stripe.
• high - A high coercivity is to be used for writing the magnetic stripe.
• na - Not applicable.

default: "na"

Event Messages
None

664

15.2.6 Printer.ControlMedia
This command is used to control media.

If an eject operation is specified, it completes when the media is moved to the exit slot. An unsolicited event is
generated when the media has been taken by the user (only if the mediaTaken capability is true).

Command Message

Payload (version 2.0) Type Required
{
 "mediaControl": { object 🗸🗸
 "eject": false, boolean
 "perforate": false, boolean
 "cut": false, boolean
 "skip": false, boolean
 "flush": false, boolean
 "retract": false, boolean
 "stack": false, boolean
 "partialCut": false, boolean
 "alarm": false, boolean
 "forward": false, boolean
 "backward": false, boolean
 "turnMedia": false, boolean
 "stamp": false, boolean
 "park": false, boolean
 "expel": false, boolean
 "ejectToTransport": false, boolean
 "rotate180": false, boolean
 "clearBuffer": false boolean
 }
}

Properties

mediaControl
Specifies the manner in which the media should be handled, as a combination of the following properties:
It is not possible to combine the properties eject, retract, park, expel and ejectToTransport with each other
otherwise the command completes with invalidData.
It is not possible to combine the property clearBuffer with any other properties, otherwise the command
completes with invalidData.
An application should be aware that the sequence of the actions is not guaranteed if more than one property is
specified in this parameter.

mediaControl/eject
Flush any data to the printer that has not yet been printed from previous Printer.PrintForm or Printer.PrintNative
commands, then eject the media.
default: false

665

Properties

mediaControl/perforate
Flush data as per eject, then perforate the media.
default: false

mediaControl/cut
Flush data as per eject, then cut the media. For printers which have the ability to stack multiple cut sheets and
deliver them as a single bundle to the customer, cut causes the media to be stacked and eject causes the bundle to
be moved to the exit slot.
default: false

mediaControl/skip
Flush data as per eject, then skip the media to mark.
default: false

mediaControl/flush
Flush any data to the printer that has not yet been physically printed from previous Printer.PrintForm or
Printer.PrintNative commands. This will synchronize the application with the device to ensure that all data has
been physically printed.
default: false

mediaControl/retract
Flush data as per flush, then retract the media to retract bin number one. For devices with more than one bin the
command Printer.RetractMedia should be used if the media should be retracted to another bin than bin number
one.
default: false

mediaControl/stack
Flush data as per flush, then move the media item on the internal stacker.
default: false

mediaControl/partialCut
Flush the data as per flush, then partially cut the media.
default: false

mediaControl/alarm
Cause the printer to ring a bell, beep, or otherwise sound an audible alarm.
default: false

mediaControl/forward
Flush the data as per flush, then turn one page forward.
default: false

mediaControl/backward
Flush the data as per flush, then turn one page backward.
default: false

mediaControl/turnMedia
Flush the data as per flush, then turn inserted media.
default: false

mediaControl/stamp
Flush the data as per flush, then stamp on inserted media.
default: false

mediaControl/park
Park the media in the parking station.
default: false

mediaControl/expel
Flush the data as per flush, then throw the media out of the exit slot.
default: false

666

Properties

mediaControl/ejectToTransport
Flush the data as per flush, then move the media to a position on the transport just behind the exit slot.
default: false

mediaControl/rotate180
Flush the data as per flush, then rotate media 180 degrees in the printing plane.
default: false

mediaControl/clearBuffer
Clear any data that has not yet been physically printed from previous Printer.PrintForm or Printer.PrintNative
commands.
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noMediaPresent" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noMediaPresent - The control action could not be completed because there is no media in the device,
the media is not in a position where it can be controlled, or (in the case of retract) has been removed.

• flushFail - The device was not able to flush data.
• retractBinFull - The retract bin is full. No more media can be retracted. The current media is still in

the device.
• stackerFull - The internal stacker is full. No more media can be moved to the stacker.
• pageTurnFail - The device was not able to turn the page.
• mediaTurnFail - The device was not able to turn the inserted media.
• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed; operator intervention is required.
• paperJammed - The paper is jammed.
• paperOut - The paper supply is empty.
• inkOut - No stamping possible, stamping ink supply empty.
• tonerOut - Toner or ink supply is empty or printing contrast with ribbon is not sufficient.
• sequenceInvalid - Programming error. Invalid command sequence (e.g. park and the parking station

is busy).
• mediaRetained - Media has been retracted in attempts to eject it. The device is clear and can be used.
• blackMark - Black mark detection has failed, nothing has been printed.
• mediaRetracted - Presented media was automatically retracted before all wads could be presented

and before the command could complete successfully.
default: null

Event Messages

• Printer.MediaPresentedEvent

667

15.2.7 Printer.PrintForm
This command is used to print a form by merging the supplied variable field data with the defined form and field
data specified in the form. If no media is present, the device waits for the period of time specified by the timeout
parameter for media to be inserted from the external paper source.

All error codes (except noMediaPresent) and events listed under the Printer.ControlMedia command description
can also occur on this command.

• An invalid field name is treated as a Printer.FieldWarningEvent event with failure notFound.
• If the data overflows the field and the field definition OVERFLOW value is TRUNCATE, BESTFIT,

OVERWRITE or WORDWRAP, a Printer.FieldWarningEvent is posted with failure overflow.
• Other field-related problems generate a fieldError error code and a Printer.FieldErrorEvent.

Command Message

Payload (version 2.0) Type Required
{
 "formName": "Form1", string 🗸🗸
 "mediaName": "Media1", string, null
 "alignment": "formDefinition", string 🗸🗸
 "offsetX": 0, integer
 "offsetY": 0, integer
 "resolution": "low", string 🗸🗸
 "mediaControl": { object, null
 "eject": false, boolean
 "perforate": false, boolean
 "cut": false, boolean
 "skip": false, boolean
 "flush": false, boolean
 "retract": false, boolean
 "stack": false, boolean
 "partialCut": false, boolean
 "alarm": false, boolean
 "forward": false, boolean
 "backward": false, boolean
 "turnMedia": false, boolean
 "stamp": false, boolean
 "park": false, boolean
 "expel": false, boolean
 "ejectToTransport": false, boolean
 "rotate180": false, boolean
 "clearBuffer": false boolean
 },
 "fields": { object 🗸🗸
 "Field 1": "Field Data" string
 },

668

Payload (version 2.0) Type Required
 "paperSource": "lower" string
}

Properties

formName
The form name.

mediaName
The media name. If no media definition applies, this should be null.
default: null

alignment
Specifies the alignment of the form on the physical media, as one of the following values:

• formDefinition - Use the alignment specified in the form definition.
• topLeft - Align form to top left of physical media.
• topRight - Align form to top right of physical media.
• bottomLeft - Align form to bottom left of physical media.
• bottomRight - Align form to bottom right of physical media.

offsetX
Specifies the horizontal offset of the form, relative to the horizontal alignment specified in alignment, in
horizontal resolution units (from form definition); always a positive number (i.e. if aligned to the right side of the
media, means offset the form to the left). If not specified, the xoffset value from the form definition should be
used.
Property value constraints:
minimum: 0
default: 0

offsetY
Specifies the vertical offset of the form, relative to the vertical alignment specified in alignment, in vertical
resolution units (from form definition); always a positive number (i.e. if aligned to the bottom of the media,
means offset the form upward). If not specified, the yoffset value from the form definition should be used.
Property value constraints:
minimum: 0
default: 0

resolution
Specifies the resolution in which to print the form. Possible values are:

• low - Print form with low resolution.
• medium - Print form with medium resolution.
• high - Print form with high resolution.
• veryHigh - Print form with very high resolution.

mediaControl
Specifies the manner in which the media should be handled after the printing is done. If no options are set, it
means do none of these actions, as when printing multiple forms on a single page. When no options are set and
the device does not support the flush capability, the data will be printed immediately. If the device supports
flush, the data may be buffered and the Printer.ControlMedia command should be used to synchronize the
application with the device to ensure that all data has been physically printed. The clearBuffer option is not
applicable to this command. If set, the command will fail with error invalidData. This property is null if no
actions required.
default: null

mediaControl/eject
Flush any data to the printer that has not yet been printed from previous Printer.PrintForm or Printer.PrintNative
commands, then eject the media.
default: false

669

Properties

mediaControl/perforate
Flush data as per eject, then perforate the media.
default: false

mediaControl/cut
Flush data as per eject, then cut the media. For printers which have the ability to stack multiple cut sheets and
deliver them as a single bundle to the customer, cut causes the media to be stacked and eject causes the bundle to
be moved to the exit slot.
default: false

mediaControl/skip
Flush data as per eject, then skip the media to mark.
default: false

mediaControl/flush
Flush any data to the printer that has not yet been physically printed from previous Printer.PrintForm or
Printer.PrintNative commands. This will synchronize the application with the device to ensure that all data has
been physically printed.
default: false

mediaControl/retract
Flush data as per flush, then retract the media to retract bin number one. For devices with more than one bin the
command Printer.RetractMedia should be used if the media should be retracted to another bin than bin number
one.
default: false

mediaControl/stack
Flush data as per flush, then move the media item on the internal stacker.
default: false

mediaControl/partialCut
Flush the data as per flush, then partially cut the media.
default: false

mediaControl/alarm
Cause the printer to ring a bell, beep, or otherwise sound an audible alarm.
default: false

mediaControl/forward
Flush the data as per flush, then turn one page forward.
default: false

mediaControl/backward
Flush the data as per flush, then turn one page backward.
default: false

mediaControl/turnMedia
Flush the data as per flush, then turn inserted media.
default: false

mediaControl/stamp
Flush the data as per flush, then stamp on inserted media.
default: false

mediaControl/park
Park the media in the parking station.
default: false

mediaControl/expel
Flush the data as per flush, then throw the media out of the exit slot.
default: false

670

Properties

mediaControl/ejectToTransport
Flush the data as per flush, then move the media to a position on the transport just behind the exit slot.
default: false

mediaControl/rotate180
Flush the data as per flush, then rotate media 180 degrees in the printing plane.
default: false

mediaControl/clearBuffer
Clear any data that has not yet been physically printed from previous Printer.PrintForm or Printer.PrintNative
commands.
default: false

fields
An object containing one or more fields.

fields/Field 1 (example name)
Property where the key is a field name and the value is the field value. If the field is an index field, the key must
be specified as fieldname[index] where index specifies the zero-based element of the index field.

paperSource
Specifes the paper source to be used. For commands which print, this parameter is ignored if there is already
paper in the print position. It can be one of the following:

• upper - Use the only paper source or the upper paper source, if there is more than one paper supply.
• lower - Use the lower paper source.
• external - Use the external paper.
• aux - Use the auxiliary paper source.
• aux2 - Use the second auxiliary paper source.
• park - Use the parking station paper source.
• any - Use any paper source, it is determined by the service.
• <paper source identifier> - The vendor specific paper source.

Property value constraints:
pattern: ^upper$|^lower$|^external$|^aux$|^aux2$|^park$|^any$|^[a-zA-Z]([a-zA-Z0-
9]*)$
default: "any"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formNotFound" string, null
}

671

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formNotFound - The specified form definition cannot be found.
• flushFail - The device was not able to flush data.
• mediaOverflow - The form overflowed the media.
• fieldSpecFailure - The syntax of the fields member is invalid.
• fieldError - An error occurred while processing a field, causing termination of the print request. A

Printer.FieldErrorEvent event is posted with the details.
• mediaNotFound - The specified media definition cannot be found.
• mediaInvalid - The specified media definition is invalid.
• formInvalid - The specified form definition is invalid.
• mediaSkewed - The media skew exceeded the limit in the form definition.
• retractBinFull - The retract bin is full. No more media can be retracted. The current media is still in

the device.
• stackerFull - The internal stacker is full. No more media can be moved to the stacker.
• pageTurnFail - The device was not able to turn the page.
• mediaTurnFail - The device was not able to turn the inserted media.
• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed; operator intervention is required.
• charSetData - Character set(s) supported by the Service is inconsistent with use of fields.
• paperJammed - The paper is jammed.
• paperOut - The paper supply is empty.
• inkOut - No stamping possible, stamping ink supply empty.
• tonerOut - Toner or ink supply is empty or printing contrast with ribbon is not sufficient.
• sequenceInvalid - Programming error. Invalid command sequence (e.g. mediaControl = park and

park position is busy).
• sourceInvalid - The selected paper source is not supported by the hardware.
• mediaRetained - Media has been retracted in attempts to eject it. The device is clear and can be used.
• blackMark - Black mark detection has failed, nothing has been printed.
• mediaSize - The media entered has an incorrect size and the media remains inside the device.
• mediaRejected - The media was rejected during the insertion phase and no data has been printed. The

Printer.MediaRejectedEvent event is posted with the details. The device is still operational.
• mediaRetracted - Presented media was automatically retracted before all wads could be presented

and before the command could complete successfully.
• msfError - An error occurred while writing the magnetic stripe data.
• noMSF - No magnetic stripe found; media may have been inserted or pulled through the wrong way.

default: null

Event Messages

• Printer.NoMediaEvent
• Printer.MediaInsertedEvent
• Printer.FieldErrorEvent
• Printer.FieldWarningEvent
• Printer.MediaPresentedEvent
• Printer.MediaRejectedEvent

672

15.2.8 Printer.PrintRaw
This command is used to send raw data (a byte string of device dependent data) to the physical device.

Applications which send raw data to a device will typically not be device or vendor independent. Problems with the
use of this command include:

1. The data sent to the device can include commands that change the state of the device in unpredictable
ways (in particular, in ways that the service may not be aware of).

2. Usage of this command will not be portable.
3. This command violates the XFS4IoT forms model that is the basis of XFS4IoT printer access.

Thus usage of this command should be avoided whenever possible.

Command Message

Payload (version 2.0) Type Required
{
 "inputData": "no", string 🗸🗸
 "data": "UmF3RGF0YQ==" string 🗸🗸
}

Properties

inputData
Specifies that input data from the device is expected in response to sending the raw data (i.e. the data contains a
command requesting data). Possible values are:

• no - No input data is expected.
• yes - Input data is expected.

data
Base64 encoded device dependent data to be sent to the device.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "shutterFail", string, null
 "data": "UmF3RGF0YQ==" string
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed.
• paperJammed - The paper is jammed.
• paperOut - The paper supply is empty.
• tonerOut - Toner or ink supply is empty or printing contrast with ribbon is not sufficient.
• mediaRetained - Media has been retracted in attempts to eject it. The device is clear and can be used.
• blackMark - Black mark detection has failed, nothing has been printed.
• mediaRetracted - Presented media was automatically retracted before all wads could be presented

and before the command could complete successfully.
default: null

673

Properties

data
Base64 encoded device dependent data received from the device.
Property value constraints:
pattern: ^[A-Za-z0-9+/]*={0,2}$
format: base64
default: ""

Event Messages

• Printer.MediaPresentedEvent

674

15.2.9 Printer.PrintNative
This command is used to print data using the native printer language. The creation and content of this data are both
Operating System and printer specific and outwith the scope of this specification.

If no media is present, the device waits, for the timeout specified, for media to be inserted from the external paper
source.

This command must not complete until all pages have been presented to the customer.

Printing of multiple pages is handled as described in Command and Event Flows during Single and Multi-Page /
Wad Printing.

Command Message

Payload (version 2.0) Type Required
{
 "data": "UmF3RGF0YQ==", string 🗸🗸
 "mediaControl": { object, null
 "eject": false, boolean
 "perforate": false, boolean
 "cut": false, boolean
 "skip": false, boolean
 "flush": false, boolean
 "retract": false, boolean
 "stack": false, boolean
 "partialCut": false, boolean
 "alarm": false, boolean
 "forward": false, boolean
 "backward": false, boolean
 "turnMedia": false, boolean
 "stamp": false, boolean
 "park": false, boolean
 "expel": false, boolean
 "ejectToTransport": false, boolean
 "rotate180": false, boolean
 "clearBuffer": false boolean
 },
 "paperSource": "lower" string
}

Properties

data
The data to be printed.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

675

Properties

mediaControl
Specifies the manner in which the media should be handled after each page is printed. If null or no options are
set, no actions will be performed, as when printing multiple pages on a single media item. Note that the
clearBuffer option is not applicable to this this command and will be ignored.
default: null

mediaControl/eject
Flush any data to the printer that has not yet been printed from previous Printer.PrintForm or Printer.PrintNative
commands, then eject the media.
default: false

mediaControl/perforate
Flush data as per eject, then perforate the media.
default: false

mediaControl/cut
Flush data as per eject, then cut the media. For printers which have the ability to stack multiple cut sheets and
deliver them as a single bundle to the customer, cut causes the media to be stacked and eject causes the bundle to
be moved to the exit slot.
default: false

mediaControl/skip
Flush data as per eject, then skip the media to mark.
default: false

mediaControl/flush
Flush any data to the printer that has not yet been physically printed from previous Printer.PrintForm or
Printer.PrintNative commands. This will synchronize the application with the device to ensure that all data has
been physically printed.
default: false

mediaControl/retract
Flush data as per flush, then retract the media to retract bin number one. For devices with more than one bin the
command Printer.RetractMedia should be used if the media should be retracted to another bin than bin number
one.
default: false

mediaControl/stack
Flush data as per flush, then move the media item on the internal stacker.
default: false

mediaControl/partialCut
Flush the data as per flush, then partially cut the media.
default: false

mediaControl/alarm
Cause the printer to ring a bell, beep, or otherwise sound an audible alarm.
default: false

mediaControl/forward
Flush the data as per flush, then turn one page forward.
default: false

mediaControl/backward
Flush the data as per flush, then turn one page backward.
default: false

mediaControl/turnMedia
Flush the data as per flush, then turn inserted media.
default: false

676

Properties

mediaControl/stamp
Flush the data as per flush, then stamp on inserted media.
default: false

mediaControl/park
Park the media in the parking station.
default: false

mediaControl/expel
Flush the data as per flush, then throw the media out of the exit slot.
default: false

mediaControl/ejectToTransport
Flush the data as per flush, then move the media to a position on the transport just behind the exit slot.
default: false

mediaControl/rotate180
Flush the data as per flush, then rotate media 180 degrees in the printing plane.
default: false

mediaControl/clearBuffer
Clear any data that has not yet been physically printed from previous Printer.PrintForm or Printer.PrintNative
commands.
default: false

paperSource
Specifes the paper source to be used. For commands which print, this parameter is ignored if there is already
paper in the print position. It can be one of the following:

• upper - Use the only paper source or the upper paper source, if there is more than one paper supply.
• lower - Use the lower paper source.
• external - Use the external paper.
• aux - Use the auxiliary paper source.
• aux2 - Use the second auxiliary paper source.
• park - Use the parking station paper source.
• any - Use any paper source, it is determined by the service.
• <paper source identifier> - The vendor specific paper source.

Property value constraints:
pattern: ^upper$|^lower$|^external$|^aux$|^aux2$|^park$|^any$|^[a-zA-Z]([a-zA-Z0-
9]*)$
default: "any"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "shutterFail" string, null
}

677

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed; operator intervention is required.
• paperJammed - The paper is jammed.
• paperOut - The paper supply is empty.
• tonerOut - Toner or ink supply is empty or printing contrast with ribbon is not sufficient.
• noMediaPresent - No media is present in the device.
• flushFail - The device was not able to flush data.
• retractBinFull - The retract bin is full. No more media can be retracted. The current media is still in

the device.
• stackerFull - The internal stacker is full. No more media can be moved to the stacker.
• pageTurnFail - The device was not able to turn the page.
• mediaTurnFail - The device was not able to turn the inserted media.
• inkOut - No stamping possible, stamping ink supply empty.
• sequenceInvalid - Programming error. Invalid command sequence (e.g. park and the parking station

is busy).
• mediaOverflow - The print request has overflowed the print media (e.g. print on a single sheet printer

exceeded one page).
• mediaRetained - Media has been retracted in attempts to eject it. The device is clear and can be used.
• blackMark - Black mark detection has failed, nothing has been printed.
• sourceInvalid - The selected paper source is not supported by the hardware.
• mediaRejected - The media was rejected during the insertion phase and no data has been printed. The

Printer.MediaRejectedEvent event is posted with the details. The device is still operational.
• mediaRetracted - Presented media was automatically retracted before all wads could be presented

and before the command could complete successfully.
default: null

Event Messages

• Printer.NoMediaEvent
• Printer.MediaInsertedEvent
• Printer.MediaPresentedEvent
• Printer.MediaRejectedEvent

678

15.2.10 Printer.ReadForm
This command is used to read data from input fields on the specified form. These input fields may consist of MICR,
OCR, MSF, BARCODE, or PAGEMARK input fields. These input fields may also consist of TEXT fields for
purposes of detecting available passbook print lines with passbook printers supporting such capability. If no media
is present, the device waits, for the timeout specified, for media to be inserted.

All error codes (except noMediaPresent) and events listed under the Printer.ControlMedia command description
can also occur on this command.

The following applies to the usage of fields for passbook: If the media type is PASSBOOK, and the field(s) type is
TEXT, and the service and the underlying passbook printer are capable of detecting available passbook print lines,
then the field(s) will be returned without a value, in the format "" or fieldname[index], if the field is available for
passbook printing. Field(s) unavailable for passbook printing will not be returned. The service will examine the
passbook text field(s) supplied in the fieldNames field, and with the form/fields definition and the underlying
passbook printer capability determine which fields should be available for passbook printing.

To illustrate when media type is PASSBOOK, if a form named PSBKTST1 contains 24 fields, one field per line,
and the field names are LINE1 through LINE24 (same order as printing), and after execution of this command
fields contains fields LINE13 through LINE24, then the first print line available for passbook printing is line 13.

To illustrate another example when media type is PASSBOOK, if a form named PSBKTST2 contains 24 fields, one
field per line, and the field names are LINE1 through LINE24 (same order as printing), and after execution of this
command fields contains fields LINE13, and LINE20 through LINE24 then the first print line available for
passbook printing is line 13, however lines 14-19 are not also available, so if the application is attempting to
determine the first available print line after which all subsequent print lines are also available then line 20 is a better
choice.

Command Message

Payload (version 2.0) Type Required
{
 "formName": "Form1", string 🗸🗸
 "fieldNames": ["FieldName1"], array (string), null
 "mediaName": "MediaName1", string, null
 "mediaControl": { object 🗸🗸
 "eject": false, boolean
 "perforate": false, boolean
 "cut": false, boolean
 "skip": false, boolean
 "flush": false, boolean
 "retract": false, boolean
 "stack": false, boolean
 "partialCut": false, boolean
 "alarm": false, boolean
 "forward": false, boolean
 "backward": false, boolean
 "turnMedia": false, boolean
 "stamp": false, boolean
 "park": false, boolean
 "expel": false, boolean
 "ejectToTransport": false, boolean

679

Payload (version 2.0) Type Required
 "rotate180": false, boolean
 "clearBuffer": false boolean
 }
}

Properties

formName
The name of the form.

fieldNames
The field names from which to read input data. If this is null, all input fields on the form will be read.
default: null

mediaName
The media name. If null, no media definition applies.
default: null

mediaControl
Specifies the manner in which the media should be handled after the reading was done. The clearBuffer option is
not applicable to this command.

mediaControl/eject
Flush any data to the printer that has not yet been printed from previous Printer.PrintForm or Printer.PrintNative
commands, then eject the media.
default: false

mediaControl/perforate
Flush data as per eject, then perforate the media.
default: false

mediaControl/cut
Flush data as per eject, then cut the media. For printers which have the ability to stack multiple cut sheets and
deliver them as a single bundle to the customer, cut causes the media to be stacked and eject causes the bundle to
be moved to the exit slot.
default: false

mediaControl/skip
Flush data as per eject, then skip the media to mark.
default: false

mediaControl/flush
Flush any data to the printer that has not yet been physically printed from previous Printer.PrintForm or
Printer.PrintNative commands. This will synchronize the application with the device to ensure that all data has
been physically printed.
default: false

mediaControl/retract
Flush data as per flush, then retract the media to retract bin number one. For devices with more than one bin the
command Printer.RetractMedia should be used if the media should be retracted to another bin than bin number
one.
default: false

mediaControl/stack
Flush data as per flush, then move the media item on the internal stacker.
default: false

mediaControl/partialCut
Flush the data as per flush, then partially cut the media.
default: false

680

Properties

mediaControl/alarm
Cause the printer to ring a bell, beep, or otherwise sound an audible alarm.
default: false

mediaControl/forward
Flush the data as per flush, then turn one page forward.
default: false

mediaControl/backward
Flush the data as per flush, then turn one page backward.
default: false

mediaControl/turnMedia
Flush the data as per flush, then turn inserted media.
default: false

mediaControl/stamp
Flush the data as per flush, then stamp on inserted media.
default: false

mediaControl/park
Park the media in the parking station.
default: false

mediaControl/expel
Flush the data as per flush, then throw the media out of the exit slot.
default: false

mediaControl/ejectToTransport
Flush the data as per flush, then move the media to a position on the transport just behind the exit slot.
default: false

mediaControl/rotate180
Flush the data as per flush, then rotate media 180 degrees in the printing plane.
default: false

mediaControl/clearBuffer
Clear any data that has not yet been physically printed from previous Printer.PrintForm or Printer.PrintNative
commands.
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formNotFound", string, null
 "fields": { object, null
 "FieldExample": "Field Example Data" string
 }
}

681

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formNotFound - The specified form cannot be found.
• readNotSupported - The device has no read capability.
• fieldSpecFailure - The syntax of the fieldNames member is invalid.
• fieldError - An error occurred while processing a field, causing termination of the print request. A

Printer.FieldErrorEvent event is posted with the details.
• mediaNotFound - The specified media definition cannot be found.
• mediaInvalid - The specified media definition is invalid.
• formInvalid - The specified form definition is invalid.
• mediaSkewed - The media skew exceeded the limit in the form definition.
• retractBinFull - The retract bin is full. No more media can be retracted. The current media is still in

the device.
• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed.
• inkOut - No stamping possible, stamping ink supply empty.
• lampInoperative - Imaging lamp is inoperative.
• sequenceInvalid - Programming error. Invalid command sequence (e.g. mediaControl = park and

park position is busy).
• mediaSize - The media entered has an incorrect size.
• mediaRejected - The media was rejected during the insertion phase. The Printer.MediaRejectedEvent

event is posted with the details. The device is still operational.
• msfError - The MSF read operation specified by the forms definition could not be completed

successfully due to invalid magnetic stripe data.
• noMSF - No magnetic stripe found; media may have been inserted or pulled through the wrong way.

default: null

fields
An object containing fields read. If no fields were read, this is null.
default: null

fields/FieldExample (example name)
A property where key is a field name and the value is the field value. If the field is an index field, the key must
be specified as fieldname[index] where index specifies the zero-based element of the index field.

Event Messages

• Printer.NoMediaEvent
• Printer.MediaInsertedEvent
• Printer.FieldErrorEvent
• Printer.FieldWarningEvent
• Printer.MediaRejectedEvent

682

15.2.11 Printer.ReadImage
This function returns image data from the current media. If no media is present, the device waits for the timeout
specified for media to be inserted.

If the returned image data is in Windows bitmap format (BMP), the first byte of data will be the start of the Bitmap
Info Header (this bitmap format is known as DIB, Device Independent Bitmap). The Bitmap File Info Header,
which is only present in file versions of bitmaps, will NOT be returned.

Command Message

Payload (version 2.0) Type Required
{
 "frontImageType": "tif", string, null
 "backImageType": "tif", string, null
 "frontImageColorFormat": "binary", string, null
 "backImageColorFormat": "binary" string, null
}

Properties

frontImageType
Specifies the format of the front image returned by this command as one of the following. This can be null if no
front image is requested.

• tif - The returned image is in TIF 6.0 format.
• wmf - The returned image is in WMF (Windows Metafile) format.
• bmp - The returned image is in BMP format.
• jpg - The returned image is in JPG format.

default: null

backImageType
Specifies the format of the back image returned by this command as one of the following. This can be null if no
back image is requested.

• tif - The returned image is in TIF 6.0 format.
• wmf - The returned image is in WMF (Windows Metafile) format.
• bmp - The returned image is in BMP format.
• jpg - The returned image is in JPG format.

default: null

frontImageColorFormat
Specifies the color format of the requested front image as one of the following. This can be null if no front image
is requested.

• binary - The scanned image has to be returned in binary (image contains two colors, usually the colors
black and white).

• grayscale - The scanned image has to be returned in gray scale (image contains multiple gray colors).
• fullcolor - The scanned image has to be returned in full color (image contains colors like red, green,

blue, etc.).
default: null

683

Properties

backImageColorFormat
Specifies the color format of the requested back image as one of the following. This can be null if no back image
is requested.

• binary - The scanned image has to be returned in binary (image contains two colors, usually the colors
black and white).

• grayscale - The scanned image has to be returned in gray scale (image contains multiple gray colors).
• fullcolor - The scanned image has to be returned in full color (image contains colors like red, green,

blue etc.).
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "shutterFail", string, null
 "images": { object, null
 "front": { object, null
 "status": "missing", string, null
 "data": "SKHFFHGOWORIUNNNLSSL ..." string
 },
 "back": See images/front properties object, null
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• mediaJammed - The media is jammed; operator intervention is required.
• lampInoperative - Imaging lamp is inoperative.
• mediaSize - The media entered has an incorrect size and the media remains inside the device.
• mediaRejected - The media was rejected during the insertion phase. The Printer.MediaRejectedEvent

event is posted with the details. The device is still operational.
default: null

images
The status and data for each of the requested images. Only requested images are returned.
default: null

images/front
The front image status and data.
default: null

images/front/status
Status of data source. This will be null if not supported, otherwise one of the following values:

• ok - The data is OK.
• missing - The data source is missing.

default: null

684

Properties

images/front/data
This contains the Base64 encoded image.
Property value constraints:
pattern: ^[A-Za-z0-9+/]*={0,2}$
format: base64
default: ""

images/back
The back image status and data.
default: null

Event Messages

• Printer.NoMediaEvent
• Printer.MediaInsertedEvent
• Printer.MediaRejectedEvent

685

15.2.12 Printer.MediaExtents
This command is used to get the extents of the media inserted in the physical device. The input parameter specifies
the base unit and fractions in which the media extent values will be returned. If no media is present, the device
waits, for the timeout specified, for media to be inserted.

Command Message

Payload (version 2.0) Type Required
{
 "base": "inches", string 🗸🗸
 "unitX": 0, integer
 "unitY": 0 integer
}

Properties

base
Specifies the base unit of measurement of the media and can be one of the following values:

• inches - The base unit is inches.
• mm - The base unit is millimeters.
• rowColumn - The base unit is rows and columns.

unitX
Specifies the horizontal resolution of the base units as a fraction of the base value. For example, a value of 16
applied to the base unit, inches, means that the base horizontal resolution is 1/16.
Property value constraints:
minimum: 0
default: 0

unitY
Specifies the vertical resolution of the base units as a fraction of the base value. For example, a value of 10
applied to the base unit, mm, means that the base vertical resolution is 0.1 mm.
Property value constraints:
minimum: 0
default: 0

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "extentNotSupported", string, null
 "sizeX": 0, integer
 "sizeY": 0 integer
}

686

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• extentNotSupported - The device cannot report extent(s).
• mediaJammed - The media is jammed.
• lampInoperative - Imaging lamp is inoperative.
• mediaSize - The media entered has an incorrect size and the media remains inside the device.
• mediaRejected - The media was rejected during the insertion phase. The Printer.MediaRejectedEvent

event is posted with the details. The device is still operational.
default: null

sizeX
Specifies the width of the media in terms of the base horizontal resolution.
Property value constraints:
minimum: 0
default: 0

sizeY
Specifies the height of the media in terms of the base vertical resolution.
Property value constraints:
minimum: 0
default: 0

Event Messages

• Printer.NoMediaEvent
• Printer.MediaInsertedEvent
• Printer.MediaRejectedEvent

687

15.2.13 Printer.ResetCount
This function resets the present value for number of media items retracted to 0. The function is possible only for
printers with retractBins.

The number of media items retracted is controlled by the service and can be requested before resetting using the
Common.Status command.

Command Message

Payload (version 2.0) Type Required
{
 "binNumber": 1 integer
}

Properties

binNumber
The number of the retract bin for which the retract count should be reset to 0. If 0, all bin counts will be set to 0.
See retractBins.
Property value constraints:
minimum: 0
default: 0

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

688

15.2.14 Printer.Reset
This command is used by the application to perform a hardware reset which will attempt to return the device to a
known good state.

The device will attempt to retract or eject any items found anywhere within the device. This may not always be
possible because of hardware problems. The Printer.MediaDetectedEvent event will inform the application where
items were actually moved to.

Command Message

Payload (version 2.0) Type Required
{
 "mediaControl": "unit1" string 🗸🗸
}

Properties

mediaControl
Specifies the manner in which the media should be handled, as one of the following:

• eject - Eject the media.
• expel - Throw the media out of the exit slot.
• unit<retract bin number> - Retract the media to retract bin number specified. This number has

to be between 1 and the number of bins supported by this device.
Property value constraints:
pattern: ^eject$|^expel$|^unit[0-9]+$

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "shutterFail" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• shutterFail - Open or close of the shutter failed due to manipulation or hardware error.
• retractBinFull - The retract bin is full; no more media can be retracted. The current media is still in

the device.
• mediaJammed - The media is jammed; operator intervention is required.
• paperJammed - The paper is jammed.

default: null

Event Messages

• Printer.MediaPresentedEvent

689

15.2.15 Printer.RetractMedia
The media is removed from its present position (media inserted into device, media entering, unknown position) and
stored in one of the retract bins. An event is sent if the storage capacity of the specified retract bin is reached. If the
bin is already full and the command cannot be executed, an error is returned and the media remains in its present
position.

If a retract request is received for a device with no retract capability, the unsupportedCommand error is returned.

Command Message

Payload (version 2.0) Type Required
{
 "mediaControl": "unit1" string
}

Properties

mediaControl
Specifies the manner in which the media should be handled, as one of the following:

• transport - Retract the media to the transport. After it has been retracted to the transport, in a
subsequent operation the media can be ejected again, or retracted to one of the retract bins.

• unit<retract bin number> - Retract the media to retract bin number specified. This number has
to be between 1 and the number of bins supported by this device.
Property value constraints:
pattern: ^transport$|^unit[0-9]+$
default: "transport"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noMediaPresent", string, null
 "result": "unit1" string
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noMediaPresent - No media present on retract. Either there was no media present (in a position to be
retracted from) when the command was called or the media was removed during the retract.

• retractBinFull - The retract bin is full; no more media can be retracted. The current media is still in
the device.

• mediaJammed - The media is jammed; operator intervention is required.
default: null

result
Specifies where the media has actually been deposited, as one of the following:

• transport - Media was retracted to the transport.
• nomedia - No media was retracted.
• unit<retract bin number> - Media was retracted to the retract bin specified.

Property value constraints:
pattern: ^transport$|^nomedia$|^unit[0-9]+$
default: "nomedia"

690

Event Messages
None

691

15.2.16 Printer.DispensePaper
This command is used to move paper (which can also be a new passbook) from a paper source into the print
position.

Command Message

Payload (version 2.0) Type Required
{
 "paperSource": "lower" string
}

Properties

paperSource
Specifes the paper source to be used. For commands which print, this parameter is ignored if there is already
paper in the print position. It can be one of the following:

• upper - Use the only paper source or the upper paper source, if there is more than one paper supply.
• lower - Use the lower paper source.
• external - Use the external paper.
• aux - Use the auxiliary paper source.
• aux2 - Use the second auxiliary paper source.
• park - Use the parking station paper source.
• any - Use any paper source, it is determined by the service.
• <paper source identifier> - The vendor specific paper source.

Property value constraints:
pattern: ^upper$|^lower$|^external$|^aux$|^aux2$|^park$|^any$|^[a-zA-Z]([a-zA-Z0-
9]*)$
default: "any"

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "paperJammed" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• paperJammed - The paper is jammed.
• paperOut - The paper supply is empty.
• sequenceInvalid - Programming error. Invalid command sequence (e.g. there is already media in the

print position).
• sourceInvalid - The selected paper source is not supported by the hardware.
• mediaRetracted - Presented media was automatically retracted before all wads could be presented

and before the command could complete successfully.
default: null

Event Messages

• Printer.MediaPresentedEvent

692

15.2.17 Printer.LoadDefinition
This command is used to load a form (including sub-forms and frames) or media definition into the list of available
forms. Once a form or media definition has been loaded through this command it can be used by any of the other
form/media definition processing commands. Forms and media definitions loaded through this command are
persistent. When a form or media definition is loaded a Printer.DefinitionLoadedEvent event is generated to inform
applications that a form or media definition has been added or replaced.

Command Message

Payload (version 2.0) Type Required
{
 "definition": "FormDefinition1", string 🗸🗸
 "overwrite": false boolean
}

Properties

definition
This contains the form (including sub-forms and frames) or media definition in text format as described in Form,
Sub-Form, Field, Frame, Table and Media Definitions. Only one form or media definition can be included in this
property.

overwrite
Specifies if an existing form or media definition with the same name is to be replaced. If is true then an existing
form or media definition with the same name will be replaced, unless the command fails with an error, where the
definition will remain unchanged. If false this command will fail with an error if the form or media definition
already exists.
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formInvalid" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formInvalid - The form is invalid.
• mediaInvalid - The media definition is invalid.
• definitionExists - The specified form or media definition already exists and overwrite was false.

default: null

Event Messages
None

693

15.2.18 Printer.SupplyReplenish
After the supplies have been replenished, this command is used to indicate that one or more supplies have been
replenished and are expected to be in a healthy state.

Hardware that cannot detect the level of a supply and reports on the supply's status using metrics (or some other
means), must assume the supply has been fully replenished after this command is issued. The appropriate threshold
event must be broadcast.

Hardware that can detect the level of a supply must update its status based on its sensors, generate a threshold event
if appropriate, and succeed the command even if the supply has not been replenished. If it has already detected the
level and reported the threshold before this command was issued, the command must succeed and no threshold
event is required.

If any one of the specified supplies is not supported by the Service, unsupportedData should be returned, and no
replenishment actions will be taken by the Service.

Command Message

Payload (version 2.0) Type Required
{
 "upper": false, boolean
 "lower": false, boolean
 "aux": false, boolean
 "aux2": false, boolean
 "toner": false, boolean
 "ink": false, boolean
 "lamp": false boolean
}

Properties

upper
The only paper supply or the upper paper supply was replenished.
default: false

lower
The lower paper supply was replenished.
default: false

aux
The auxiliary paper supply was replenished.
default: false

aux2
The second auxiliary paper supply was replenished.
default: false

toner
The toner supply was replenished.
default: false

ink
The ink supply was replenished.
default: false

lamp
The imaging lamp was replaced.
default: false

694

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

695

15.2.19 Printer.ControlPassbook
This command can turn the pages of a passbook inserted in the printer by a specified number of pages in a specified
direction and it can close the passbook. The controlPassbook property returned by Common.Capabilities specifies
which functionality is supported. This command flushes the data before the pages are turned or the passbook is
closed.

Command Message

Payload (version 2.0) Type Required
{
 "action": "forward", string 🗸🗸
 "count": 3 integer
}

Properties

action
Specifies the direction of the page turn as one of the following values:

• forward - Turns forward the pages of the passbook.
• backward - Turns backward the pages of the passbook.
• closeForward - Close the passbook forward.
• closeBackward - Close the passbook backward.

count
Specifies the number of pages to be turned. If action is closeForward or closeBackward, this will be ignored.
Property value constraints:
minimum: 1
default: 1

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noMediaPresent" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noMediaPresent - No media present in a position where it should be or the media was removed
during the operation.

• pageTurnFail - The device was not able to turn the page.
• mediaJammed - The media is jammed. Operator intervention is required.
• passbookClosed - There were fewer pages left than specified to turn. As a result of the operation, the

passbook has been closed.
• lastOrFirstPageReached - The printer cannot close the passbook because there were fewer pages

left than specified to turn. As a result of the operation, the last or the first page has been reached and is
open.

• mediaSize - The media has an incorrect size.
default: null

Event Messages
None

696

697

15.2.20 Printer.SetBlackMarkMode
This command switches the black mark detection mode and associated functionality on or off. The black mark
detection mode is persistent. If the selected mode is already active this command will complete with success.

Command Message

Payload (version 2.0) Type Required
{
 "blackMarkMode": false boolean 🗸🗸
}

Properties

blackMarkMode
Specifies whether black mark detection and associated functionality is enabled.

Completion Message

Payload (version 2.0)

This message does not define any properties.

Event Messages
None

698

15.3 Event Messages

15.3.1 Printer.MediaPresentedEvent
This event is used to indicate when media has been presented to the customer for removal.

Event Message

Payload (version 2.0) Type Required
{
 "wadIndex": 1, integer 🗸🗸
 "totalWads": 0 integer 🗸🗸
}

Properties

wadIndex
Specifies the index (starting from 1) of the presented wad, where a Wad is a bunch of one or more pages
presented as a bunch.
Property value constraints:
minimum: 1

totalWads
Specifies the total number of wads in the print job, 0 if not known.
Property value constraints:
minimum: 0

699

15.3.2 Printer.NoMediaEvent
This event specifies that the physical media must be inserted into the device in order for the command to proceed.

Event Message

Payload (version 2.0) Type Required
{
 "userPrompt": "Enter paper" string
}

Properties

userPrompt
The user prompt from the form definition. This will be an empty string if either a form does not define a value
for the user prompt or the event is being generated as the result of a command that does not use forms.
The application may use this in any manner it sees fit, for example it might display the string to the operator,
along with a message that the media should be inserted.
default: ""

700

15.3.3 Printer.MediaInsertedEvent
This event specifies that the physical media has been inserted into the device.

The application may use this event to, for example, remove a prompt from the screen telling the user to insert
media.

Event Message

Payload (version 2.0)
This message does not define any properties.

701

15.3.4 Printer.FieldErrorEvent
This event specifies that a fatal error has occurred while processing a field.

Event Message

Payload (version 2.0) Type Required
{
 "formName": "Form1", string 🗸🗸
 "fieldName": "Field1", string 🗸🗸
 "failure": "required" string, null
}

Properties

formName
The form name.

fieldName
The field name.

failure
Specifies the type of failure. This property will be null if the form field type is not supported with the device,
otherwsie one of the following:

• required - The specified field must be supplied by the application.
• staticOverwrite - The specified field is static and thus cannot be overwritten by the application.
• overflow - The value supplied for the specified fields is too long.
• notFound - The specified field does not exist.
• notRead - The specified field is not an input field.
• notWrite - An attempt was made to write to an input field.
• hwerror - The specified field uses special hardware (e.g. OCR, Low/High coercivity, etc) and an error

occurred.
• graphic - The specified graphic image could not be printed.

default: null

702

15.3.5 Printer.FieldWarningEvent
This event specifies that a non-fatal error has occurred while processing a field.

Event Message

Payload (version 2.0) Type Required
{
 "formName": "Form1", string 🗸🗸
 "fieldName": "Field1", string 🗸🗸
 "failure": "required" string, null
}

Properties

formName
The form name.

fieldName
The field name.

failure
Specifies the type of failure. This property will be null if the form field type is not supported with the device,
otherwsie one of the following:

• required - The specified field must be supplied by the application.
• staticOverwrite - The specified field is static and thus cannot be overwritten by the application.
• overflow - The value supplied for the specified fields is too long.
• notFound - The specified field does not exist.
• notRead - The specified field is not an input field.
• notWrite - An attempt was made to write to an input field.
• hwerror - The specified field uses special hardware (e.g. OCR, Low/High coercivity, etc) and an error

occurred.
• graphic - The specified graphic image could not be printed.

default: null

703

15.3.6 Printer.MediaRejectedEvent
This event is generated as a result of physical media that is rejected whenever an attempt is made to insert media
into the physical device. Rejection of the media will cause the command currently executing to complete with an
error, at which point the media should be removed.

The application may use this event to (for example) display a message box on the screen indicating why the media
was rejected, and telling the user to remove and reinsert the media.

Event Message

Payload (version 2.0) Type Required
{
 "reason": "short" string 🗸🗸
}

Properties

reason
Specifies the reason for rejecting the media as one of the following values:

• short - The rejected media was too short.
• long - The rejected media was too long.
• multiple - The media was rejected due to insertion of multiple documents.
• align - The media could not be aligned and was rejected.
• moveToAlign - The media could not be transported to the align area and was rejected.
• shutter - The media was rejected due to the shutter failing to close.
• escrow - The media was rejected due to problems transporting media to the escrow position.
• thick - The rejected media was too thick.
• other - The media was rejected due to a reason other than those listed above.

704

15.4 Unsolicited Messages

15.4.1 Printer.MediaTakenEvent
This event is sent when the media is taken from the exit slot following the completion of a successful eject
operation or following a Printer.MediaRejectedEvent. For devices that do not physically move media, this event
may also be generated when the media is taken from the device.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

705

15.4.2 Printer.MediaInsertedUnsolicitedEvent
This event specifies that the physical media has been inserted into the device without any read or print commands
being executed. This event is only generated when media is entered in an unsolicited manner.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

706

15.4.3 Printer.MediaPresentedUnsolicitedEvent
This event is used to indicate when media has been presented to the customer for removal as a result of a print
operation through some non XFS4IoT interface.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "wadIndex": 1, integer 🗸🗸
 "totalWads": 0 integer 🗸🗸
}

Properties

wadIndex
Specifies the index (starting from 1) of the presented wad, where a wad is a bunch of one or more pages
presented as a bunch.
Property value constraints:
minimum: 1

totalWads
Specifies the total number of wads in the print job, 0 if not known.
Property value constraints:
minimum: 0

707

15.4.4 Printer.MediaDetectedEvent
This event is generated when a media is detected in the device during a reset operation.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "position": "unit2" string 🗸🗸
}

Properties

position
Specifies the media position after the reset operation, as one of the following values:

• present - The media is in the print position or on the stacker.
• entering - The media is in the exit slot.
• jammed - The media is jammed in the device.
• unknown - The media is in an unknown position.
• expelled - The media was expelled during the reset operation.
• unit<retract bin number> - Media was retracted to the retract bin specified. The bin number

is between 1 and the number of bins supported by this device.
Property value constraints:
pattern: ^present$|^entering$|^jammed$|^unknown$|^expelled$|^unit[0-9]+$

708

15.4.5 Printer.RetractBinStatusEvent
This event specifies that the status of the retract bin holding the retracted media has changed.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "binNumber": 2, integer 🗸🗸
 "state": "inserted" string 🗸🗸
}

Properties

binNumber
Number of the retract bin for which the status has changed.
Property value constraints:
minimum: 1

state
Specifies the current state of the retract bin as one of the following values:

• inserted - The retract bin has been inserted.
• removed - The retract bin has been removed.

709

15.4.6 Printer.DefinitionLoadedEvent
This event is used to indicate when a form or media definition has successfully been loaded via the
Printer.LoadDefinition command.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "name": "form name", string 🗸🗸
 "type": "media" string 🗸🗸
}

Properties

name
Specifies the name of the form or media just loaded.

type
Specifies the type of definition loaded. This field can be one of the following values:

• form - The form identified by name has been loaded.
• media - The media identified by name has been loaded.

710

15.4.7 Printer.MediaAutoRetractedEvent
This event indicates when media has been automatically retracted by the device. Support for this event is indicated
when autoRetractPeriod is non-zero. The event can be generated as the result of any command that presents media
to the customer.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "result": "unit1" string 🗸🗸
}

Properties

result
Specifies where the media has actually been deposited, as one of the following:

• transport - Media was retracted to the transport.
• jammed - The media is jammed.
• unit<retract bin number> - Media was retracted to the retract bin specified.

Property value constraints:
pattern: ^transport$|^jammed$|^unit[0-9]+$

711

15.4.8 Printer.RetractBinThresholdEvent
This event specifies that the status of the retract bin holding the retracted media has changed.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "binNumber": 2, integer 🗸🗸
 "state": "ok" string 🗸🗸
}

Properties

binNumber
Number of the retract bin for which the status has changed.
Property value constraints:
minimum: 1

state
Specifies the current state of the retract bin as one of the following:

• ok - The retract bin of the printer is in a good state.
• full - The retract bin of the printer is full.
• high - The retract bin of the printer is high.

712

15.4.9 Printer.PaperThresholdEvent
This event is used to specify that the state of the paper reached a threshold. There is no threshold defined for the
parking station as this can contain only one paper item.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "paperSource": "lower", string 🗸🗸
 "threshold": "out" string 🗸🗸
}

Properties

paperSource
Specifies the paper source as one of the following:

• upper - The only paper source or the upper paper source, if there is more than one paper supply.
• lower - The lower paper source.
• external - The external paper.
• aux - The auxiliary paper source.
• aux2 - The second auxiliary paper source.
• <paper source identifier> - The vendor specific paper source.

Property value constraints:
pattern: ^upper$|^lower$|^external$|^aux$|^aux2$|^[a-zA-Z]([a-zA-Z0-9]*)$

threshold
Specifies the current state of the paper source as one of the following:

• full - The paper in the paper source is in a good state.
• low - The paper in the paper source is low.
• out - The paper in the paper source is out.

713

15.4.10 Printer.TonerThresholdEvent
This event is used to specify that the state of the toner (or ink) reached a threshold.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "state": "full" string 🗸🗸
}

Properties

state
Specifies the current state of the toner (or ink) as one of the following:

• full - The toner (or ink) in the printer is in a good state.
• low - The toner (or ink) in the printer is low.
• out - The toner (or ink) in the printer is out.

714

15.4.11 Printer.LampThresholdEvent
This event is used to specify that the state of the imaging lamp reached a threshold.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "state": "ok" string 🗸🗸
}

Properties

state
Specifies the current state of the imaging lamp as one of the following values:

• ok - The imaging lamp is in a good state.
• fading - The imaging lamp is fading and should be changed.
• inop - The imaging lamp is inoperative.

715

15.4.12 Printer.InkThresholdEvent
This event is used to specify that the state of the stamping ink reached a threshold.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "state": "full" string 🗸🗸
}

Properties

state
Specifies the current state of the stamping ink as one of the following:

• full - The stamping ink in the printer is in a good state.
• low - The stamping ink in the printer is low.
• out - The stamping ink in the printer is out.

716

16. Text Terminal Interface
This chapter defines the Text Terminal interface functionality and messages.

This section describes the functions provided by a generic Text Terminal Unit interface. A Text Terminal Unit is a
text i/o device, which applies both to ATM operator panels and to displays incorporated in devices such as pads and
printers. This service allows for the following categories of functions:

• Forms oriented input and output
• Direct display output
• Keyboard input

If the device has no shift key, the TextTerminal.ReadForm and TextTerminal.Read commands will return only
upper case letters. If the device has a shift key, these commands return upper and lower case letters as governed by
the user's use of the shift key.

16.1 General Information

16.1.1 References

ID Description

textterminal-1 ISO/IEC 646 (ASCII)

16.1.2 Form and Field Definitions
This section outlines the format of the definitions of forms, the fields within them, and the media on which they are
printed.

Definition Syntax
The syntactic rules for form, field and media definitions are as follows:

• White space
 Space, tab

• Line continuation
 Backslash (\)

• Line termination
 CR, LF, CR/LF; line termination ends a "keyword section" (a keyword and its value[s]).

• Keywords
 Must be all upper case

• Names
 Field, media and font names are case sensitive.

• Strings
 All strings must be enclosed in double quote characters ("). Standard C escape sequences are allowed.

• Comments
 Start with two forward slashes (//); end at line termination.

Other notes:

• If a keyword is present, all its values must be specified; default values are used only if the keyword is
absent.

• Values that are character strings are marked with * in the definitions and must be quoted as specified
above.

• Fields are processed in the sequence they are defined in the form.
• The order of attributes within a form is not mandatory; the attributes may be defined in any order.
• All definitions must be encoded in UTF-8. Keywords are restricted to an internal representation of ISO

646 [Ref. textterminal-1]] (ANSI) characters.

717

XFS form/media definition in multi-vendor environments
In a multi-vendor environment, the capabilities of the service and hardware may be different, therefore the
following should be considered.

• Physical display area dimensions may vary from one text terminal to another.
• Some form/media definition keywords may not be supported due to limitations of the hardware or

software.

Form Definition

Keyword Nested Keyword Required Names Notes

FORM 🗸🗸 formname*

BEGIN 🗸🗸

 SIZE 🗸🗸 width
height

Width of form
Height of form

 VERSION major,
minor,
date,
author

Major version number (default 0)
Minor version number (default 0)
Creation/modification date
Author of form

 COPYRIGHT copyright* Copyright entry

 TITLE title* Title of form

 COMMENT comment* Comment section

 [XFSFIELD
BEGIN
...
END]

 fieldname* One field definition for each field in the form

END 🗸🗸

Field Definition

Keyword Nested Keyword Required Names Notes

FIELD 🗸🗸 fieldname*

BEGIN 🗸🗸

 POSITION 🗸🗸 x,
y

Horizontal position (relative to left side of form)
Vertical position (relative to top of form) The
initial left upper position is referenced as (0,0)

 SIZE 🗸🗸 width,
height

Field width
Field height

 TYPE fieldtype Type of field:
- TEXT (default)
- INVISIBLE
- PASSWORD (contents is echoed with '*')
- GRAPHIC (ignored for
TextTerminal.ReadForm commands)

718

Keyword Nested Keyword Required Names Notes

 SCALING scalingtype Information on how to size the Graphic within the
field:
- BESTFIT (default) scale to size indicated
- ASIS render at native size
- MAINTAINASPECT scale as close as possible
to size indicated while maintaining the aspect
ratio and not losing Graphic information.

SCALING is only relevant for Graphics field
types

 CLASS class Field class:
- OPTIONAL (default)
- STATIC
- REQUIRED

 KEYS keys Accepted input key types:
- NUMERIC
- HEXADECIMAL
- ALPHANUMERIC
This is an optional field where the default value is
vendor dependent.

 ACCESS access Access rights of field:
- WRITE (default)
- READ
- READWRITE

 OVERFLOW overflow Action on field overflow:
- TERMINATE (default)
- TRUNCATE
- OVERWRITE

 STYLE style Display attributes as a combination of the
following, ORed together using the '|' operator:
- NORMAL (default)
- UNDER (single underline)
- INVERTED
- FLASHING

 HORIZONTAL justify Horizontal alignment of field contents:
- LEFT (default)
- RIGHT
- CENTER

 FORMAT formatstring* This is an application defined input field
describing how the application should format the
data.
This may be interpreted by the Service. For
GRAPHIC fields, this defines the type of the
graphic, for example, "BMP", "PNG" etc.

 INITIALVALUE value* Initial value. For GRAPHIC fields, this value may
contain Base64 encoded image data
The type of this graphic will be determined by the
FORMAT field.

END 🗸🗸

719

16.2 Command Messages

16.2.1 TextTerminal.GetFormList
This command is used to retrieve the list of forms available on the device.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "formList": ["Example form1", "Example form2"] array (string), null
}

Properties

formList
Array of the form names. This property is null if no forms were loaded.
default: null

Event Messages
None

720

16.2.2 TextTerminal.GetQueryForm
This command is used to retrieve details of the definition of a specified form.

Command Message

Payload (version 2.0) Type Required
{
 "formName": "Example form" string 🗸🗸
}

Properties

formName
Contains the form name on which to retrieve details.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formNotFound", string, null
 "formName": "Example form", string, null
 "width": 0, integer, null
 "height": 0, integer, null
 "versionMajor": 0, integer, null
 "versionMinor": 0, integer, null
 "fields": ["Field1", "Field2"] array (string), null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formNotFound - The specified form cannot be found.
• formInvalid - The specified form is invalid.

default: null

formName
Specifies the name of the form. This property is null if the form is not loaded.
default: null

width
Specifies the width of the form in columns.
Property value constraints:
minimum: 0
default: null

height
Specifies the height of the form in rows.
Property value constraints:
minimum: 0
default: null

721

Properties

versionMajor
Specifies the major version.
Property value constraints:
minimum: 0
default: null

versionMinor
Specifies the minor version.
Property value constraints:
minimum: 0
default: null

fields
A list of the field names. This property is null if the specified form is not loaded or no fields were defined.
default: null

Event Messages
None

722

16.2.3 TextTerminal.GetQueryField
This command is used to retrieve details of the definition of a single or all fields on a specified form.

Command Message

Payload (version 2.0) Type Required
{
 "formName": "My form name", string 🗸🗸
 "fieldName": "My form field" string, null
}

Properties

formName
Specifies the form name.

fieldName
Specifies the name of the field about which to retrieve details. If this property is null, then retrieve details for all
fields on the form.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formNotFound", string, null
 "fields": { object, null
 "Field 1": { object, null
 "type": "text", string
 "class": "optional", string
 "access": { object, null
 "read": false, boolean
 "write": true boolean
 },
 "overflow": "terminate", string
 "format": "Format 1" string, null
 },
 "Field 2": See fields/Field 1 properties object, null
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formNotFound - The specified form cannot be found.
• formInvalid - The specified form is invalid.
• fieldNotFound - The specified field cannot be found.
• fieldInvalid - The specified field is invalid.

default: null

723

Properties

fields
Details of the field(s) requested. The key is the field name and the value contains the details of the fields. This
property is null if the specified form is not loaded.
default: null

fields/Field 1 (example name)
The details of the field definition.
default: null

fields/Field 1/type
Specifies the type of field and can be one of the following:

• text - A text field.
• invisible - An invisible text field.
• password - A password field, input is echoed as '*'.

default: "text"

fields/Field 1/class
Specifies the class of the field and can be one of the following:

• static - The field data cannot be set by the application.
• optional - The field data can be set by the application.
• required - The field data must be set by the application.

default: "optional"

fields/Field 1/access
Specifies whether the field is to be used for input, output or both.
default: null

fields/Field 1/access/read
The field is used for input from the physical device.
default: false

fields/Field 1/access/write
The field is used for output to the physical device.
default: true

fields/Field 1/overflow
Specifies how an overflow of field data should be handled and can be one of the following:

• terminate - Return an error and terminate display of the form.
• truncate - Truncate the field data to fit in the field.
• overwrite - Print the field data beyond the extents of the field boundary.

default: "terminate"

fields/Field 1/format
Format string as defined in the form for this field. This value will be null if the parameter is not specified in the
field definition.
default: null

Event Messages
None

724

16.2.4 TextTerminal.GetKeyDetail
This command returns information about the keys (buttons) supported by the device. This command should be
issued to determine which keys are available.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "keys": ["one", "nine"], array (string), null
 "commandKeys": { object, null
 "enter": { object
 "terminate": false boolean
 },
 "oem1": See commandKeys/enter properties object
 }
}

Properties

keys
String array which contains the printable characters numeric and alphanumeric keys on the Text Terminal Unit,
e.g. ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "A", "B", "C", "a", "b", "c"] if
those text terminal input keys are present. This property will be null if no keys supported.
The following prefixed key names are defined:

• zero - Numeric digit 0
• one - Numeric digit 1
• two - Numeric digit 2
• three - Numeric digit 3
• four - Numeric digit 4
• five - Numeric digit 5
• six - Numeric digit 6
• seven - Numeric digit 7
• eight - Numeric digit 8
• nine - Numeric digit 9
• \D - Any character other than a decimal digit

Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|\D)$
minItems: 1
uniqueItems: true
default: null

commandKeys
Supporting command keys on the Text Terminal Unit. This property can be null if no command keys supported.
Property value constraints:
minProperties: 1
default: null

725

Properties

commandKeys/enter (example name)
The following standard names are defined:

• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• doubleZero - 00
• tripleZero - 000
• arrowUp - up arrow
• arrowDown - down arrow
• arrowLeft - left arrow
• arrowRight - right arrow
• fdk[01-32] - 32 FDK keys

Additional non-standard key names are also allowed.
• oem[A-Za-z0-9]* - A non-standard key name

Property name constraints:
pattern:
^(enter|cancel|clear|backspace|help|doubleZero|tripleZero|arrowUp|arrowDown|arrowLe
ft|arrowRight|fdk(0[1-9]|[12][0-9]|3[0-2])|oem[A-Za-z0-9]*)$

commandKeys/enter/terminate
The key is a terminate key.
default: false

Event Messages
None

726

16.2.5 TextTerminal.Beep
This command is used to beep at the text terminal unit.

Command Message

Payload (version 2.0) Type Required
{
 "beep": { object 🗸🗸
 "continuous": false, boolean
 "beepType": "keyPress" string
 }
}

Properties

beep
Specifies whether the beeper should be turned on or off.

beep/continuous
Specifies whether the beep is continuous.
default: false

beep/beepType
Specifies the type of beep as one of the following:

• keyPress - The beeper sounds a key click signal.
• exclamation - The beeper sounds an exclamation signal.
• warning - The beeper sounds a warning signal.
• error - The beeper sounds an error signal.
• critical - The beeper sounds a critical signal.

default: "keyPress"

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

727

16.2.6 TextTerminal.ClearScreen
This command clears the specified area of the text terminal unit screen. The cursor is positioned to the upper left
corner of the cleared area.

Command Message

Payload (version 2.0) Type Required
{
 "screen": { object, null
 "positionX": 0, integer 🗸🗸
 "positionY": 0, integer 🗸🗸
 "width": 1, integer 🗸🗸
 "height": 1 integer 🗸🗸
 }
}

Properties

screen
Specify the area of the text terminal unit screen to clear. If this property is null, the whole screen will be cleared.
default: null

screen/positionX
Specifies the horizontal position of the area to be cleared.
Property value constraints:
minimum: 0

screen/positionY
Specifies the vertical position of the area to be cleared.
Property value constraints:
minimum: 0

screen/width
Specifies the width position of the area to be cleared.
Property value constraints:
minimum: 1

screen/height
Specifies the height position of the area to be cleared.
Property value constraints:
minimum: 1

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

728

16.2.7 TextTerminal.SetResolution
This command is used to set the resolution of the display. The screen is cleared and the cursor is positioned at the
upper left position.

Command Message

Payload (version 2.0) Type Required
{
 "resolution": { object 🗸🗸
 "sizeX": 0, integer 🗸🗸
 "sizeY": 0 integer 🗸🗸
 }
}

Properties

resolution
This must be one of the supported resolutions.

resolution/sizeX
Specifies the horizontal size of the display of the text terminal unit (the number of columns that can be
displayed).
Property value constraints:
minimum: 0

resolution/sizeY
Specifies the vertical size of the display of the text terminal unit (the number of rows that can be displayed).
Property value constraints:
minimum: 0

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "resolutionNotSupported" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• resolutionNotSupported - The specified resolution is not supported by the display.
default: null

Event Messages
None

729

16.2.8 TextTerminal.WriteForm
This command is used to display a form by merging the supplied variable field data with the defined form and field
data specified in the form.

Command Message

Payload (version 2.0) Type Required
{
 "formName": "My form", string 🗸🗸
 "clearScreen": true, boolean
 "fields": { object 🗸🗸
 "Field1": "field", string
 "Field2": See fields/Field1 string
 }
}

Properties

formName
Specifies the name of the form.

clearScreen
Specifies whether the screen is cleared before displaying the form.
default: true

fields
Details of the field(s) to write. The property is the field name and value is field value containing all the printable
characters (numeric and alphanumeric) to display on the text terminal unit key pad for this field. An example
shows two fields to be written.

fields/Field1 (example name)
Field data.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formNotFound" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formNotFound - The specified form definition cannot be found.
• formInvalid - The specified form definition is invalid.
• mediaOverflow - The form overflowed the media.
• fieldSpecFailure - The syntax of fields is invalid.
• characterSetsData - The character set(s) supported by the Service is inconsistent with fields.
• fieldError - An error occurred while processing a field.

default: null

Event Messages

• TextTerminal.FieldErrorEvent

730

• TextTerminal.FieldWarningEvent

731

16.2.9 TextTerminal.ReadForm
This command is used to read data from input fields on the specified form.

The 'enter' key only acts as terminate key when it is pressed in the last read field. When the 'enter' key is pressed in
an intermediate field, the cursor moves to the next field and the data entry finishes for the current field. Any other
key that terminates input (except cancel), will cause all the fields to be returned in their present state. If cancel
terminates input then the command will return the keyCanceled error.

The following keys will not be returned in the output property fields, but they may affect the field content (note in
the following the term field content is used to refer to the data buffer and the display field):

Command
key

Meaning

clear Will clear the field content.

backspace Will cause the character before the Current Edit Position to be removed from the field content.
If 'backspace' is the first key pressed after a field is activated (for any reason other than when the
'backspace' key causes the field to be activated), then the last character in the field content is
deleted.
If 'backspace' is pressed when the Current Edit Position is at the start of a field, then the previous
field is activated.
If 'backspace' is the first key pressed after the field is activated as a result of an earlier 'backspace'
then no characters are deleted from the field content and the previous field will be activated. It is
not possible to navigate backwards past the first field; in this case 'backspace' will have no effect.

doubleZero Will add a double zero '00' string to the field content.
If there is not enough space for all the digits to be added to the field content when the fields's
OVERFLOW definition is TERMINATE or TRUNCATE then the excess '0's will be ignored.
If the field's OVERFLOW definition is OVERWRITE then all the '0's are added to the field
content.

tripleZero Will add a triple zero '000' string to the field content.
If there is not enough space for all the digits to be added to the field content when the field's
OVERFLOW definition is TERMINATE or TRUNCATE then the excess '0's will be ignored.
If the field's OVERFLOW definition is OVERWRITE then all the '0's are added to the field
content.

Command Message

Payload (version 2.0) Type Required
{
 "formName": "My form", string 🗸🗸
 "fields": ["Field1", "Field2"] array (string), null
}

Properties

formName
Specifies the name of the form.

fields
Specifies the field names from which to read input data. The fields are edited by the user in the order that the
fields are specified within this parameter. If this property is null, data is read from all input fields on the form in
the order they appear in the form (independent of the field screen position).
default: null

Completion Message

Payload (version 2.0) Type Required
{

732

Payload (version 2.0) Type Required
 "errorCode": "formNotFound", string, null
 "fields": { object, null
 "Field1": "123", string
 "Field2": See fields/Field1 string
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formNotFound - The specified form definition cannot be found.
• formInvalid - The specified form definition is invalid.
• fieldSpecFailure - The syntax of fields is invalid.
• keyCanceled - The read operation was terminated by pressing the cancel key.
• fieldError - An error occurred while processing a field.

default: null

fields
Details of the field(s) requested. Each property's name is the field name and value is field value containing all the
printable characters (numeric and alphanumeric) read from the text terminal unit key pad for this field. An
example shows two fields read. This property is null if no fields were read.
default: null

fields/Field1 (example name)
Field data.

Event Messages

• TextTerminal.FieldErrorEvent
• TextTerminal.FieldWarningEvent

733

16.2.10 TextTerminal.Write
This command displays the specified text on the display of the text terminal unit. The specified text may include the
control characters CR (Carriage Return) and LF (Line Feed). The control characters can be included in the text as
CR, or LF, or CR LF, or LF CR and all combinations will perform the function of relocating the cursor position to
the left hand side of the display on the next line down. If the text will overwrite the display area then the display
will scroll.

Command Message

Payload (version 2.0) Type Required
{
 "mode": "absolute", string
 "posX": 0, integer
 "posY": 0, integer
 "textAttr": { object, null
 "underline": false, boolean
 "inverted": false, boolean
 "flash": false boolean
 },
 "text": "Text to display" string
}

Properties

mode
Specifies whether the position of the output is absolute or relative to the current cursor position. Possible values
are:

• relative - The cursor is positioned relative to the current cursor position.
• absolute - The cursor is positioned absolute at the position specified in posX and posY.

default: "absolute"

posX
If mode is set to absolute, this specifies the absolute horizontal position. If mode is relative, this specifies a
horizontal offset relative to the current cursor position as a 0 based value.
Property value constraints:
minimum: 0
default: 0

posY
If mode is set to absolute, this specifies the absolute vertical position. If mode is relative, this specifies a vertical
offset relative to the current cursor position as a 0 based value.
Property value constraints:
minimum: 0
default: 0

textAttr
Specifies the text attributes used for displaying the text. This property is null if not applicable.
default: null

textAttr/underline
The displayed text will be underlined.
default: false

734

Properties

textAttr/inverted
The displayed text will be inverted.
default: false

textAttr/flash
The displayed text will be flashing.
default: false

text
Specifies the text that will be displayed.
default: ""

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "characterSetsData" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• characterSetsData - The character set(s) supported by the Service is inconsistent with text.
default: null

Event Messages
None

735

16.2.11 TextTerminal.Read
This command activates the keyboard of the text terminal unit for input of the specified number of characters.
Depending on the specified flush mode the input buffer is cleared. During this command, pressing an active key
results in a TextTerminal.KeyEvent event containing the key details. On completion of the command (when the
maximum number of keys have been pressed or a terminator key is pressed), the entered string, as interpreted by
the Service, is returned. The Service takes command keys into account when interpreting the data.

Command Message

Payload (version 2.0) Type Required
{
 "numOfChars": 0, integer
 "mode": "absolute", string
 "posX": 0, integer
 "posY": 0, integer
 "echoMode": "text", string
 "echoAttr": { object, null
 "underline": false, boolean
 "inverted": false, boolean
 "flash": false boolean
 },
 "visible": true, boolean
 "flush": false, boolean
 "autoEnd": true, boolean
 "activeKeys": ["one", "nine"], array (string), null
 "activeCommandKeys": { object, null
 "enter": { object
 "terminate": false boolean
 },
 "oem1": See activeCommandKeys/enter properties object
 }
}

Properties

numOfChars
Specifies the number of printable characters (numeric and alphanumeric keys) that will be read from the text
terminal unit key pad. All command keys like 'enter', 'fdk01' will not be counted.
Property value constraints:
minimum: 0
default: 0

mode
Specifies whether the position of the output is absolute or relative to the current cursor position. Possible values
are:

• relative - The cursor is positioned relative to the current cursor position.
• absolute - The cursor is positioned absolute at the position specified in posX and posY.

default: "absolute"

736

Properties

posX
If mode is absolute, this specifies the absolute horizontal position. If mode is relative, this specifies a horizontal
offset relative to the current cursor position as a 0 based value.
Property value constraints:
minimum: 0
default: 0

posY
If mode is absolute, this specifies the absolute vertical position. If mode is relative this specifies a vertical offset
relative to the current cursor position as a 0 based value.
Property value constraints:
minimum: 0
default: 0

echoMode
Specifies how the user input is echoed to the screen as one of the following:

• text - The user input is echoed to the screen.
• invisible - The user input is not echoed to the screen.
• password - The keys entered by the user are echoed as the replace character on the screen.

default: "text"

echoAttr
Specifies the text attributes with which the user input is echoed to the screen. If this property is null then the text
will be displayed as normal text.
Property value constraints:
minProperties: 1
default: null

echoAttr/underline
The displayed text will be underlined.
default: false

echoAttr/inverted
The displayed text will be inverted.
default: false

echoAttr/flash
The displayed text will be flashing.
default: false

visible
Specifies whether the cursor is visible.
default: true

flush
Specifies whether the keyboard input buffer is cleared before allowing for user input(true) or not (false).
default: false

autoEnd
Specifies whether the command input is automatically ended by the Service if the maximum number of printable
characters as specified with numOfChars is entered.
default: true

737

Properties

activeKeys
Specifying the numeric and alphanumeric keys on the Text Terminal Unit, e.g. ["one", "two", "A", "B", "a", "b"]
to be active during the execution of the command. Devices having a shift key interpret this parameter differently
from those that do not have a shift key.
For devices having a shift key, specifying only the upper case of a particular letter enables both upper and lower
case of that key, but the device converts lower case letters to upper case in the output parameter. To enable both
upper and lower case keys, and have both upper and lower case letters returned, specify both the upper and lower
case of the letter (e.g. ["one", "two", "A", "a", "B", "b"]).
For devices not having a shift key, specifying either the upper case only (e.g. ["one", "two", "A", "B"]), or
specifying both the upper and lower case of a particular letter (e.g. ["one", "two", "A", "a", "B", "b"]), enables
that key and causes the device to return the upper case of the letter in the output parameter.
For both types of device, specifying only lower case letters (e.g. ["one", "two", "a", "b"]) produces a key invalid
error. This property is null if no keys of this type are active keys.
See predefined keys.
Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|\D)$
minItems: 1
uniqueItems: true
default: null

activeCommandKeys
Specifying the command keys which are active during the execution of the command. This property is null if no
keys of this type are active keys.
Property value constraints:
minProperties: 1
default: null

activeCommandKeys/enter (example name)
The following standard names are defined:

• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• doubleZero - 00
• tripleZero - 000
• arrowUp - up arrow
• arrowDown - down arrow
• arrowLeft - left arrow
• arrowRight - right arrow
• fdk[01-32] - 32 FDK keys

Additional non-standard key names are also allowed.
• oem[A-Za-z0-9]* - A non-standard key name

Property name constraints:
pattern:
^(enter|cancel|clear|backspace|help|doubleZero|tripleZero|arrowUp|arrowDown|arrowLe
ft|arrowRight|fdk(0[1-9]|[12][0-9]|3[0-2])|oem[A-Za-z0-9]*)$

activeCommandKeys/enter/terminate
The key is a terminate key.
default: false

738

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyInvalid", string, null
 "input": "12345" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyInvalid - At least one of the specified keys is invalid.
• keyNotSupported - At least one of the specified keys is not supported by the Service.
• noActiveKeys - There are no active keys specified.

default: null

input
Specifies a string containing all the printable characters (numeric and alphanumeric) read from the text terminal
unit key pad. This property is null if no characters are read.
default: null

Event Messages

• TextTerminal.KeyEvent

739

16.2.12 TextTerminal.Reset
Sends a service reset to the Service. This command clears the screen, clears the keyboard buffer, sets the default
resolution and sets the cursor position to the upper left.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

740

16.2.13 TextTerminal.DefineKeys
This command defines the keys that will be active during the next TextTerminal.ReadForm command. The
configured set will be active until the next TextTerminal.ReadForm command ends, at which point the default
values are restored.

Command Message

Payload (version 2.0) Type Required
{
 "activeKeys": ["one", "nine"], array (string), null
 "activeCommandKeys": { object, null
 "enter": { object
 "terminate": false boolean
 },
 "oem1": See activeCommandKeys/enter properties object
 }
}

Properties

activeKeys
String array which specifies the alphanumeric keys on the Text Terminal Unit, e.g. ["one", "two", "B", "a", "b"],
to be active during the execution of the next TextTerminal.ReadForm command.
Devices having a shift key interpret this parameter differently from those that do not have a shift key. For
devices having a shift key, specifying only the upper case of a particular letter enables both upper and lower case
of that key, but the device converts lower case letters to upper case in the output parameter. To enable both upper
and lower case keys, and have both upper and lower case letters returned, specify both the upper and lower case
of the letter (e.g. ["one", "two", "A", "a", "B", "b"]).
For devices not having a shift key, specifying either the upper case only (e.g. ["one", "two", "A", "B"]), or
specifying both the upper and lower case of a particular letter (e.g. ["one", "two", "A", "a", "B", "b"]), enables
that key and causes the device to return the upper case of the letter in the output parameter.
For both types of device, specifying only lower case letters (e.g. "12ab"["one", "two", "a", "b"]) produces a key
invalid error.
See predefined keys.
Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|\D)$
minItems: 1
uniqueItems: true
default: null

activeCommandKeys
Array specifying the command keys which are active during the execution of the next TextTerminal.ReadForm
command. This property is null if no active command keys are required.
Property value constraints:
minProperties: 1
default: null

741

Properties

activeCommandKeys/enter (example name)
The following standard names are defined:

• enter - Enter
• cancel - Cancel
• clear - Clear
• backspace - Backspace
• help - Help
• doubleZero - 00
• tripleZero - 000
• arrowUp - up arrow
• arrowDown - down arrow
• arrowLeft - left arrow
• arrowRight - right arrow
• fdk[01-32] - 32 FDK keys

Additional non-standard key names are also allowed.
• oem[A-Za-z0-9]* - A non-standard key name

Property name constraints:
pattern:
^(enter|cancel|clear|backspace|help|doubleZero|tripleZero|arrowUp|arrowDown|arrowLe
ft|arrowRight|fdk(0[1-9]|[12][0-9]|3[0-2])|oem[A-Za-z0-9]*)$

activeCommandKeys/enter/terminate
The key is a terminate key.
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "keyInvalid" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• keyInvalid - At least one of the specified keys is invalid.
• keyNotSupported - At least one of the specified keys is not supported by the Service.
• noActiveKeys - There are no active keys specified.

default: null

Event Messages
None

742

16.2.14 TextTerminal.LoadForm
This command is used to load a form definition into the list of available forms. Once a form definition has been
loaded through this command it can be used by any of the other form definition processing commands. Form
definitions loaded through this command are persistent. When a form definition is loaded a
TextTerminal.FormLoadedEvent event is generated to inform applications that a form definition has been added or
replaced.

Command Message

Payload (version 2.0) Type Required
{
 "definition": "See form description", string 🗸🗸
 "overwrite": false boolean
}

Properties

definition
This contains the form definition in text format as described in Form and Field Definitions. Only one form
definition can be included in this property.

overwrite
Specifies if an existing form definition with the same name is to be replaced. If this is true then an existing form
definition with the same name will be replaced, unless the command fails with an error, where the definition will
remain unchanged. If this is false this command will fail with an error if the form definition already exists.
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "formInvalid" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• formInvalid - The form is invalid.
• definitionExists - The specified form definition already exists and overwrite was false.

default: null

Event Messages

• TextTerminal.FormLoadedEvent

743

16.3 Event Messages

16.3.1 TextTerminal.FieldErrorEvent
This event specifies that a fatal error has occurred while processing a field.

Event Message

Payload (version 2.0) Type Required
{
 "formName": "Example form", string 🗸🗸
 "fieldName": "Field1", string 🗸🗸
 "failure": "required" string 🗸🗸
}

Properties

formName
Specifies the form name.

fieldName
Specifies the field name.

failure
Specifies the type of failure and can be one of the following:

• required - The specified field must be supplied by the application.
• staticOverwrite - The specified field is static and thus cannot be overwritten by the application.
• overflow - The value supplied for the specified fields is too long.
• notFound - The specified field does not exist.
• notRead - The specified field is not an input field.
• notWrite - An attempt was made to write to an input field.
• typeNotSupported - The form field type is not supported with device.
• charSetForm - Service does not support character set specified in form.

744

16.3.2 TextTerminal.FieldWarningEvent
This event is used to specify that a non-fatal error has occurred while processing a field.

Event Message

Payload (version 2.0) Type Required
{
 "formName": "Example form", string 🗸🗸
 "fieldName": "Field1", string 🗸🗸
 "failure": "required" string 🗸🗸
}

Properties

formName
Specifies the form name.

fieldName
Specifies the field name.

failure
Specifies the type of failure and can be one of the following:

• required - The specified field must be supplied by the application.
• staticOverwrite - The specified field is static and thus cannot be overwritten by the application.
• overflow - The value supplied for the specified fields is too long.
• notFound - The specified field does not exist.
• notRead - The specified field is not an input field.
• notWrite - An attempt was made to write to an input field.
• typeNotSupported - The form field type is not supported with device.
• charSetForm - Service does not support character set specified in form.

745

16.3.3 TextTerminal.KeyEvent
This event specifies that any active key has been pressed at the Text Terminal device during TextTerminal.Read. In
addition to giving the application more details about individual key presses this information may also be used if the
device has no internal display unit and the application has to manage the display of the entered digits.

Event Message

Payload (version 2.0) Type Required
{
 "key": "string", string, null
 "commandKey": "string" string, null
}

Properties

key
Specifies the command key supported.
See predefined keys.
Property value constraints:
pattern: ^(zero|one|two|three|four|five|six|seven|eight|nine|\D)$
default: null

commandKey
Specifies the command key supported.
See predefined keys.
Property value constraints:
pattern:
^(enter|cancel|clear|backspace|help|doubleZero|tripleZero|arrowUp|arrowDown|arrowLe
ft|arrowRight|fdk(0[1-9]|[12][0-9]|3[0-2])|oem[A-Za-z0-9]*)$
default: null

746

16.3.4 TextTerminal.FormLoadedEvent
This event is used to indicate when a form definition has successfully been loaded via the TextTerminal.LoadForm
command.

Event Message

Payload (version 2.0) Type Required
{
 "name": "Form 1" string 🗸🗸
}

Properties

name
Specifies the name of the form just loaded.

747

17. Barcode Reader Interface
This chapter defines the Barcode Reader interface functionality and messages.

A Barcode Reader scans barcodes using any scanning technology. The device logic converts light signals or image
recognition into application data and transmits it to the host system.

748

17.1 Command Messages

17.1.1 BarcodeReader.Read
This command enables the barcode reader. The barcode reader will scan for barcodes and when it successfully
manages to read one or more barcodes the command will complete. The completion event for this command
contains the scanned barcode data.

The device waits for the period of time specified by timeout for one of the enabled symbologies to be presented,
unless the hardware has a fixed timeout period that is less than the value passed in the command.

Command Message

Payload (version 2.0) Type Required
{
 "symbologies": { object, null
 "ean128": false, boolean
 "ean8": false, boolean
 "ean8_2": false, boolean
 "ean8_5": false, boolean
 "ean13": false, boolean
 "ean13_2": false, boolean
 "ean13_5": false, boolean
 "jan13": false, boolean
 "upcA": false, boolean
 "upcE0": false, boolean
 "upcE0_2": false, boolean
 "upcE0_5": false, boolean
 "upcE1": false, boolean
 "upcE1_2": false, boolean
 "upcE1_5": false, boolean
 "upcA_2": false, boolean
 "upcA_5": false, boolean
 "codabar": false, boolean
 "itf": false, boolean
 "code11": false, boolean
 "code39": false, boolean
 "code49": false, boolean
 "code93": false, boolean
 "code128": false, boolean
 "msi": false, boolean
 "plessey": false, boolean
 "std2Of5": false, boolean
 "std2Of5Iata": false, boolean
 "pdf417": false, boolean
 "microPdf417": false, boolean

749

Payload (version 2.0) Type Required
 "dataMatrix": false, boolean
 "maxiCode": false, boolean
 "codeOne": false, boolean
 "channelCode": false, boolean
 "telepenOriginal": false, boolean
 "telepenAim": false, boolean
 "rss": false, boolean
 "rssExpanded": false, boolean
 "rssRestricted": false, boolean
 "compositeCodeA": false, boolean
 "compositeCodeB": false, boolean
 "compositeCodeC": false, boolean
 "posiCodeA": false, boolean
 "posiCodeB": false, boolean
 "triopticCode39": false, boolean
 "codablockF": false, boolean
 "code16K": false, boolean
 "qrCode": false, boolean
 "aztec": false, boolean
 "ukPost": false, boolean
 "planet": false, boolean
 "postnet": false, boolean
 "canadianPost": false, boolean
 "netherlandsPost": false, boolean
 "australianPost": false, boolean
 "japanesePost": false, boolean
 "chinesePost": false, boolean
 "koreanPost": false boolean
 }
}

Properties

symbologies
Specifies the sub-set of barcode symbologies that the application wants to be accepted for this command. In
some cases the Service can discriminate between barcode symbologies and return the data only if the presented
symbology matches with one of the desired symbologies. See the canFilterSymbologies capability to determine
if the Service supports this feature. If the Service does not support this feature then this property is ignored and
can be null. If all symbologies should be accepted then this property should be null.
default: null

symbologies/ean128
GS1-128
default: false

750

Properties

symbologies/ean8
EAN-8
default: false

symbologies/ean8_2
EAN-8 with 2 digit add-on
default: false

symbologies/ean8_5
EAN-8 with 5 digit add-on
default: false

symbologies/ean13
EAN-13
default: false

symbologies/ean13_2
EAN-13 with 2 digit add-on
default: false

symbologies/ean13_5
EAN-13 with 5 digit add-on
default: false

symbologies/jan13
JAN-13
default: false

symbologies/upcA
UPC-A
default: false

symbologies/upcE0
UPC-E
default: false

symbologies/upcE0_2
UPC-E with 2 digit add-on
default: false

symbologies/upcE0_5
UPC-E with 5 digit add-on
default: false

symbologies/upcE1
UPC-E with leading 1
default: false

symbologies/upcE1_2
UPC-E with leading 1and 2 digit add-on
default: false

symbologies/upcE1_5
UPC-E with leading 1and 5 digit add-on
default: false

symbologies/upcA_2
UPC-A with2 digit add-on
default: false

751

Properties

symbologies/upcA_5
UPC-A with 5 digit add-on
default: false

symbologies/codabar
CODABAR (NW-7)
default: false

symbologies/itf
Interleaved 2 of 5 (ITF)
default: false

symbologies/code11
CODE 11 (USD-8)
default: false

symbologies/code39
CODE 39
default: false

symbologies/code49
CODE 49
default: false

symbologies/code93
CODE 93
default: false

symbologies/code128
CODE 128
default: false

symbologies/msi
MSI
default: false

symbologies/plessey
PLESSEY
default: false

symbologies/std2Of5
STANDARD 2 of 5 (INDUSTRIAL 2 of 5 also)
default: false

symbologies/std2Of5Iata
STANDARD 2 of 5 (IATA Version)
default: false

symbologies/pdf417
PDF-417
default: false

symbologies/microPdf417
MICROPDF-417
default: false

symbologies/dataMatrix
GS1 DataMatrix
default: false

752

Properties

symbologies/maxiCode
MAXICODE
default: false

symbologies/codeOne
CODE ONE
default: false

symbologies/channelCode
CHANNEL CODE
default: false

symbologies/telepenOriginal
Original TELEPEN
default: false

symbologies/telepenAim
AIM version of TELEPEN
default: false

symbologies/rss
GS1 DataBar™
default: false

symbologies/rssExpanded
Expanded GS1 DataBar™
default: false

symbologies/rssRestricted
Restricted GS1 DataBar™
default: false

symbologies/compositeCodeA
Composite Code A Component
default: false

symbologies/compositeCodeB
Composite Code B Component
default: false

symbologies/compositeCodeC
Composite Code C Component
default: false

symbologies/posiCodeA
Posicode Variation A
default: false

symbologies/posiCodeB
Posicode Variation B
default: false

symbologies/triopticCode39
Trioptic Code 39
default: false

symbologies/codablockF
Codablock F
default: false

753

Properties

symbologies/code16K
Code 16K
default: false

symbologies/qrCode
QR Code
default: false

symbologies/aztec
Aztec Codes
default: false

symbologies/ukPost
UK Post
default: false

symbologies/planet
US Postal Planet
default: false

symbologies/postnet
US Postal Postnet
default: false

symbologies/canadianPost
Canadian Post
default: false

symbologies/netherlandsPost
Netherlands Post
default: false

symbologies/australianPost
Australian Post
default: false

symbologies/japanesePost
Japanese Post
default: false

symbologies/chinesePost
Chinese Post
default: false

symbologies/koreanPost
Korean Post
default: false

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "barcodeInvalid", string, null
 "readOutput": [{ array (object), null
 "symbology": "symbologyUnknown", string
 "barcodeData": "YmFyY29kZSBkYXRh", string, null
 "symbologyName": "code39" string, null

754

Payload (version 2.0) Type Required
 }]
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• barcodeInvalid - The read operation could not be completed successfully. The barcode presented
was defective or was wrongly read.
default: null

readOutput
An array of barcode data structures, one for each barcode scanned during the read operation. If no barcode was
scanned, this property is null.
default: null

755

readOutput/symbology
Specifies the barcode symbology recognized. This contains one of the following values returned in the
symbologies property of the Common.Capabilities command. If the barcode reader is unable to recognize the
symbology as one of the values reported via the device capabilities then the value for this property will be
symbologyUnknown.
The following values are possible:

• ean128 - GS1-128.
• ean8 - EAN-8.
• ean8_2 - EAN-8 with 2 digit add-on.
• ean8_5 - EAN-8 with 5 digit add-on.
• ean13 - EAN-13.
• ean13_2 - EAN-13 with 2 digit add-on.
• ean13_5 - EAN-13 with 5 digit add-on.
• jan13 - JAN-13.
• upcA - UPC-A.
• upcE0 - UPC-E.
• upcE0_2 - UPC-E with 2 digit add-on.
• upcE0_5 - UPC-E with 5 digit add-on.
• upcE1 - UPC-E with leading 1.
• upcE1_2 - UPC-E with leading 1and 2 digit add-on.
• upcE1_5 - UPC-E with leading 1and 5 digit add-on.
• upcA_2 - UPC-A with2 digit add-on.
• upcA_5 - UPC-A with 5 digit add-on.
• codabar - CODABAR (NW-7).
• itf - Interleaved 2 of 5 (ITF).
• code11 - CODE 11 (USD-8).
• code39 - CODE 39.
• code49 - CODE 49.
• code93 - CODE 93.
• code128 - CODE 128.
• msi - MSI.
• plessey - PLESSEY.
• std2Of5 - STANDARD 2 of 5 (INDUSTRIAL 2 of 5 also).
• std2Of5Iata - STANDARD 2 of 5 (IATA Version).
• pdf417 - PDF-417.
• microPdf417 - MICROPDF-417.
• dataMatrix - GS1 DataMatrix.
• maxiCode - MAXICODE.
• codeOne - CODE ONE.
• channelCode - CHANNEL CODE.
• telepenOriginal - Original TELEPEN.
• telepenAim - AIM version of TELEPEN.
• rss - GS1 DataBar™.
• rssExpanded - Expanded GS1 DataBar™.
• rssRestricted - Restricted GS1 DataBar™.
• compositeCodeA - Composite Code A Component.
• compositeCodeB - Composite Code B Component.
• compositeCodeC - Composite Code C Component.
• posiCodeA - Posicode Variation A.
• posiCodeB - Posicode Variation B.
• triopticCode39 - Trioptic Code 39.
• codablockF - Codablock F.
• code16K - Code 16K.
• qrCode - QR Code.
• aztec - Aztec Codes.

756

Properties
• ukPost - UK Post.
• planet - US Postal Planet.
• postnet - US Postal Postnet.
• canadianPost - Canadian Post.
• netherlandsPost - Netherlands Post.
• australianPost - Australian Post.
• japanesePost - Japanese Post.
• chinesePost - Chinese Post.
• koreanPost - Korean Post.
• symbologyUnknown - The barcode reader was unable to recognize the symbology.

default: "symbologyUnknown"

readOutput/barcodeData
Contains the Base64 encoded barcode data read from the barcode reader. The format of the data will depend on
the barcode symbology read. In most cases this will be an array of bytes containing ASCII numeric digits.
However, the format of the data in this property depends entirely on the symbology read, e.g. it may contain 8 bit
character values where the symbol is dependent on the codepage used to encode the barcode, may contain
UNICODE data, or may be a binary block of data. The application is responsible for checking the completeness
and validity of the data. If the read operation could not be completed successfully, this will be null.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

readOutput/symbologyName
A vendor dependent symbology identifier for the symbology recognized. May be null if not applicable.
default: null

Event Messages
None

757

17.1.2 BarcodeReader.Reset
This command is used to reset the device. The scanner returns to power-on initial status and remains disabled for
any barcode label reading.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

758

18. Biometric Interface
This chapter defines the Biometric interface functionality and messages.

Biometrics refers to metrics related to human characteristics and biology. Biometrics authentication can be used as
a form of identification and/or access control. This is an overview of biometrics, as well as an introduction to the
terminology used in this document. It introduces the concept of scanning a person’s biometric data in raw image
form (raw biometric data), then processing it into a smaller more concise form that is easier to manage (biometric
template data). The first scan of a user is called ENROLLMENT as the user is effectively being enrolled into a
scheme by recording their biometric data. Thereafter subsequent scans of the user can be compared to the original
data in order to verify who they say they are (VERIFICATION), or alternatively used to identify them as a
specific individual (IDENTIFICATION).

18.1 General Information

18.1.1 References

ID Description

biometric-
1

ANSI INCITS 381-2004 Information Technology - Finger Image-Based Data Interchange Format.

biometric-
2

ANSI INCITS 378-2004 Information Technology - Finger Minutiae Format for Data Interchange.

biometric-
3

ISO/IEC 19794-4:2005 Information technology - Biometric data interchange formats - Part 4:
Finger image data.

biometric-
4

ISO/IEC 19794-2:2005 Information technology - Biometric data interchange formats - Part 2:
Finger minutiae data.

18.1.2 Enrollment
The first time an individual uses a biometric device it is called Enrollment. During enrollment, biometric data from
an individual is captured and stored somewhere, for example on a smart card or in a server/host database. Normally
the raw biometric data captured will be processed and converted to a smaller format that is used for subsequent
comparison. This format is referred to in this document as a template. A template is a synthesis of the relevant
characteristics extracted from the original raw data. Elements of the biometric data that are not used in the matching
algorithm are discarded in the template to reduce the file size and to protect the identity of the enrollee.

18.1.3 Biometric Matching
During the matching phase, the obtained template is passed to a matcher which compares it to other existing
templates and a probable match is calculated, either as a Boolean true or false or as a threshold indicating the
likelihood of a match. With regard to matching, biometric systems commonly have two different basic modes of
operation: Verification and Identification:

Verification: performs a one-to-one comparison of captured biometric data with a specific template in order to
verify that an individual is the person they claim to be.

Identification: the system performs a one-to-many comparison of captured biometric data in order to establish a
person’s identity.

759

Note: The above diagram does not make any assumptions about where the actual matching takes place. The
interface provided is versatile enough to be able to support three basic Biometric systems:

Match on server: The biometric template data is stored on a server or host. When scanning takes place biometric
data is sent to the server, which does the actual identification or verification.

Match on card: The biometric enrollment data for an individual is stored on a smart card/personal device. The
device scans a user then returns the biometric template information to the client. This data is then sent to the card,
and a client on the smart card chip does the comparison, returning the result to the client.

Match on device: The biometric enrollment data for an individual is stored on a smart card or host. The enrollment
data is read from the card or host and into the device, which then compares it to scanned information, returning the
result to the client.

18.1.4 Biometric Device Types
There are many different varieties of biometric hardware, this biometrics specification supports three main different
types of devices:

1. Devices which only support scanning and returning biometric data
In this case the device is a simple biometric scanning device, User data is scanned using the
Biometric.Read, but matching is performed externally, for example on a smart card or on a server. In this
case the Biometric.Match and Biometric.SetMatch are not supported.

2. Devices which support a separate scan and match functionality
These devices scan and perform a comparison as separate operations. Existing biometric data is first
imported using the Biometric.Import. When the Biometric.Read is then called the scanned user data is
temporarily stored. The Biometric.Match is then called to perform the comparison and return the result.

3. Devices which support a combined scan and match functionality
These devices scan and perform a comparison as a single operation. Existing biometric data is first
imported using the Biometric.Import. In this case the Biometric.SetMatch must be called first, either as a
one time call or before each Biometric.Read. The purpose of the Biometric.SetMatch is to set the criteria
for matching. When the Biometric.Read is then called it scans the user’s biometric data and also performs
the comparison as a single operation. The Biometric.Match is then called to return the result of the
comparison.

18.1.5 Biometric Data Security
It is recommended that biometric data should be treated with the same strict caution as any other identifying and
sensitive information. A well-designed biometric data handling architecture should always be designed to protect
against internal tampering, external attacks and other malicious threats. There are various ways of implementing
good security of which two are listed below:

760

• Multi Modal Biometrics
A Uni-Modal biometric system relies on data taken from a single source of information for authentication,
for example a single fingerprint reading device. In contrast, Multi-Modal biometric systems work on the
premise that it is more secure to accept information from two or more biometric inputs. As an example a
user could provide a fingerprint in addition to facial recognition, a positive match from two physical
characteristics improves the chances of a positive identification and mitigates the possibility that biometric
data has been cloned.

• Data Encryption
Biometric data should be encrypted where possible. The Biometric specification provides for this by
allowing an encryption key to be specified whenever data is exchanged between a client and the Service.
In addition, the KeyManagement interface commands can be used for key management. In this case the
Service would implement the biometric methods necessary to read and return data using the Biometric
interface, while the key loading, reporting etc, the KeyManagement interface would be implemented in
order to provide key management.

18.1.6 Biometric Device Command Flows

Biometric Enrollment Command Flow
The following diagram describes the flow of enrolling a user using the Biometric.Read. Two attempts at scanning
are necessary.

761

Biometric Match Command Flow – Separate Scan and Match

The following diagram describes the flow of successfully identifying a customer whose biometric template data
was previously enrolled and stored on a server/smart card/host system. This template data is first imported using the
Biometric.Import, which assigns it a unique identifying number. This identifier number can then be retrieved using
the Biometric.GetStorageInfo.

The Biometric.Read and Biometric.Match are then used to scan data and then compare it with the template
identified by identifier. In this use case the device can perform a separate scan and match operation, therefore the
Biometric.Read is called to scan the subject’s biometric data then the Biometric.Match is called to perform the
match and return the result to the client.

In this case the capability matchSupported is reported as storedMatch.

Biometric Match Command Flow – Combined Scan and Match
The following diagram describes the flow of successfully identifying a customer whose biometric template data
was previously enrolled and stored on a server/smart card/host system. This template data is first imported using the

762

Biometric.Import, which assigns it a unique identifying number. This identifier number can then be retrieved using
the Biometric.GetStorageInfo.

The Biometric.Read, Biometric.SetMatch and Biometric.Match are then used to scan data and compare it with the
template identified by identifier. In this use case the device performs a combined scan and match operation,
therefore the Biometric.SetMatch must be used to set the criteria to be used for matching, including the imported
template to be identified by identifier. When the Biometric.Read is then called the device scans the user and
performs the comparison as a combined operation. Finally the Biometric.Match is called to return the result of the
comparison to the client.

In this case the capability matchSupported is reported as combinedMatch.

763

Biometric Scan-Only Command Flow
The following diagram describes the flow for a simple biometric scanning device which does not support any
matching at all. User data is scanned using the Biometric.Read but matching is performed externally, for example
on a smart card or on a server. In this case the capability matchSupported is reported as none.

764

765

18.2 Command Messages

18.2.1 Biometric.GetStorageInfo
This command is used to obtain information regarding the number and format of biometric templates that have been
imported using the Biometric.Import command.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noImportedData", string, null
 "templates": { object, null
 "id1": { object
 "format": "isoFid", string 🗸🗸
 "algorithm": "ecb", string, null
 "keyName": "Key01" string, null
 },
 "id2": See templates/id1 properties object
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noImportedData - No data to return. Typically means that no data has been imported using the
Biometric.Import.

default: null

templates
A list of biometric templates that were successfully imported. The object name of each biometric data type can
be used in the identifier property for the Biometric.Match command. If no template data was imported, this
property is null.
default: null

templates/id1 (example name)
A unique identifier of the biometric template data.
Property name constraints:
pattern: ^id[0-9A-Za-z]+$

766

Properties

templates/id1/format
Specifies the format of the template data. Available values are described in the dataFormats. The following
values are possible:

• isoFid - Raw ISO FID format [Ref. biometric-3].
• isoFmd - ISO FMD template format [Ref. biometric-4].
• ansiFid - Raw ANSI FID format [Ref. biometric-1].
• ansiFmd - ANSI FMD template format [Ref. biometric-2].
• qso - Raw QSO image format.
• wso - WSQ image format.
• reservedRaw1 - Reserved for a vendor-defined Raw format.
• reservedTemplate1 - Reserved for a vendor-defined Template format.
• reservedRaw2 - Reserved for a vendor-defined Raw format.
• reservedTemplate2 - Reserved for a vendor-defined Template format.
• reservedRaw3 - Reserved for a vendor-defined Raw format.
• reservedTemplate3 - Reserved for a vendor-defined Template format.

templates/id1/algorithm
Specifies the encryption algorithm. This value is null if the biometric data is not encrypted. Available values are
described in the encryptionAlgorithms. The following values are possible:

• ecb - Triple DES with Electronic Code Book.
• cbc - Triple DES with Cipher Block Chaining.
• cfb - Triple DES with Cipher Feed Back.
• rsa - RSA Encryption.

default: null

templates/id1/keyName
Specifies the name of the key that is used to encrypt the biometric data. This property is null if the biometric data
is not encrypted. The detailed key information is available through the KeyManagement.GetKeyDetail.
default: null

Event Messages
None

767

18.2.2 Biometric.Read
This command enables the device for biometric scanning, then captures and optionally returns biometric data. A
Biometric.PresentSubjectEvent will be sent to notify the client when it is ready to begin scanning and a
Biometric.SubjectDetectedEvent sent for each scanning attempt. The numCaptures input parameter specifies how
many captures should be attempted, unless it is zero in which case the device itself will determine this. Once this
command has successfully captured biometric raw data it will complete with Success.

The Biometric.Read command has two purposes:

Scanning: The biometric data that is captured into the device can be processed into biometric template data and
returned as an output parameter for enrollment or storage elsewhere, e.g. on a server or smart card.

Matching: The biometric data that is captured into the device can be used for subsequent matching. Once data has
been scanned into the device it can be compared to existing biometric templates that have been imported using the
Biometric.Import in order to allow verification or identification of an individual. The matchSupported capability
indicates if the Biometric.Match can be used for matching, otherwise the matching must be done externally, e.g. on
a server or smart card.

In either case the data that has been scanned into the device will be persistent according to the current persistence
mode as reported by the dataPersistence status property.

Command Message

Payload (version 2.0) Type Required
{
 "dataTypes": [{ array (object), null
 "format": "isoFid", string 🗸🗸
 "algorithm": "ecb", string, null
 "keyName": "Key01" string, null
 }],
 "numCaptures": 0, integer 🗸🗸
 "mode": "scan" string 🗸🗸
}

Properties

dataTypes
Array of data types, each data element of which represents the data type(s) in which the data should be returned
in the completion payload. If no data is to be returned dataTypes can be null. Single or multiple formats can be
returned, or no data can be returned in the case where the scan is to be followed by a subsequent matching
operation.
default: null

768

Properties

dataTypes/format
Specifies the format of the template data. Available values are described in the dataFormats. The following
values are possible:

• isoFid - Raw ISO FID format [Ref. biometric-3].
• isoFmd - ISO FMD template format [Ref. biometric-4].
• ansiFid - Raw ANSI FID format [Ref. biometric-1].
• ansiFmd - ANSI FMD template format [Ref. biometric-2].
• qso - Raw QSO image format.
• wso - WSQ image format.
• reservedRaw1 - Reserved for a vendor-defined Raw format.
• reservedTemplate1 - Reserved for a vendor-defined Template format.
• reservedRaw2 - Reserved for a vendor-defined Raw format.
• reservedTemplate2 - Reserved for a vendor-defined Template format.
• reservedRaw3 - Reserved for a vendor-defined Raw format.
• reservedTemplate3 - Reserved for a vendor-defined Template format.

dataTypes/algorithm
Specifies the encryption algorithm. This value is null if the biometric data is not encrypted. Available values are
described in the encryptionAlgorithms. The following values are possible:

• ecb - Triple DES with Electronic Code Book.
• cbc - Triple DES with Cipher Block Chaining.
• cfb - Triple DES with Cipher Feed Back.
• rsa - RSA Encryption.

default: null

dataTypes/keyName
Specifies the name of the key that is used to encrypt the biometric data. This property is null if the biometric data
is not encrypted. The detailed key information is available through the KeyManagement.GetKeyDetail.
default: null

numCaptures
This property indicates the number of times to attempt capture of the biometric data from the subject. If this is
zero, then the device determines how many attempts will be made. The maximum number of captures possible is
indicated by the maxCapture capability.
Property value constraints:
minimum: 0

mode
This optional property indicates the reason why the Biometric.Read has been issued, in order to allow for any
necessary optimization. Available values are detailed in the scanModes. The following values are possible:

• scan - Scan data only, for example to enroll a user or collect data for matching in an external biometric
system.

• match - Scan data for a match operation using the Biometric.Match.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "readFailed", string, null
 "dataRead": [{ array (object), null
 "type": { object 🗸🗸
 "format": "isoFid", string 🗸🗸
 "algorithm": "ecb", string, null

769

Payload (version 2.0) Type Required
 "keyName": "Key01" string, null
 },
 "data": "1a987D000012Bb" string 🗸🗸
 }]
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• readFailed - Module was unable to complete the scan operation.
• modeNotSupported - mode is not supported.
• formatNotSupported - The format specified is valid but not supported. A list of the supported values

can be obtained through the dataFormats.
• keyNotFound - The specified key name is not found.

default: null

dataRead
This property is used to indicate the biometric data type of the template data contained. This property is not
required if dataTypes property is null.
default: null

dataRead/type
This property is used to indicate the biometric data type of the template data contained in data.

dataRead/type/format
Specifies the format of the template data. Available values are described in the dataFormats. The following
values are possible:

• isoFid - Raw ISO FID format [Ref. biometric-3].
• isoFmd - ISO FMD template format [Ref. biometric-4].
• ansiFid - Raw ANSI FID format [Ref. biometric-1].
• ansiFmd - ANSI FMD template format [Ref. biometric-2].
• qso - Raw QSO image format.
• wso - WSQ image format.
• reservedRaw1 - Reserved for a vendor-defined Raw format.
• reservedTemplate1 - Reserved for a vendor-defined Template format.
• reservedRaw2 - Reserved for a vendor-defined Raw format.
• reservedTemplate2 - Reserved for a vendor-defined Template format.
• reservedRaw3 - Reserved for a vendor-defined Raw format.
• reservedTemplate3 - Reserved for a vendor-defined Template format.

dataRead/type/algorithm
Specifies the encryption algorithm. This value is null if the biometric data is not encrypted. Available values are
described in the encryptionAlgorithms. The following values are possible:

• ecb - Triple DES with Electronic Code Book.
• cbc - Triple DES with Cipher Block Chaining.
• cfb - Triple DES with Cipher Feed Back.
• rsa - RSA Encryption.

default: null

dataRead/type/keyName
Specifies the name of the key that is used to encrypt the biometric data. This property is null if the biometric data
is not encrypted. The detailed key information is available through the KeyManagement.GetKeyDetail.
default: null

770

Properties

dataRead/data
It contains the individual binary data stream encoded in base64.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Event Messages

• Biometric.PresentSubjectEvent
• Biometric.SubjectDetectedEvent
• Biometric.RemoveSubjectEvent

771

18.2.3 Biometric.Import
This command imports a list of biometric template data structures into the device for later comparison with
biometric data scanned using the Biometric.Read. Normally this data is read from the chip on a customer’s card or
provided by the host system. Data that has been imported is available until a Biometric.Clear is called. If template
data has been previously imported using a call to Biometric.Import, then it is overwritten. This data is not persistent
across power fails.

Command Message

Payload (version 2.0) Type Required
{
 "templates": [{ array (object) 🗸🗸
 "type": { object 🗸🗸
 "format": "isoFid", string 🗸🗸
 "algorithm": "ecb", string, null
 "keyName": "Key01" string, null
 },
 "data": "1a987D000012Bb" string 🗸🗸
 }]
}

Properties

templates
Array of template data to be imported in the device.
Property value constraints:
minItems: 1

templates/type
This property is used to indicate the biometric data type of the template data contained in data.

templates/type/format
Specifies the format of the template data. Available values are described in the dataFormats. The following
values are possible:

• isoFid - Raw ISO FID format [Ref. biometric-3].
• isoFmd - ISO FMD template format [Ref. biometric-4].
• ansiFid - Raw ANSI FID format [Ref. biometric-1].
• ansiFmd - ANSI FMD template format [Ref. biometric-2].
• qso - Raw QSO image format.
• wso - WSQ image format.
• reservedRaw1 - Reserved for a vendor-defined Raw format.
• reservedTemplate1 - Reserved for a vendor-defined Template format.
• reservedRaw2 - Reserved for a vendor-defined Raw format.
• reservedTemplate2 - Reserved for a vendor-defined Template format.
• reservedRaw3 - Reserved for a vendor-defined Raw format.
• reservedTemplate3 - Reserved for a vendor-defined Template format.

772

Properties

templates/type/algorithm
Specifies the encryption algorithm. This value is null if the biometric data is not encrypted. Available values are
described in the encryptionAlgorithms. The following values are possible:

• ecb - Triple DES with Electronic Code Book.
• cbc - Triple DES with Cipher Block Chaining.
• cfb - Triple DES with Cipher Feed Back.
• rsa - RSA Encryption.

default: null

templates/type/keyName
Specifies the name of the key that is used to encrypt the biometric data. This property is null if the biometric data
is not encrypted. The detailed key information is available through the KeyManagement.GetKeyDetail.
default: null

templates/data
It contains the individual binary data stream encoded in base64.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidData", string, null
 "templates": { object, null
 "id1": { object
 "format": "isoFid", string 🗸🗸
 "algorithm": "ecb", string, null
 "keyName": "Key01" string, null
 },
 "id2": See templates/id1 properties object
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidData - The data that was imported was malformed or invalid. No data has been imported into
the device. The presence of any previously loaded templates can be checked for using the
Biometric.Read.

• formatNotSupported - The format of the biometric data that was specified is not supported. No data
has been imported into the device. A list of the supported values can be obtained through the
dataFormats.

• capacityExceeded - An attempt has been made to import more templates than the maximum
reserved storage space available. The maximum storage space available is reported in the capability
templateStorage. No data has been imported into the device. The amount of storage remaining is
reported in the remainingStorage.

• keyNotFound - The specified key name is not found.
default: null

773

Properties

templates
A list of the biometric template data that were successfully imported. If there are no template data imported, this
property can be null.
default: null

templates/id1 (example name)
A unique identifier of the biometric template data.
Property name constraints:
pattern: ^id[0-9A-Za-z]+$

templates/id1/format
Specifies the format of the template data. Available values are described in the dataFormats. The following
values are possible:

• isoFid - Raw ISO FID format [Ref. biometric-3].
• isoFmd - ISO FMD template format [Ref. biometric-4].
• ansiFid - Raw ANSI FID format [Ref. biometric-1].
• ansiFmd - ANSI FMD template format [Ref. biometric-2].
• qso - Raw QSO image format.
• wso - WSQ image format.
• reservedRaw1 - Reserved for a vendor-defined Raw format.
• reservedTemplate1 - Reserved for a vendor-defined Template format.
• reservedRaw2 - Reserved for a vendor-defined Raw format.
• reservedTemplate2 - Reserved for a vendor-defined Template format.
• reservedRaw3 - Reserved for a vendor-defined Raw format.
• reservedTemplate3 - Reserved for a vendor-defined Template format.

templates/id1/algorithm
Specifies the encryption algorithm. This value is null if the biometric data is not encrypted. Available values are
described in the encryptionAlgorithms. The following values are possible:

• ecb - Triple DES with Electronic Code Book.
• cbc - Triple DES with Cipher Block Chaining.
• cfb - Triple DES with Cipher Feed Back.
• rsa - RSA Encryption.

default: null

templates/id1/keyName
Specifies the name of the key that is used to encrypt the biometric data. This property is null if the biometric data
is not encrypted. The detailed key information is available through the KeyManagement.GetKeyDetail.
default: null

Event Messages
None

774

18.2.4 Biometric.Match
This command returns the result of a comparison between data that has been scanned using the Biometric.Read and
template data that has been imported using the Biometric.Import. The comparison may be performed by this
command or the Biometric.Read, this command is responsible for returning the result. Success is returned if the
device has been able to successfully compare the data, however this does not necessarily mean that the data
matched.

If the capability matchSupported value supports combinedMatch then the device performs a combined scan and
match operation, and the Biometric.SetMatch must be called before this command in order to set the matching
criteria. In this case if Biometric.SetMatch has not been called then this command will fail with sequenceError.

If the capability matchSupported supports storedMatch then the device will scan data using the Biometric.Read and
store it, then the data can be compared with imported biometric data using the Biometric.Match.

This command can be used in two modes of operation: Verification or Identification, as indicated by the
compareMode input parameter. The two modes of operation are described below:

Verification (compareMode is verify) :
 In this case a one to one comparison is performed and the maximum input parameter is ignored. The data that has
been scanned previously using the Biometric.Read is compared with a single template that has been imported using
the Biometric.Import. If there is a successful match then the confidenceLevel output parameter can be used to
determine the quality of the match and will be in the range 0 – 100, where 100 represents an exact match and 0
represents no match.

Identification (compareMode is identify) :
 In this case a one to many comparison is performed. The data that has been scanned previously using the
Biometric.Read is compared with multiple templates that have been imported using the Biometric.Import. The input
parameter maximum is used to specify the maximum number of matches to return: a smaller number can make
execution faster. The required degree of matching similarity can be controlled using the threshold parameter which
is used to control the frequency of false positive and false negative matching errors. The value of threshold
represents the criteria as to what constitutes a successful match and is in the range 0 – 100, where 100 represents an
exact match and 0 represents no match. If for example, threshold is set to 75 then only results with a matching score
equal to or greater than 75 are returned. The matching candidate list is returned in the matchResult output parameter
sorted in order of highest score. The higher the value of confidenceLevel the closer the candidate is to the beginning
of the list, with the best match being the first candidate in the list. Note that where the number of templates that
match the criteria of the threshold are greater than maximum, only the maximum templates with the highest score
will be returned.

Command Message

Payload (version 2.0) Type Required
{
 "compareMode": "verify", string 🗸🗸
 "identifier": "id1", string, null
 "maximum": 0, integer, null
 "threshold": 80 integer 🗸🗸
}

Properties

compareMode
Specifies the type of match operation that is being done. The following values are possible:

• verify - The biometric data will be compared as a one-to-one verification operation.
• identity - The biometric data will be compared as a one-to-many identification operation.

775

Properties

identifier
In the case where compareMode is verify this parameter corresponds to a template that has been imported by a
previous call to the Biometric.Import. If compareMode is identify a comparison is performed against all of the
imported templates, in which case this property can be null. This property corresponds to the list of template
identifiers returned by the Biometric.GetStorageInfo command.
Property value constraints:
pattern: ^id[0-9A-Za-z]+$
default: null

maximum
Specifies the maximum number of matches to return. In the case where compareMode is verify this property can
be null.
Property value constraints:
minimum: 0
default: null

threshold
Specifies the minimum matching confidence level necessary for the candidate to be included in the results. This
value should be in the range of 0 to 100, where 100 represents an exact match and 0 represents no match.
Property value constraints:
minimum: 0
maximum: 100

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "noImportedData", string, null
 "candidates": { object, null
 "id1": { object
 "confidenceLevel": 0, integer
 "templateData": "dGVtcGxhdGUgZGF0YQ==" string, null
 },
 "id2": See candidates/id1 properties object
 }
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• noImportedData - The command failed because no data was imported previously using the
Biometric.Import.

• invalidIdentifier - The command failed because data was imported but identifier was not found.
• modeNotSupported - The type of match specified in compareMode is not supported.
• noCaptureData - No captured data is present. Typically means that the Biometric.Readcommand has

not been called, or the captured data has been cleared using the Biometric.Clear.
• invalidCompareMode - The compare mode specified by the compareMode input parameter is not

supported.
• invalidThreshold - The Threshold input parameter is greater than the maximum allowed of 100.

default: null

776

Properties

candidates
The object name has a unique number that positively identifies the biometric template data. This corresponds to
the list of template identifiers returned by the Biometric.GetStorageInfo command. This property can be null if
the Biometric.Match operation completes with no match found. If there are matches found, this property contains
all of the matching templates in order of confidence level, with the highest score first. Note that where the
number of templates that match the input criteria of the threshold are greater than maximum, only the maximum
templates with the highest scores will be returned.
default: null

candidates/id1 (example name)
A unique identifier of the biometric template data.
Property name constraints:
pattern: ^id[0-9A-Za-z]+$

candidates/id1/confidenceLevel
Specifies the level of confidence for the match found. This value is in a scale of 0 - 100, where 0 is no match and
100 is an exact match. The minimum value will be that which was set by the threshold property.
Property value constraints:
minimum: 0
maximum: 100
default: 0

candidates/id1/templateData
Contains the biometric template data that was matched. This data may be used as justification for the biometric
data match or confidence level. This property is null if no additional comparison data is returned.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}?$
format: base64
default: null

Event Messages
None

777

18.2.5 Biometric.SetMatch
This command is used for devices which need to know the match criteria data for the Biometric.Match before any
biometric scanning is performed by the Biometric.Read. The Biometric.Read and Biometric.Match should be called
after this command. For all other devices unsupportedCommand will be returned here.

If the capability matchSupported == combinedMatch then this command is mandatory. If it is not called first, the
Biometric.Match will fail with the generic error sequenceError. The data set using this command is not persistent
across power failures.

Command Message

Payload (version 2.0) Type Required
{
 "compareMode": "verify", string 🗸🗸
 "identifier": "id1", string, null
 "maximum": 0, integer, null
 "threshold": 80 integer 🗸🗸
}

Properties

compareMode
Specifies the type of match operation that is being done. The following values are possible:

• verify - The biometric data will be compared as a one-to-one verification operation.
• identity - The biometric data will be compared as a one-to-many identification operation.

identifier
In the case where compareMode is verify this parameter corresponds to a template that has been imported by a
previous call to the Biometric.Import. If compareMode is identify a comparison is performed against all of the
imported templates, in which case this property can be null. This property corresponds to the list of template
identifiers returned by the Biometric.GetStorageInfo command.
Property value constraints:
pattern: ^id[0-9A-Za-z]+$
default: null

maximum
Specifies the maximum number of matches to return. In the case where compareMode is verify this property can
be null.
Property value constraints:
minimum: 0
default: null

threshold
Specifies the minimum matching confidence level necessary for the candidate to be included in the results. This
value should be in the range of 0 to 100, where 100 represents an exact match and 0 represents no match.
Property value constraints:
minimum: 0
maximum: 100

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidIdentifier" string, null
}

778

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidIdentifier - The command failed because data was imported but identifier was not found.
• modeNotSupported - The type of match specified in compareMode is not supported.
• noImportedData - The command failed because no data was imported previously using the

Biometric.ImportData.
• invalidThreshold - The threshold input parameter is greater than the maximum allowed of 100.

default: null

Event Messages
None

779

18.2.6 Biometric.Clear
This command can be used to clear stored data. In the case where there is no stored data to clear this command
completes with Success.

Command Message

Payload (version 2.0) Type Required
{
 "clearData": "scannedData" string, null
}

Properties

clearData
This property indicates the type of data to be or which has been cleared from storage. If this property is null, then
all stored data will be or has been cleared. Available values are described in the clearData. The following values
are possible:

• scannedData - Raw image data that has been scanned using the Biometric.Read.
• importedData - Template data that was imported using the Biometric.Import.
• setMatchedData - Match criteria data that was set using the Biometric.Match.

default: null

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

780

18.2.7 Biometric.Reset
This command is used by the client to perform a hardware reset which will attempt to return the biometric device to
a known good state.

Command Message

Payload (version 2.0) Type Required
{
 "clearData": "scannedData" string, null
}

Properties

clearData
This property indicates the type of data to be or which has been cleared from storage. If this property is null, then
all stored data will be or has been cleared. Available values are described in the clearData. The following values
are possible:

• scannedData - Raw image data that has been scanned using the Biometric.Read.
• importedData - Template data that was imported using the Biometric.Import.
• setMatchedData - Match criteria data that was set using the Biometric.Match.

default: null

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

781

18.2.8 Biometric.SetDataPersistence
This command is used to set the persistence mode. This controls how the biometric data is persisted after a
Biometric.Read. The data can be persisted for use by subsequent commands, or it can be automatically cleared.

Command Message

Payload (version 2.0) Type Required
{
 "persistenceMode": "persist" string 🗸🗸
}

Properties

persistenceMode
Specifies the data persistence mode. This controls how biometric data that has been captured using the
Biometric.Read command will persist. This value itself is persistent. Available values are described in the
persistenceModes. The following values are possible:

• persist - Biometric data captured using the Biometric.Read can persist until all sessions are closed,
the device is power failed or rebooted, or the Biometric.Readis requested again. This captured biometric
data can also be explicitly cleared using the Biometric.Clear or Biometric.Reset.

• clear - Captured biometric data will not persist. Once the data has been either returned in the
Biometric.Readcommand or used by the Biometric.Match, then the data is cleared from the device.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "modeNotSupported" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• modeNotSupported - The command failed because a mode was specified which is not supported.
default: null

Event Messages
None

782

18.3 Event Messages

18.3.1 Biometric.PresentSubjectEvent
This event is generated to notify the client when the device is ready for a user to present the subject to be captured
to the biometric scanner, for example, placing a finger on a fingerprint reader.

Event Message

Payload (version 2.0)
This message does not define any properties.

783

18.3.2 Biometric.SubjectDetectedEvent
This event is generated to notify the client when the device has detected a subject in the capture area and an attempt
to capture biometric data has been performed.

Event Message

Payload (version 2.0)
This message does not define any properties.

784

18.3.3 Biometric.RemoveSubjectEvent
This event is used to notify a client that the subject should be removed from the capture area of the device.

Event Message

Payload (version 2.0)
This message does not define any properties.

785

18.4 Unsolicited Messages

18.4.1 Biometric.SubjectRemovedEvent
This message is generated when the subject has been removed from the capture area of the device. This event may
be generated at any time.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

786

18.4.2 Biometric.DataClearedEvent
This mandatory event notifies the client when data has been cleared. This can be the case when the data is cleared
automatically after a Biometric.Read or Biometric.Match completion, or as a result of an explicit call to the
Biometric.Clear or Biometric.Reset.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "clearData": "scannedData" string, null
}

Properties

clearData
This property indicates the type of data to be or which has been cleared from storage. If this property is null, then
all stored data will be or has been cleared. Available values are described in the clearData. The following values
are possible:

• scannedData - Raw image data that has been scanned using the Biometric.Read.
• importedData - Template data that was imported using the Biometric.Import.
• setMatchedData - Match criteria data that was set using the Biometric.Match.

default: null

787

18.4.3 Biometric.OrientationEvent
This event is generated when the biometric subject has an incorrect orientation relative to the device scanner in
order to allow a client to prompt a user to correct it.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

788

19. Camera Interface
This chapter defines the Camera interface functionality and messages under XFS4IoT.

Banking camera systems usually consist of a recorder, a video mixer and one or more cameras. If there are several
cameras, each camera focuses a special place within the self-service area (e.g. the room, the customer or the cash
tray). By using the video mixer it can be decided, which of the cameras should take the next photo. Furthermore,
data can be given to be inserted in the photo (e.g. date, time or bank code).

If there is only one camera that can switch to take photos from different positions, it is presented by the service as a
set of cameras, one for each of its possible positions.

789

19.1 Command Messages

19.1.1 Camera.TakePicture
This command is used to start the recording of the camera system. It is possible to select which camera or which
camera position should be used to take a picture. Data to be displayed on the photo can be specified using the
camData property.

Command Message

Payload (version 2.0) Type Required
{
 "camera": "room", string 🗸🗸
 "camData": "Camera 1 Text" string, null
}

Properties

camera
Specifies the camera that should take the photo as one of the following values:

• room - Monitors the whole self-service area.
• person - Monitors the person standing in front of the self-service machine.
• exitSlot - Monitors the exit slot(s) of the self-service machine.

camData
Specifies the text string to be displayed on the photo if supported by manAdd. If the maximum text length is
exceeded it will be truncated. In this case or if the text given is invalid, a Camera.InvalidDataEvent event will be
generated. Nevertheless the picture is taken.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "cameraNotSupported", string, null
 "pictureFile": "Xhdjyedh736ydw7hdi" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• cameraNotSupported - The specified camera is not supported.
• mediaFull - The recording media is full.
• cameraInoperable - The specified camera is inoperable.

default: null

pictureFile
The base64 encoded data representing the picture.
Property value constraints:
pattern: ^[A-Za-z0-9+/]+={0,2}$
format: base64
default: null

790

Event Messages

• Camera.InvalidDataEvent

791

19.1.2 Camera.Reset
This command is used by the client to perform a hardware reset which will attempt to return the camera device to a
known good state.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

792

19.2 Event Messages

19.2.1 Camera.InvalidDataEvent
This event is used to specify that the text string given was too long or in some other way invalid.

Event Message

Payload (version 2.0)
This message does not define any properties.

793

19.3 Unsolicited Messages

19.3.1 Camera.MediaThresholdEvent
This event is used to specify that the state of the recording media reached a threshold.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "mediaThreshold": "ok" string 🗸🗸
}

Properties

mediaThreshold
Specified as one of the following.

• ok - The recording media is a good state.
• high - The recording media is almost full.
• full - The recording media is full.

794

20. Lights Interface
This chapter defines the Lights interface functionality and messages.

This specification describes the functionality of the services provided by the Lights service by defining the service-
specific commands that can be issued. This service allows for the operation of Lights, LEDs and Lamps on a
device.

795

20.1 Command Messages

20.1.1 Lights.SetLight
This command is used to set the status of a light.

For guidance lights, the slow and medium flash rates must not be greater than 2.0 Hz. It should be noted that in
order to comply with American Disabilities Act guidelines only a slow or medium flash rate must be used.

Command Message

Payload (version 2.0) Type Required
{
 "cardReader": { object, null
 "position": "left", string 🗸🗸
 "flashRate": "off", string, null
 "color": "red", string, null
 "direction": "entry" string, null
 },
 "pinPad": See cardReader properties object, null
 "notesDispenser": See cardReader properties object, null
 "coinDispenser": See cardReader properties object, null
 "receiptPrinter": See cardReader properties object, null
 "passbookPrinter": See cardReader properties object, null
 "envelopeDepository": See cardReader properties object, null
 "checkUnit": See cardReader properties object, null
 "billAcceptor": See cardReader properties object, null
 "envelopeDispenser": See cardReader properties object, null
 "documentPrinter": See cardReader properties object, null
 "coinAcceptor": See cardReader properties object, null
 "scanner": See cardReader properties object, null
 "contactless": See cardReader properties object, null
 "cardReader2": See cardReader properties object, null
 "notesDispenser2": See cardReader properties object, null
 "billAcceptor2": See cardReader properties object, null
 "statusGood": See cardReader properties object, null
 "statusWarning": See cardReader properties object, null
 "statusBad": See cardReader properties object, null
 "statusSupervisor": See cardReader properties object, null
 "statusInService": See cardReader properties object, null
 "fasciaLight": See cardReader properties object, null
 "vendorSpecificLight": See cardReader properties object, null
}

796

Properties

cardReader
Card Reader Light. This property is null if not applicable.
default: null

cardReader/position
The light position. Can be used for devices which have multiple input and output positions. This may be one of
the following values:

• left - The left position.
• right - The right position.
• center - The center position.
• top - The top position.
• bottom - The bottom position.
• front - The front position.
• rear - The rear position.
• default - The default position.

cardReader/flashRate
The light flash rate. This may be null in Common.StatusChangedEvent if unchanged, otherwise one of the
following values:

• off - The light is turned off.
• slow - The light is flashing slowly.
• medium - The light is flashing medium frequency.
• quick - The light is flashing quickly.
• continuous - The light is continuous (steady).

default: null

cardReader/color
The light color. This may be null in Common.StatusChangedEvent if unchanged, otherwise one of the following
values:

• red - The light is red.
• green - The light is green.
• yellow - The light is yellow.
• blue - The light is blue.
• cyan - The light is cyan.
• magenta - The light is magenta.
• white - The light is white.

default: null

cardReader/direction
The light direction, The value can be null if not required. One of the following values:

• entry - The light is indicating entry.
• exit - The light is indicating exit.

default: null

pinPad
Pin Pad Light. This property is null if not applicable.
default: null

notesDispenser
Notes Dispenser Light. This property is null if not applicable.
default: null

coinDispenser
Coin Dispenser Light. This property is null if not applicable.
default: null

797

Properties

receiptPrinter
Receipt Printer Light. This property is null if not applicable.
default: null

passbookPrinter
Passbook Printer Light. This property is null if not applicable.
default: null

envelopeDepository
Envelope Depository Light. This property is null if not applicable.
default: null

checkUnit
Check Unit Light. This property is null if not applicable.
default: null

billAcceptor
Bill Acceptor Light. This property is null if not applicable.
default: null

envelopeDispenser
Envelope Dispenser Light. This property is null if not applicable.
default: null

documentPrinter
Document Printer Light. This property is null if not applicable.
default: null

coinAcceptor
Coin Acceptor Light. This property is null if not applicable.
default: null

scanner
Scanner Light. This property is null if not applicable.
default: null

contactless
Contactless Reader Light. This property is null if not applicable.
default: null

cardReader2
Card Reader 2 Light. This property is null if not applicable.
default: null

notesDispenser2
Notes Dispenser 2 Light. This property is null if not applicable.
default: null

billAcceptor2
Bill Acceptor 2 Light. This property is null if not applicable.
default: null

statusGood
Status Indicator light - Good. This property is null if not applicable.
default: null

statusWarning
Status Indicator light - Warning. This property is null if not applicable.
default: null

798

Properties

statusBad
Status Indicator light - Bad. This property is null if not applicable.
default: null

statusSupervisor
Status Indicator light - Supervisor. This property is null if not applicable.
default: null

statusInService
Status Indicator light - In Service. This property is null if not applicable.
default: null

fasciaLight
Fascia Light. This property is null if not applicable.
default: null

vendorSpecificLight (example name)
Additional vendor specific lights.
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidLight" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidLight - An attempt to set a light to a new value was invalid because the light does not exist.
• lightError - A hardware error occurred while executing the command.

default: null

Event Messages
None

799

21. Auxiliaries Interface
This chapter defines the Auxiliaries interface functionality and messages.

This Service allows for the operation of the following categories of Auxiliaries:

• Door sensors, such as cabinet, safe or vandal shield doors.
• Alarm sensors, such as tamper, seismic or heat sensors.
• Generic sensors, such as proximity or ambient light sensors.
• Key switch sensors, such as the ATM operator switch.
• Lamp/sign indicators, such as fascia light or audio indicators.
• Auxiliary indicators.
• Enhanced Audio Controller, for use by the partially sighted.

In self-service devices, the Auxiliaries unit is capable of dealing with external sensors, such as door switches, locks,
alarms and proximity sensors, as well as external indicators, such as turning on lamps or heating.

When status information of the auxiliaries unit is changed, the Common.StatusChangedEvent is posted.

800

21.1 Command Messages

21.1.1 Auxiliaries.GetAutoStartupTime
This command is used to retrieve the availability of the auto start-up time function as well as the current
configuration of the auto start-up time.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "mode": "specific", string 🗸🗸
 "startTime": { object 🗸🗸
 "year": 1601, integer, null
 "month": 1, integer, null
 "dayOfWeek": "Saturday", string, null
 "day": 1, integer, null
 "hour": 0, integer, null
 "minute": 0 integer, null
 }
}

Properties

mode
Specifies the current or desired auto start-up control mode configured. The following values are possible:

• specific - In the startTime object, only year, *month, day, hour and minute are relevant. All other
properties must be ignored.

• daily - Auto start-up every day has been configured. In the startTime object, only hour and minute are
relevant. All other properties must be ignored.

• weekly - Auto start-up at a specified time on a specific day of every week has been configured. In the
startTime parameter, only dayOfWeek, hour and minute are relevant. All other properties must be
ignored.

startTime
Specifies the current or desired auto start-up time configuration.
Property value constraints:
minProperties: 2

startTime/year
Specifies the year. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 1601
maximum: 30827
default: null

801

Properties

startTime/month
Specifies the month. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 1
maximum: 12
default: null

startTime/dayOfWeek
Specifies the day of the week. This property is null if it is not relevant to the mode. The following values are
possible:

• Saturday - the day of the week is Saturday.
• Sunday - the day of the week is Sunday.
• Monday - the day of the week is Monday.
• Tuesday - the day of the week is Tuesday.
• Wednesday - the day of the week is Wednesday.
• Thursday - the day of the week is Thursday.
• Friday - the day of the week is Friday.

default: null

startTime/day
Specifies the day. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 1
maximum: 31
default: null

startTime/hour
Specifies the hour. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 0
maximum: 23
default: null

startTime/minute
Specifies the minute. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 0
maximum: 59
default: null

Event Messages
None

802

21.1.2 Auxiliaries.ClearAutoStartupTime
This command is used to clear the time at which the machine will automatically start.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

803

21.1.3 Auxiliaries.Register
This command is used to register or deregister for events from the Auxiliaries Unit. The default condition is that all
events are deregistered. The events are only registered or deregistered for the session which sends the command, all
other sessions are unaffected. Only the events specified in the input payload will be affected, all others will remain
in the same state.

No action has been taken if this command returns an error. If a hardware error occurs while executing the
command, the command will return OK, but events will be generated which indicates the auxiliaries which have
failed.

Command Message

Payload (version 2.0) Type Required
{
 "operatorSwitch": "register", string, null
 "tamperSensor": "register", string, null
 "internalTamperSensor": "register", string, null
 "seismicSensor": "register", string, null
 "heatSensor": "register", string, null
 "proximitySensor": "register", string, null
 "ambientLightSensor": "register", string, null
 "enhancedAudioSensor": "register", string, null
 "bootSwitchSensor": "register", string, null
 "consumerDisplaySensor": "register", string, null
 "operatorCallButtonSensor": "register", string, null
 "handsetSensor": "register", string, null
 "headsetMicrophoneSensor": "register", string, null
 "fasciaMicrophoneSensor": "register", string, null
 "cabinetDoor": "register", string, null
 "safeDoor": "register", string, null
 "vandalShield": "register", string, null
 "cabinetFront": "register", string, null
 "cabinetRear": "register", string, null
 "cabinetRight": "register", string, null
 "cabinetLeft": "register", string, null
 "openCloseIndicator": "register", string, null
 "audioIndicator": "register", string, null
 "heatingIndicator": "register", string, null
 "consumerDisplayBacklight": "register", string, null
 "signageDisplay": "register", string, null
 "volume": "register", string, null
 "ups": "register", string, null
 "audibleAlarm": "register", string, null
 "enhancedAudioControl": "register", string, null
 "enhancedMicrophoneControl": "register", string, null

804

Payload (version 2.0) Type Required
 "microphoneVolume": "register", string, null
 "exampleProperty1": "register", string, null
 "exampleProperty2": See exampleProperty1 string, null
}

Properties

operatorSwitch
Specifies whether the Operator Switch should report whenever the switch changes the operating mode:

• register - Report when this sensor is triggered.
• deregister - Do not report when this sensor is triggered.

This property is null if not applicable.
default: null

tamperSensor
Specifies whether the Tamper Sensor should report whenever someone tampers with the terminal. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

internalTamperSensor
Specifies whether the Internal Tamper Sensor should report whenever someone tampers with the internal alarm.
See operatorSwitch for the possible values. This property is null if not applicable.
default: null

seismicSensor
Specifies whether the Seismic Sensor should report whenever any seismic activity is detected. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

heatSensor
Specifies whether the Heat Sensor should report whenever any excessive heat is detected. See operatorSwitch for
the possible values. This property is null if not applicable.
default: null

proximitySensor
Specifies whether the Proximity Sensor should report whenever any movement is detected close to the terminal.
See operatorSwitch for the possible values. This property is null if not applicable.
default: null

ambientLightSensor
Specifies whether the Ambient Light Sensor should report whenever it detects changes in the ambient light. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

enhancedAudioSensor
Specifies whether the Audio Jack should report whenever it detects changes in the audio jack. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

bootSwitchSensor
Specifies whether the Boot Switch should report whenever the delayed effect boot switch is used. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

consumerDisplaySensor
Specifies whether the Consumer Display Sensor should report whenever it detects changes to the consumer
display. See operatorSwitch for the possible values. This property is null if not applicable.
default: null

805

Properties

operatorCallButtonSensor
Specifies whether the Operator Call Button should report whenever the Operator Call Button is pressed or
released. See operatorSwitch for the possible values. This property is null if not applicable.
default: null

handsetSensor
Specifies whether the Handset Sensor should report whenever it detects changes of its status. See operatorSwitch
for the possible values. This property is null if not applicable.
default: null

headsetMicrophoneSensor
Specifies whether the Microphone Jack should report whenever it detects changes in the microphone jack. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

fasciaMicrophoneSensor
Specifies whether the Fascia Microphone should report whenever it detects changes in the microphone state. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

cabinetDoor
Specifies whether the Cabinet Doors should report whenever the doors are opened, closed, bolted or locked. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

safeDoor
Specifies whether the Safe Doors should report whenever the doors are opened, closed, bolted or locked. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

vandalShield
Specifies whether the Vandal Shield should report whenever the shield changed position. See operatorSwitch for
the possible values. This property is null if not applicable.
default: null

cabinetFront
Specifies whether the front Cabinet Doors should report whenever the front doors are opened, closed, bolted or
locked. See operatorSwitch for the possible values. This property is null if not applicable.
default: null

cabinetRear
Specifies whether the rear Cabinet Doors should report whenever the front doors are opened, closed, bolted or
locked. See operatorSwitch for the possible values. This property is null if not applicable.
default: null

cabinetRight
Specifies whether the right Cabinet Doors should report whenever the front doors are opened, closed, bolted or
locked. See operatorSwitch for the possible values. This property is null if not applicable.
default: null

cabinetLeft
Specifies whether the left Cabinet Doors should report whenever the front doors are opened, closed, bolted or
locked. See operatorSwitch for the possible values. This property is null if not applicable.
default: null

openCloseIndicator
Specifies whether the Open/Closed Indicator should report whenever it is turned on (set to open) or turned off
(set to closed). See operatorSwitch for the possible values. This property is null if not applicable.
default: null

806

Properties

audioIndicator
Specifies whether the Audio Indicator should report whenever it is turned on or turned off. See operatorSwitch
for the possible values. This property is null if not applicable.
default: null

heatingIndicator
Specifies whether the Heating device should report whenever it is turned on or turned off. See operatorSwitch
for the possible values. This property is null if not applicable.
default: null

consumerDisplayBacklight
Specifies whether the Consumer Display Backlight should report whenever it is turned on or turned off. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

signageDisplay
Specifies whether the Signage Display should report whenever it is turned on or turned off. See operatorSwitch
for the possible values. This property is null if not applicable.
default: null

volume
Specifies whether the Volume Control device should report whenever it is changed. See operatorSwitch for the
possible values. This property is null if not applicable.
default: null

ups
Specifies whether the UPS device should report whenever it is changed. See operatorSwitch for the possible
values. This property is null if not applicable.
default: null

audibleAlarm
Specifies whether the Audible Alarm device should report whenever it is changed. See operatorSwitch for the
possible values. This property is null if not applicable.
default: null

enhancedAudioControl
Specifies whether the Enhanced Audio Controller should report whenever it changes status (assuming the device
is capable of generating events). See operatorSwitch for the possible values. This property is null if not
applicable.
default: null

enhancedMicrophoneControl
Specifies whether the Enhanced Microphone Controller should report whenever it changes status (assuming the
device is capable of generating events). See operatorSwitch for the possible values. This property is null if not
applicable.
default: null

microphoneVolume
Specifies whether the Microphone Volume Control device should report whenever it is changed. See
operatorSwitch for the possible values. This property is null if not applicable.
default: null

exampleProperty1 (example name)
Specifies whether the vendor dependent sensors should report whenever they change status. See operatorSwitch
for the possible values. This property is null if not applicable.
default: null

807

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidAuxiliary" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidAuxiliary - An attempt to register for or disable events to a auxiliary was invalid because
the auxiliary does not exist.

default: null

Event Messages
None

808

21.1.4 Auxiliaries.SetAuxiliaries
This command is used to set or clear one or more device auxiliaries.

Command Message

Payload (version 2.0) Type Required
{
 "cabinetDoors": "bolt", string, null
 "safeDoor": "bolt", string, null
 "vandalShield": "closed", string, null
 "frontCabinetDoors": "bolt", string, null
 "rearCabinetDoors": "bolt", string, null
 "leftCabinetDoors": "bolt", string, null
 "rightCabinetDoors": "bolt", string, null
 "openClose": "closed", string, null
 "audio": { object, null
 "rate": "on", string 🗸🗸
 "signal": "keypress" string 🗸🗸
 },
 "heating": "on", string, null
 "consumerDisplayBackLight": "on", string, null
 "signageDisplay": "on", string, null
 "volume": 1, integer, null
 "ups": "engage", string, null
 "audibleAlarm": "off", string, null
 "enhancedAudioControl": "publicAudioManual", string, null
 "enhancedMicrophoneControl": "publicAudioManual", string, null
 "microphoneVolume": 1 integer, null
}

Properties

cabinetDoors
Specifies whether all the Cabinet Doors should be bolted or unbolted as one of the following values:

• bolt - All Cabinet Doors are bolted.
• unbolt - All Cabinet Doors are unbolted.

This property is null if not applicable.
default: null

safeDoor
Specifies whether the safe doors should be bolted or unbolted as one of the following values:

• bolt - All Safe Doors are bolted.
• unbolt - All Safe Doors are unbolted.

This property is null if not applicable.
default: null

809

Properties

vandalShield
Specifies whether the Vandal Shield should change position as one of the following values:

• closed - Close the Vandal Shield.
• open - Open the Vandal Shield.
• service - Position the Vandal Shield in the service position.
• keyboard - Position the Vandal Shield to permit access to the keyboard.

This property is null if not applicable.
default: null

frontCabinetDoors
Specifies whether all the front Cabinet Doors should be bolted or unbolted as one of the following values:

• bolt - All front Cabinet Doors are bolted.
• unbolt - All front Cabinet Doors are unbolted.

This property is null if not applicable.
default: null

rearCabinetDoors
Specifies whether all the rear Cabinet Doors should be bolted or unbolted as one of the following values:

• bolt - All rear Cabinet Doors are bolted.
• unbolt - All rear Cabinet Doors are unbolted.

This property is null if not applicable.
default: null

leftCabinetDoors
Specifies whether all the left Cabinet Doors should be bolted or unbolted as one of the following values:

• bolt - All left Cabinet Doors are bolted.
• unbolt - All left Cabinet Doors are unbolted.

This property is null if not applicable.
default: null

rightCabinetDoors
Specifies whether all the right Cabinet Doors should be bolted or unbolted as one of the following values:

• bolt - All right Cabinet Doors are bolted.
• unbolt - All right Cabinet Doors are unbolted.

This property is null if not applicable.
default: null

openClose
Specifies whether the Open/Closed Indicator should show Open or Close to a consumer as one of the following
values:

• closed - The Open/Closed Indicator is changed to show that the terminal is closed for a consumer.
• open - The Open/Closed Indicator is changed to show that the terminal is open to be used by a

consumer.
This property is null if not applicable.
default: null

audio
Specifies whether the Audio Indicator should be turned on or off, if available. This property is null if not
applicable.
default: null

audio/rate
Specifies the rate of the Audio Indicator as one of the following values:

• on - Turn on the Audio Indicator.
• off - Turn off the Audio Indicator.
• continuous - Turn the Audio Indicator to continuous.

810

Properties

audio/signal
Specifies the Audio sound as one of the following values:

• keypress - Sound a key click signal.
• exclamation - Sound an exclamation signal.
• warning - Sound a warning signal.
• error - Sound an error signal.
• critical - Sound a critical error signal.

heating
Specifies whether the Internal Heating device should be turned on or off as one of the following values:

• off - The Internal Heating device is turned off.
• on - The Internal Heating device is turned on.

This property is null if not applicable.
default: null

consumerDisplayBackLight
Specifies whether the Consumer Display Backlight should be turned on or off as one of the following values:

• off - The Consumer Display Backlight is turned off.
• on - The Consumer Display Backlight is turned on.

This property is null if not applicable.
default: null

signageDisplay
Specifies whether the Signage Display should be turned on or off as one of the following values:

• off - The Signage Display is turned off.
• on - The Signage Display is turned on.

This property is null if not applicable.
default: null

volume
Specifies whether the value of the Volume Control should be changed. If so, the value of Volume Control is
defined in an interval from 1 to 1000 where 1 is the lowest volume level and 1000 is the highest volume level.
This property is null if not applicable.
Property value constraints:
minimum: 1
maximum: 1000
default: null

ups
Specifies whether the UPS device should be engaged or disengaged. The UPS device should not be engaged
when the charge level is low. Specified as one of the following values:

• engage - Engage the UPS.
• disengage - Disengage the UPS.

This property is null if not applicable.
default: null

audibleAlarm
Specifies whether the state of the Audible Alarm device should be changed as one of the following values:

• off - Turn off the Audible Alarm device.
• on - Turn on the Audible Alarm device.

This property is null if not applicable.
default: null

811

Properties

enhancedAudioControl
Specifies whether the state of the Enhanced Audio Controller should be changed as one of the following values:

• publicAudioManual - Set the Enhanced Audio Controller to manual mode, public
state (i.e. audio will be played through speakers only).

• publicAudioAuto - Set the Enhanced Audio Controller to auto mode, public state
(i.e. audio will be played through speakers). When a Privacy Device is activated (headset connected/handset off-
hook), the device will go to the private state.

• publicAudioSemiAuto - Set the Enhanced Audio Controller to semi-auto mode, public
state (i.e. audio will be played through speakers). When a Privacy Device is activated, the device will go to the
private state.

• privateAudioManual - Set the Enhanced Audio Controller to manual mode, private
state (i.e. audio will be played only through a connected Privacy Device). In private mode, no audio is
transmitted through the speakers.

• privateAudioAuto - Set the Enhanced Audio Controller to auto mode, private state
(i.e. audio will be played only through an activated Privacy Device). In private mode, no audio is transmitted
through the speakers. When a Privacy Device is deactivated (headset disconnected/handset on-hook), the device
will go to the public state.

• privateAudioSemiAuto - Set the Enhanced Audio Controller to semi-auto mode,
private state (i.e. audio will be played only through an activated Privacy Device). In private mode, no audio is
transmitted through the speakers. When a Privacy Device is deactivated, the device will remain in the private
state.
This property is null if not applicable.
default: null

enhancedMicrophoneControl
Specifies whether the state of the Enhanced Microphone Controller should be changed as one of the following
values:

• publicAudioManual - Set the Enhanced Microphone Controller to manual mode, public
state (i.e. only the microphone in the fascia is active).

• publicAudioAuto - Set the Enhanced Microphone Controller to auto mode, public
state (i.e. only the microphone in the fascia is active). When a Privacy Device with a microphone is activated
(headset connected/handset off-hook), the device will go to the private state.

• publicAudioSemiAuto - Set the Enhanced Microphone Controller to semi-auto mode, public state
(i.e. only the microphone in the fascia is active). When a Privacy Device with a microphone is activated, the
device will go to the private state.

• privateAudioManual - Set the Enhanced Microphone Controller to manual mode, private state
(i.e. audio input will be only via a microphone in the Privacy Device). In private mode, no audio input is
transmitted through the fascia microphone.

• privateAudioAuto - Set the Enhanced Microphone Controller to auto mode, private state
(i.e. audio input will be only via a microphone in the Privacy Device). In private mode, no audio input is
transmitted through the fascia microphone. When a Privacy Device with a microphone is deactivated (headset
disconnected/handset on-hook), the device will go to the public state.

• privateAudioSemiAuto - Set the Enhanced Microphone Controller to semi-auto mode, private
state (i.e. audio input will be only via a microphone in the Privacy Device). In private mode, no audio input is
transmitted through the fascia microphone. When a Privacy Device with a microphone is deactivated, the device
will remain in the private state.
This property is null if not applicable.
default: null

812

Properties

microphoneVolume
Specifies whether the value of the Microphone Volume Control should be changed. If so, the value of
Microphone Volume Control is defined in an interval from 1 to 1000 where 1 is the lowest volume level and
1000 is the highest volume level. This property is null if not applicable.
Property value constraints:
minimum: 1
maximum: 1000
default: null

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidAuxiliary" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. The following values are possible:

• invalidAuxiliary - An attempt to set a auxiliary to a new value was invalid because the auxiliary
does not exist or the auxiliary is pre-configured as an input port.

default: null

Event Messages
None

813

21.1.5 Auxiliaries.SetAutoStartupTime
This command is used to set the time at which the machine will automatically start. It is also used to disable
automatic start-up.

If a new start-up time is set by this command it will replace any previously set start-up time.

Before the auto start-up can take place, the operating system must be shut down.

Command Message

Payload (version 2.0) Type Required
{
 "mode": "specific", string 🗸🗸
 "startTime": { object 🗸🗸
 "year": 1601, integer, null
 "month": 1, integer, null
 "dayOfWeek": "Saturday", string, null
 "day": 1, integer, null
 "hour": 0, integer, null
 "minute": 0 integer, null
 }
}

Properties

mode
Specifies the current or desired auto start-up control mode configured. The following values are possible:

• specific - In the startTime object, only year, *month, day, hour and minute are relevant. All other
properties must be ignored.

• daily - Auto start-up every day has been configured. In the startTime object, only hour and minute are
relevant. All other properties must be ignored.

• weekly - Auto start-up at a specified time on a specific day of every week has been configured. In the
startTime parameter, only dayOfWeek, hour and minute are relevant. All other properties must be
ignored.

startTime
Specifies the current or desired auto start-up time configuration.
Property value constraints:
minProperties: 2

startTime/year
Specifies the year. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 1601
maximum: 30827
default: null

startTime/month
Specifies the month. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 1
maximum: 12
default: null

814

Properties

startTime/dayOfWeek
Specifies the day of the week. This property is null if it is not relevant to the mode. The following values are
possible:

• Saturday - the day of the week is Saturday.
• Sunday - the day of the week is Sunday.
• Monday - the day of the week is Monday.
• Tuesday - the day of the week is Tuesday.
• Wednesday - the day of the week is Wednesday.
• Thursday - the day of the week is Thursday.
• Friday - the day of the week is Friday.

default: null

startTime/day
Specifies the day. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 1
maximum: 31
default: null

startTime/hour
Specifies the hour. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 0
maximum: 23
default: null

startTime/minute
Specifies the minute. This property is null if it is not relevant to the mode.
Property value constraints:
minimum: 0
maximum: 59
default: null

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

815

22. Storage Interface
This chapter defines the Storage interface functionality and messages.

This specification describes the functionality of an XFS4IoT compliant Storage interface. It defines the service-
specific commands that can be issued to the service using the WebSocket endpoint.

This interface is to be used together with other interfaces which require media storage functionality such as Cash
Dispenser, Cash Acceptor or Card Reader interfaces to handle management of the device storage units.

22.1 General Information

22.1.1 Transaction Flows
The following sections describe how various scenarios are handled using XFS4IoT Storage.

Replenishment of a Cash Handling device
Manual Cash Replenishment in XFS4IoT is performed using the Storage.SetStorage command.

Storage.SetStorage can operate in two flows depending on whether the associated Service supports exchange
sessions. During an exchange session, the following additional functionality applies:

• Operational commands such as dispensing notes are not allowed.
• Cash configuration such as currency and value can be set. See Storage.SetStorage for details of which

properties can be set.

Flow 1 - No Exchange

In this flow, one or more storage units are replenished and as only counts have changed, an exchange session is not
required. In this scenario the replenisher removes a storage unit and replaces it with one which contains 1000 USD
20 notes.

816

Flow 2 - With Exchange

In this flow, a storage unit needs to be configured, therefore an exchange session is required. In this scenario the
replenisher removes the storage unit used in flow 1 and replaces it with a different one which contains 1000 USD
20 notes.

817

818

22.2 Command Messages

22.2.1 Storage.GetStorage
This command is used to obtain information regarding the status, capabilities and contents of storage units. The
capabilities of the storage unit can be used to dynamically configure the storage unit using Storage.SetStorage.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Requir
ed

{
 "storage": { object, null
 "unit1": { object
 "id": "RC1", string, null
 "positionName": "Top Right", string, null
 "capacity": 100, integer, null
 "status": "ok", string, null
 "serialNumber": "ABCD1234", string, null
 "cash": { object, null
 "capabilities": { object, null
 "types": { object, null
 "cashIn": true, boolean, null
 "cashOut": false, boolean, null
 "replenishment": false, boolean, null
 "cashInRetract": false, boolean, null
 "cashOutRetract": false, boolean, null
 "reject": false boolean, null
 },
 "items": { object, null
 "fit": false, boolean, null
 "unfit": false, boolean, null
 "unrecognized": false, boolean, null
 "counterfeit": false, boolean, null
 "suspect": false, boolean, null
 "inked": false, boolean, null
 "coupon": false, boolean, null
 "document": false boolean, null
 },

819

Payload (version 2.0) Type Requir
ed

 "hardwareSensors": false, boolean, null
 "retractAreas": 1, integer, null
 "retractThresholds": false, boolean, null
 "cashItems": ["type20USD1", "type50USD1"] array (string),

null

 },
 "configuration": { object, null
 "types": See storage/unit1/cash/capabilities/types
properties

object, null

 "items": See storage/unit1/cash/capabilities/items
properties

object, null

 "currency": "USD", string, null
 "value": 20.00, number, null
 "highThreshold": 500, integer, null
 "lowThreshold": 10, integer, null
 "appLockIn": false, boolean, null
 "appLockOut": false, boolean, null
 "cashItems": See
storage/unit1/cash/capabilities/cashItems,

array (string),
null

 "name": "$10", string, null
 "maxRetracts": 5 integer, null
 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See
storage/unit1/cash/status/initial/type20USD1 properties

object, null

 },
 "out": { object, null
 "presented": See storage/unit1/cash/status/initial
properties

object, null

 "rejected": See storage/unit1/cash/status/initial
properties

object, null

 "distributed": See storage/unit1/cash/status/initial
properties

object, null

820

Payload (version 2.0) Type Requir
ed

 "unknown": See storage/unit1/cash/status/initial
properties

object, null

 "stacked": See storage/unit1/cash/status/initial
properties

object, null

 "diverted": See storage/unit1/cash/status/initial
properties

object, null

 "transport": See storage/unit1/cash/status/initial
properties

object, null

 },
 "in": { object, null
 "retractOperations": 15, integer, null
 "deposited": See storage/unit1/cash/status/initial
properties

object, null

 "retracted": See storage/unit1/cash/status/initial
properties

object, null

 "rejected": See storage/unit1/cash/status/initial
properties

object, null

 "distributed": See storage/unit1/cash/status/initial
properties

object, null

 "transport": See storage/unit1/cash/status/initial
properties

object, null

 },
 "accuracy": "accurate", string, null
 "replenishmentStatus": "ok", string, null
 "operationStatus": "dispenseInoperative" string, null
 }
 },
 "card": { object, null
 "capabilities": { object, null
 "type": "retain", string, null
 "hardwareSensors": true boolean, null
 },
 "configuration": { object, null
 "cardID": "LoyaltyCard", string, null
 "threshold": 10 integer, null
 },
 "status": { object, null
 "initialCount": 0, integer, null
 "count": 0, integer, null
 "retainCount": 0, integer, null
 "replenishmentStatus": "ok" string, null
 }
 },
 "check": { object, null

821

Payload (version 2.0) Type Requir
ed

 "capabilities": { object, null
 "types": { object, null
 "mediaIn": true, boolean, null
 "retract": false boolean, null
 },
 "sensors": { object, null
 "empty": false, boolean, null
 "high": false, boolean, null
 "full": false boolean, null
 }
 },
 "configuration": { object, null
 "types": See storage/unit1/check/capabilities/types
properties

object, null

 "binID": "My check bin", string, null
 "highThreshold": 500, integer, null
 "retractHighThreshold": 5 integer, null
 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "mediaInCount": 100, integer, null
 "count": 150, integer, null
 "retractOperations": 15 integer, null
 },
 "in": See storage/unit1/check/status/initial
properties

object, null

 "replenishmentStatus": "high" string, null
 }
 }
 },
 "unit2": See storage/unit1 properties object
 }
}

Properties

storage
Object containing storage unit information. The property name is the storage unit identifier.
default: null

storage/unit1 (example name)
The object contains a single storage unit.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$

822

Properties

storage/unit1/id
An identifier which can be used for cUnitID in CDM/CIM XFS 3.x migration. May be null if not applicable.
Property value constraints:
pattern: ^.{1,5}$
default: null

storage/unit1/positionName
Fixed physical name for the position. May be null if not applicable.
default: null

storage/unit1/capacity
The nominal capacity of the unit. This may be an estimate as the quality and thickness of the items stored in the
unit may affect how many items can be stored. 0 means the capacity is unknown, null means capacity is not
applicable.
Property value constraints:
minimum: 0
default: null

storage/unit1/status
The state of the unit. This property may be null in events if the state did not change, otherwise the following
values are possible:

• ok - The storage unit is in a good state.
• inoperative - The storage unit is inoperative.
• missing - The storage unit is missing.
• notConfigured - The storage unit has not been configured for use.
• manipulated - The storage unit has been inserted (including removal followed by a reinsertion) when

the device was not in the exchange state - see Storage.StartExchange. This storage unit cannot be used. Only
applies to services which support the exchange state.
default: null

storage/unit1/serialNumber
The storage unit's serial number if it can be read electronically. May be null if not applicable.
default: null

storage/unit1/cash
The cash related contents, status and configuration of the unit. May be null if not applicable.
default: null

storage/unit1/cash/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO, WFS_INF_CIM_CASH_UNIT_INFO and
WFS_INF_CIM_CASH_UNIT_CAPABILITIES in XFS 3.x. This may be null in events if capabilities have not
changed.
default: null

storage/unit1/cash/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data or events if
not changed or being changed.
default: null

storage/unit1/cash/capabilities/types/cashIn
The unit can accept cash items. If cashOut is also true then the unit can recycle. May be null in command data or
events if not changed or being changed.
default: null

823

Properties

storage/unit1/cash/capabilities/types/cashOut
The unit can dispense cash items. If cashIn is also true then the unit can recycle. May be null in command data
or events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/types/replenishment
Replenishment container. A storage unit can be refilled from or emptied to a replenishment container. May be
null in command data or events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/types/cashInRetract
Retract unit. Items can be retracted into this unit during Cash In operations. May be null in command data or
events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/types/cashOutRetract
Retract unit. Items can be retracted into this unit during Cash Out operations. May be null in command data or
events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/types/reject
Reject unit. Items can be rejected into this unit. May be null in command data or events if not changed or being
changed.
default: null

storage/unit1/cash/capabilities/items
The types of cash media the unit is capable of storing or configured to store. This is a combination of one or
more item types. May only be modified in an exchange state if applicable. See Note Classification for more
information about cash classification levels. May be null in command data if not being changed. May be null in
command data or events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/items/fit
The storage unit can store cash items which are fit for recycling. May be null in command data or events if not
changed or being changed.
default: null

storage/unit1/cash/capabilities/items/unfit
The storage unit can store cash items which are unfit for recycling. May be null in command data or events if not
changed or being changed.
default: false

storage/unit1/cash/capabilities/items/unrecognized
The storage unit can store unrecognized cash items. May be null in command data or events if not changed or
being changed.
default: null

storage/unit1/cash/capabilities/items/counterfeit
The storage unit can store counterfeit cash items. May be null in command data or events if not changed or being
changed.
default: null

storage/unit1/cash/capabilities/items/suspect
The storage unit can store suspect counterfeit cash items. May be null in command data or events if not changed
or being changed.
default: null

824

Properties

storage/unit1/cash/capabilities/items/inked
The storage unit can store cash items which have been identified as ink stained. May be null in command data or
events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/items/coupon
Storage unit containing coupons or advertising material. May be null in command data or events if not changed
or being changed.
default: null

storage/unit1/cash/capabilities/items/document
Storage unit containing documents. May be null in command data or events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/hardwareSensors
Indicates whether the storage unit has sensors which report the status. If true, then hardware sensors will override
count-based replenishment status for empty and full. Other replenishment states can be overridden by counts.
May be null in command data or events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/retractAreas
If items can be retracted into this storage unit, this is the number of areas within the storage unit which allow
physical separation of different bunches. If there is no physical separation of retracted bunches within this
storage unit, this value is 1. May be null if items can not be retracted into this storage unit or in events if not
changed or being changed.
Property value constraints:
minimum: 1
default: null

storage/unit1/cash/capabilities/retractThresholds
If true, indicates that retract capacity is based on counts. If false, indicates that retract capacity is based on the
number of commands which resulted in items being retracted into the storage unit. May be null if items can not
be retracted into this storage unit or in events if not changed or being changed.
default: null

storage/unit1/cash/capabilities/cashItems
An array containing multiple cash items, listing what a storage unit is capable of or configured to handle. Each
member is the object name of a cash item reported by CashManagement.GetBankNoteTypes. May be null in
command data or events if not being modified.
Property value constraints:
minItems: 1
default: null

storage/unit1/cash/configuration
Indicates what this storage unit is configured as or is being configured to do - where applicable the supported
options can be derived from capabilities.
If the Service supports an exchange state, only a subset of these parameters may be modified unless in an
exchange. Parameters which may only be modified in an exchange state are listed.
May be null in command data or events if no configuration is to be or has been changed.
default: null

storage/unit1/cash/configuration/currency
ISO 4217 currency identifier [Ref. cashmanagement-1]. May only be modified in an exchange state if applicable.
May be null if the unit is configured to store mixed currencies or non-cash items.
Property value constraints:
pattern: ^[A-Z]{3}$
default: null

825

Properties

storage/unit1/cash/configuration/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
May be null in command data or events if not being modified.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. The total number is not reported directly, but derived from initial + in - out.
If null, high is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

storage/unit1/cash/configuration/lowThreshold
If specified, replenishmentStatus is set to low if total number of items in the storage unit is less than this number.
The total number is not reported directly, but derived from initial + in - out.
If null, low is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

storage/unit1/cash/configuration/appLockIn
If true, items cannot be accepted into the storage unit in Cash In operations. May be null in command data or
events if not being modified.
default: null

storage/unit1/cash/configuration/appLockOut
If true, items cannot be dispensed from the storage unit in Cash Out operations. May be null in command data or
events if not being modified.
default: null

storage/unit1/cash/configuration/name
Application configured name of the unit. May be null in command data or events if not being modified.
default: null

storage/unit1/cash/configuration/maxRetracts
If specified, this is the number of retract operations allowed into the unit. Only applies to retract units. If
retractOperations equals this number, then no further retracts are allowed into this storage unit.
If null in output, the maximum number is not limited by counts. May be null in command data or events if not
being modified.
Property value constraints:
minimum: 1
default: null

storage/unit1/cash/status
Indicates the storage unit status - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO and WFS_INF_CIM_CASH_UNIT_INFO in XFS 3.x. Note that the
count of items in the storage unit must be derived from the counts reported. May be null in events if not
changing.
default: null

826

Properties

storage/unit1/cash/status/index
Assigned by the Service. Will be a unique number which can be used to determine usNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

storage/unit1/cash/status/initial
The cash related items which were in the storage unit at the last replenishment.
default: null

storage/unit1/cash/status/initial/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

storage/unit1/cash/status/initial/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

827

Properties

storage/unit1/cash/status/out
The items moved from this storage unit by cash commands to another destination since the last replenishment of
this unit. This includes intermediate positions such as a stacker, where an item has been moved before moving to
the final destination such as another storage unit or presentation to a customer.
Counts for non-intermediate positions are reset if initial is set for this unit by Storage.GetStorage. See
descriptions for the counts which will not be reset by this command.
Intermediate position counts are reset when the intermediate position is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved from the storage unit by cash commands.
default: null

storage/unit1/cash/status/out/presented
The items dispensed from this storage unit which are or were customer accessible. Will be null if no items were
presented.
default: null

storage/unit1/cash/status/out/rejected
The items dispensed from this storage unit which were invalid and were diverted to a reject storage unit and were
not customer accessible during the operation. Will be null if no items were rejected.
default: null

storage/unit1/cash/status/out/distributed
The items dispensed from this storage unit which were moved to a storage unit other than a reject storage unit
and were not customer accessible during the operation. Will be null if no items were distributed.
default: null

storage/unit1/cash/status/out/unknown
The items dispensed from this storage unit which moved to an unknown position. Will be null if no items were
unknown.
default: null

storage/unit1/cash/status/out/stacked
The items dispensed from this storage unit which are not customer accessible and are currently stacked awaiting
presentation to the customer. This item list can increase and decrease as items are moved around in the device.
This is not reset if initial is set for this unit by Storage.GetStorage. Will be null if no items were stacked.
default: null

storage/unit1/cash/status/out/diverted
The items dispensed from this storage unit which are not customer accessible and were diverted to a temporary
location due to being invalid and have not yet been deposited in a storage unit. This item list can increase and
decrease as items are moved around in the device. This is not reset if initial is set for this unit by
Storage.GetStorage. Will be null if no items were diverted.
default: null

storage/unit1/cash/status/out/transport
The items dispensed from this storage unit which are not customer accessible and which have jammed in the
transport. This item list can increase and decrease as items are moved around in the device. This is not reset if
initial is set for this unit by Storage.GetStorage. Will be null if no items apply.
default: null

828

Properties

storage/unit1/cash/status/in
List of items inserted in this storage unit by cash commands from another source since the last replenishment of
this unit. This also reports items in the transport, where an item has jammed before being deposited in the
storage unit.
Counts other than transport are reset if initial is set for this unit by Storage.GetStorage. See descriptions for the
counts which will not be reset by this command.
The transport count is reset when it is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved into the storage unit by cash commands.
default: null

storage/unit1/cash/status/in/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/in/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

storage/unit1/cash/status/in/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

storage/unit1/cash/status/in/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

storage/unit1/cash/status/in/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

storage/unit1/cash/status/in/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

829

Properties

storage/unit1/cash/status/accuracy
Describes the accuracy of the counts reported by out and in. If null in Storage.GetStorage, the hardware is not
capable of determining the accuracy, otherwise the following values are possible:

• accurate - The count is expected to be accurate. The notes were previously counted
and there have since been no events that might have introduced inaccuracy.

• accurateSet - The count is expected to be accurate. The counts were previously set and there have
since been no events that might have introduced inaccuracy.

• inaccurate - The count is likely to be inaccurate. A jam, picking fault, or some other event may
have resulted in a counting inaccuracy.

• unknown - The accuracy of count cannot be determined. This may be due to storage unit insertion or
some other hardware event.
default: null

storage/unit1/cash/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in events if not
changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on sensors or counts.
• high - The storage unit is almost full (either sensor based or exceeded the

highThreshold.
• low - The storage unit is almost empty (either sensor based or below the

lowThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has hardwareSensors, this state is not set by counts.
default: null

storage/unit1/cash/status/operationStatus
On some devices it may be possible to allow items to be dispensed in a recycling storage unit while deposit is
inoperable or vice-versa. This property allows the Service to report that one operation is possible while the other
is not, without taking the storage unit out of Service completely with status or replenishmentStatus.
Following values are possible:

• dispenseInoperative - Dispense operations are possible and deposit operations are not possible on
this recycling storage unit.

• depositInoperative - Deposit operations are possible and dispense operations are not possible on
this recycling storage unit.
If null in Storage.GetStorage, status and replenishmentStatus apply to both cash out and cash in operations.
default: null

storage/unit1/card
The card related contents, status and configuration of the unit. May be null if not applicable.
default: null

storage/unit1/card/capabilities
Indicates the card storage unit capabilities. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

830

Properties

storage/unit1/card/capabilities/type
The type of card storage. This property may be null in events if the type did not change, otherwise will be one of
the following values:

• retain - The storage unit can retain cards.
• dispense - The storage unit can dispense cards.
• park - The storage unit can be used to temporarily store a card allowing another card to enter the

transport.
default: null

storage/unit1/card/capabilities/hardwareSensors
Indicates whether the storage unit has hardware sensors that can detect threshold states. This property may be
null in events if it did not change.
default: null

storage/unit1/card/configuration
Indicates the card storage unit configuration. This property can be null if the storage unit is being set using
Storage.SetStorage, or a change is being reported using Storage.StorageChangedEvent or
Storage.StorageThresholdEvent.

storage/unit1/card/configuration/cardID
The identifier that may be used to identify the type of cards in the storage unit. This is only applicable to
dispense storage units and may be null in events if it did not change.
default: null

storage/unit1/card/configuration/threshold
If the threshold value is non zero, hardware sensors in the storage unit do not trigger
Storage.StorageThresholdEvent events. This property may be null in events if it did not change.
If non zero, when count reaches the threshold value:

• For retain type storage units, a high threshold will be sent.
• For dispense type storage units, a low threshold will be sent.

Property value constraints:
minimum: 0
default: null

storage/unit1/card/status
Indicates the card storage unit status. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

storage/unit1/card/status/initialCount
The initial number of cards in the storage unit. This is only applicable to dispense type storage units. This
property may be null in events if it did not change.
This value is persistent.
Property value constraints:
minimum: 0
default: null

831

Properties

storage/unit1/card/status/count
The number of cards in the storage unit.
If the storage unit type is dispense:

• This count also includes a card dispensed from the storage unit which has not been moved to either the
exit position or a dispense type storage unit.

• This count is decremented when a card from the card storage unit is moved to the exit position or
retained. If this value reaches zero it will not decrement further but will remain at zero.

If the storage unit type is retain:
• The count is incremented when a card is moved into the storage unit.

If the storage unit type is park:
• The count will increment when a card is moved into the storage module and decremented when a card

is moved out of the storage module.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

storage/unit1/card/status/retainCount
The number of cards from this storage unit which are in a retain storage unit.
This is only applicable to dispense type storage units.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

storage/unit1/card/status/replenishmentStatus
The state of the cards in the storage unit if it can be determined. Note that overall status of the storage unit must
be taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will be null. The property may also be null in events
if it did not change.
The following values are possible:

• ok - The storage unit is in a good state.
• full - The storage unit is full.
• high - The storage unit is almost full (either sensor based or above the

threshold).
• low - The storage unit is almost empty (either sensor based or below the

threshold).
• empty - The storage unit is empty.

default: null

storage/unit1/check
The check related contents, status and configuration of the unit. May be null if not applicable.
default: null

storage/unit1/check/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_IPM_MEDIA_BIN_INFO and WFS_INF_IPM_MEDIA_BIN_CAPABILITIES in XFS 3.x. May be
null in events if not changed.
default: null

storage/unit1/check/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data and events if
not changing.
default: null

832

Properties

storage/unit1/check/capabilities/types/mediaIn
The unit can accept items during Media In transactions. May be null in command data and events if not
changing.
default: null

storage/unit1/check/capabilities/types/retract
Retract unit. Items can be retracted into this unit using Check.RetractMedia. May be null in command data and
events if not changing.
default: null

storage/unit1/check/capabilities/sensors
The types of sensor the unit has. May be null in command data and events if not changing.
default: null

storage/unit1/check/capabilities/sensors/empty
The unit contains a hardware sensor which reports when the unit is empty. May be null in command data and
events if not changing.
default: null

storage/unit1/check/capabilities/sensors/high
The unit contains a hardware sensor which reports when the unit is nearly full. May be null in command data and
events if not changing.
default: null

storage/unit1/check/capabilities/sensors/full
The unit contains a hardware sensor which reports when the unit is full. May be null in command data and events
if not changing.
default: null

storage/unit1/check/configuration
Indicates what the storage unit is configured to do - where applicable the supported options can be derived from
capabilities. May be null in command data and events if not being modified.

storage/unit1/check/configuration/binID
An application defined Storage Unit Identifier. This may be null in events if not changing.
default: null

storage/unit1/check/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. May be null in command data and events if not being modified.
Property value constraints:
minimum: 1
default: null

storage/unit1/check/configuration/retractHighThreshold
If specified and the storage unit is configured as retract, replenishmentStatus is set to high if the total number of
retract operations in the storage unit is greater than this number. May be null in command data and events if not
being modified.
Property value constraints:
minimum: 0
default: null

storage/unit1/check/status
Indicates the storage unit status. May be null in events where status has not changed.
default: null

833

Properties

storage/unit1/check/status/index
Assigned by the Service. Will be a unique number which can be used to determine usBinNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

storage/unit1/check/status/initial
The check related counts as set at the last replenishment. May be null in events where status has not changed.
default: null

storage/unit1/check/status/initial/mediaInCount
Count of items added to the storage unit due to Check operations. If the number of items is not counted this is
not reported and retractOperations is incremented as items are added to the unit. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/check/status/initial/count
Total number of items added to the storage unit due to any operations. If the number of items is not counted this
is not reported and retractOperations is incremented as items are added to the unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/check/status/initial/retractOperations
Total number of operations which resulted in items being retracted to the storage unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/check/status/in
The check items added to the unit since the last replenishment. May be null in events where status has not
changed.
default: null

storage/unit1/check/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in command data
and events if not changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on a

full sensor or counts.
• high - The storage unit is almost full (either

high sensor based or exceeded the highThreshold or retractHighThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has the empty sensor, this state is not set by counts.
default: null

Event Messages
None

834

22.2.2 Storage.SetStorage
This command is used to adjust information about the configuration and contents of the device's storage units. Only
properties that are to be changed need to be set in the payload of this command; properties that are not meant to
change can be null.

This command generates the Storage.StorageChangedEvent to inform applications that storage unit information has
been changed.

Only a subset of the information reported by Storage.GetStorage may be modified by this command therefore the
payload is a subset of the GetStorage output. In addition, if the service supports an exchange state, only a subset of
the information which may be modified by this command can be modified unless the service is in an exchange
state. The descriptions of each property list which can be modified at any point using this command; any other
changes must be performed while in an exchange state.

The values set by this command are persistent.

Command Message

Payload (version 2.0) Type Requir
ed

{
 "storage": { object 🗸🗸
 "unit1": { object
 "cash": { object, null
 "configuration": { object, null
 "types": { object, null
 "cashIn": true, boolean, null
 "cashOut": false, boolean, null
 "replenishment": false, boolean, null
 "cashInRetract": false, boolean, null
 "cashOutRetract": false, boolean, null
 "reject": false boolean, null
 },
 "items": { object, null
 "fit": false, boolean, null
 "unfit": false, boolean, null
 "unrecognized": false, boolean, null
 "counterfeit": false, boolean, null
 "suspect": false, boolean, null
 "inked": false, boolean, null
 "coupon": false, boolean, null
 "document": false boolean, null
 },
 "currency": "USD", string, null
 "value": 20.00, number, null
 "highThreshold": 500, integer, null
 "lowThreshold": 10, integer, null
 "appLockIn": false, boolean, null

835

Payload (version 2.0) Type Requir
ed

 "appLockOut": false, boolean, null
 "cashItems": ["type20USD1", "type50USD1"], array (string),

null

 "name": "$10", string, null
 "maxRetracts": 5 integer, null
 },
 "status": { object, null
 "initial": { object, null
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See
storage/unit1/cash/status/initial/type20USD1 properties

object, null

 }
 }
 },
 "card": { object, null
 "configuration": { object, null
 "cardID": "LoyaltyCard", string, null
 "threshold": 10 integer, null
 },
 "status": { object, null
 "initialCount": 0 integer 🗸🗸
 }
 },
 "check": { object, null
 "configuration": { object, null
 "types": { object, null
 "mediaIn": true, boolean, null
 "retract": false boolean, null
 },
 "binID": "My check bin", string, null
 "highThreshold": 500, integer, null
 "retractHighThreshold": 5 integer, null
 },
 "status": { object, null

836

Payload (version 2.0) Type Requir
ed

 "initial": { object 🗸🗸
 "mediaInCount": 100, integer, null
 "count": 150, integer, null
 "retractOperations": 15 integer, null
 }
 }
 }
 },
 "unit2": See storage/unit1 properties object
 }
}

Properties

storage
Object containing storage unit information.

storage/unit1 (example name)
The object contains a single storage unit.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$

storage/unit1/cash
The cash related status and configuration of the unit to be set. May be null if not applicable.
default: null

storage/unit1/cash/configuration
Indicates what this storage unit is configured as or is being configured to do - where applicable the supported
options can be derived from capabilities.
If the Service supports an exchange state, only a subset of these parameters may be modified unless in an
exchange. Parameters which may only be modified in an exchange state are listed.
May be null in command data or events if no configuration is to be or has been changed.
default: null

storage/unit1/cash/configuration/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data or events if
not changed or being changed.
default: null

storage/unit1/cash/configuration/types/cashIn
The unit can accept cash items. If cashOut is also true then the unit can recycle. May be null in command data or
events if not changed or being changed.
default: null

storage/unit1/cash/configuration/types/cashOut
The unit can dispense cash items. If cashIn is also true then the unit can recycle. May be null in command data
or events if not changed or being changed.
default: null

storage/unit1/cash/configuration/types/replenishment
Replenishment container. A storage unit can be refilled from or emptied to a replenishment container. May be
null in command data or events if not changed or being changed.
default: null

837

Properties

storage/unit1/cash/configuration/types/cashInRetract
Retract unit. Items can be retracted into this unit during Cash In operations. May be null in command data or
events if not changed or being changed.
default: null

storage/unit1/cash/configuration/types/cashOutRetract
Retract unit. Items can be retracted into this unit during Cash Out operations. May be null in command data or
events if not changed or being changed.
default: null

storage/unit1/cash/configuration/types/reject
Reject unit. Items can be rejected into this unit. May be null in command data or events if not changed or being
changed.
default: null

storage/unit1/cash/configuration/items
The types of cash media the unit is capable of storing or configured to store. This is a combination of one or
more item types. May only be modified in an exchange state if applicable. See Note Classification for more
information about cash classification levels. May be null in command data if not being changed. May be null in
command data or events if not changed or being changed.
default: null

storage/unit1/cash/configuration/items/fit
The storage unit can store cash items which are fit for recycling. May be null in command data or events if not
changed or being changed.
default: null

storage/unit1/cash/configuration/items/unfit
The storage unit can store cash items which are unfit for recycling. May be null in command data or events if not
changed or being changed.
default: false

storage/unit1/cash/configuration/items/unrecognized
The storage unit can store unrecognized cash items. May be null in command data or events if not changed or
being changed.
default: null

storage/unit1/cash/configuration/items/counterfeit
The storage unit can store counterfeit cash items. May be null in command data or events if not changed or being
changed.
default: null

storage/unit1/cash/configuration/items/suspect
The storage unit can store suspect counterfeit cash items. May be null in command data or events if not changed
or being changed.
default: null

storage/unit1/cash/configuration/items/inked
The storage unit can store cash items which have been identified as ink stained. May be null in command data or
events if not changed or being changed.
default: null

storage/unit1/cash/configuration/items/coupon
Storage unit containing coupons or advertising material. May be null in command data or events if not changed
or being changed.
default: null

storage/unit1/cash/configuration/items/document
Storage unit containing documents. May be null in command data or events if not changed or being changed.
default: null

838

Properties

storage/unit1/cash/configuration/currency
ISO 4217 currency identifier [Ref. cashmanagement-1]. May only be modified in an exchange state if applicable.
May be null if the unit is configured to store mixed currencies or non-cash items.
Property value constraints:
pattern: ^[A-Z]{3}$
default: null

storage/unit1/cash/configuration/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
May be null in command data or events if not being modified.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. The total number is not reported directly, but derived from initial + in - out.
If null, high is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

storage/unit1/cash/configuration/lowThreshold
If specified, replenishmentStatus is set to low if total number of items in the storage unit is less than this number.
The total number is not reported directly, but derived from initial + in - out.
If null, low is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

storage/unit1/cash/configuration/appLockIn
If true, items cannot be accepted into the storage unit in Cash In operations. May be null in command data or
events if not being modified.
default: null

storage/unit1/cash/configuration/appLockOut
If true, items cannot be dispensed from the storage unit in Cash Out operations. May be null in command data or
events if not being modified.
default: null

storage/unit1/cash/configuration/cashItems
An array containing multiple cash items, listing what a storage unit is capable of or configured to handle. Each
member is the object name of a cash item reported by CashManagement.GetBankNoteTypes. May be null in
command data or events if not being modified.
Property value constraints:
minItems: 1
default: null

storage/unit1/cash/configuration/name
Application configured name of the unit. May be null in command data or events if not being modified.
default: null

839

Properties

storage/unit1/cash/configuration/maxRetracts
If specified, this is the number of retract operations allowed into the unit. Only applies to retract units. If
retractOperations equals this number, then no further retracts are allowed into this storage unit.
If null in output, the maximum number is not limited by counts. May be null in command data or events if not
being modified.
Property value constraints:
minimum: 1
default: null

storage/unit1/cash/status
Set Cash Storage unit properties due to a replenishment or other service action. Only a limited number of
properties can be set directly, others may be modified indirectly. May be null if not being modified.
default: null

storage/unit1/cash/status/initial
The cash related items which are in the storage unit at the last replenishment. If specified, out and in are reset to
empty.
default: null

storage/unit1/cash/status/initial/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

storage/unit1/cash/status/initial/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/cash/status/initial/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

840

Properties

storage/unit1/cash/status/initial/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

storage/unit1/card
The card related contents and configuration of the unit. May be null if not applicable.
default: null

storage/unit1/card/configuration
Indicates the card storage unit configuration. This property can be null if the storage unit is being set using
Storage.SetStorage, or a change is being reported using Storage.StorageChangedEvent or
Storage.StorageThresholdEvent.

storage/unit1/card/configuration/cardID
The identifier that may be used to identify the type of cards in the storage unit. This is only applicable to
dispense storage units and may be null in events if it did not change.
default: null

storage/unit1/card/configuration/threshold
If the threshold value is non zero, hardware sensors in the storage unit do not trigger
Storage.StorageThresholdEvent events. This property may be null in events if it did not change.
If non zero, when count reaches the threshold value:

• For retain type storage units, a high threshold will be sent.
• For dispense type storage units, a low threshold will be sent.

Property value constraints:
minimum: 0
default: null

storage/unit1/card/status
Indicates the card storage unit status being set. This property can be null if none of the properties it contains need
to be changed.

storage/unit1/card/status/initialCount
The number of cards in the storage unit at the last replenishment. If specified, count is set to match this value and
retainCount is set to zero.
Property value constraints:
minimum: 0

storage/unit1/check
The check related contents, status and configuration of the unit. May be null if not applicable.
default: null

storage/unit1/check/configuration
Indicates what the storage unit is configured to do - where applicable the supported options can be derived from
capabilities. May be null in command data and events if not being modified.

storage/unit1/check/configuration/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data and events if
not changing.
default: null

storage/unit1/check/configuration/types/mediaIn
The unit can accept items during Media In transactions. May be null in command data and events if not
changing.
default: null

841

Properties

storage/unit1/check/configuration/types/retract
Retract unit. Items can be retracted into this unit using Check.RetractMedia. May be null in command data and
events if not changing.
default: null

storage/unit1/check/configuration/binID
An application defined Storage Unit Identifier. This may be null in events if not changing.
default: null

storage/unit1/check/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. May be null in command data and events if not being modified.
Property value constraints:
minimum: 1
default: null

storage/unit1/check/configuration/retractHighThreshold
If specified and the storage unit is configured as retract, replenishmentStatus is set to high if the total number of
retract operations in the storage unit is greater than this number. May be null in command data and events if not
being modified.
Property value constraints:
minimum: 0
default: null

storage/unit1/check/status
Set Check Storage unit properties due to a replenishment or other service action. Only a limited number of
properties can be set directly, others may be modified indirectly. May be null if not being modified.
default: null

storage/unit1/check/status/initial
The check related counts as set at the last replenishment.

storage/unit1/check/status/initial/mediaInCount
Count of items added to the storage unit due to Check operations. If the number of items is not counted this is
not reported and retractOperations is incremented as items are added to the unit. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/check/status/initial/count
Total number of items added to the storage unit due to any operations. If the number of items is not counted this
is not reported and retractOperations is incremented as items are added to the unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

storage/unit1/check/status/initial/retractOperations
Total number of operations which resulted in items being retracted to the storage unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

842

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "invalidUnit" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• invalidUnit - Invalid unit.
• noExchangeActive - The device is not in an exchange state and a request has been made to

modify information which can only be modified in an exchange state.
• storageUnitError - A problem occurred with a storage unit. A

Storage.StorageErrorEvent will be posted with the details.
default: null

Event Messages

• Storage.StorageErrorEvent

843

22.2.3 Storage.StartExchange
This command puts the device in an exchange state, i.e. a state in which storage units can be emptied, replenished,
removed or replaced. The command will initiate any physical processes which may be necessary to make the
storage units accessible. If this command returns a successful completion the device is in an exchange state.

The current exchange state is reported by exchange and any change of state is marked by a
Common.StatusChangedEvent.

While in the exchange state:

• Storage.SetStorage may be called as required to configure the storage units. Note that some of the storage
properties may only be set while in an exchange state, particularly properties which modify the
configuration of the storage unit or units. The properties affected by this are documented in
Storage.SetStorage. Note that Storage.SetStorage does not need to be called if the Service can obtain
storage unit information from self-configuring units.

• Commands which operate the device mechanically such as an attempt to dispense notes may be rejected
with exchangeActive. This allows the device to be replenished safely and in a controlled manner.

Not all devices which support the Storage interface support an exchange state, Storage.SetStorage may be sufficient
to configure those storage units. In such devices, this command is not supported. Similarly, devices which support
the Storage interface may not require an exchange state to be entered if for example only modifying counts.

The exchange state is exited by calling Storage.EndExchange.

In the exchange state the Storage.SetStorage command can be used multiple times to adjust the storage unit
information, until the Storage.EndExchange command is performed.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "storageUnitError" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• storageUnitError - An error occurred with a storage unit while performing the exchange
operation. A Storage.StorageErrorEvent will be sent with the details.

• exchangeActive - The device is already in an exchange state.
• transactionActive - A transaction is active.

default: null

Event Messages

• Storage.StorageErrorEvent

844

22.2.4 Storage.EndExchange
This command will end the exchange state. If any physical action took place as a result of the
Storage.StartExchange command then this command will cause the storage units to be returned to their normal
physical state. Any necessary device testing will also be initiated.

The current exchange state is reported by exchange and any change of state is marked by a
Common.StatusChangedEvent.

Storage.SetStorage does not need to be called if the Service can obtain storage unit information from self-
configuring units.

If an error occurs during the execution of this command, then the application must issue a Storage.GetStorage to
determine the storage unit information.

A Storage.StorageErrorEvent will be sent for any storage unit which cannot be successfully updated. If no units
could be updated then an error code will be returned.

Even if this command does not return a successful completion the exchange state has ended.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "errorCode": "storageUnitError" string, null
}

Properties

errorCode
Specifies the error code if applicable, otherwise null. Following values are possible:

• storageUnitError - A storage unit problem occurred that meant no storage units could be
updated. One or more Storage.StorageErrorEvent events will be sent with the details.

• noExchangeActive - There is no exchange active.
default: null

Event Messages

• Storage.StorageErrorEvent

845

22.3 Event Messages

22.3.1 Storage.StorageErrorEvent
This event is generated if there is a problem with a storage unit during the execution of a command.

Event Message

Payload (version 2.0) Type Requir
ed

{
 "failure": "empty", string 🗸🗸
 "unit": { object 🗸🗸
 "unit1": { object
 "id": "RC1", string, null
 "positionName": "Top Right", string, null
 "capacity": 100, integer, null
 "status": "ok", string, null
 "serialNumber": "ABCD1234", string, null
 "cash": { object, null
 "capabilities": { object, null
 "types": { object, null
 "cashIn": true, boolean, null
 "cashOut": false, boolean, null
 "replenishment": false, boolean, null
 "cashInRetract": false, boolean, null
 "cashOutRetract": false, boolean, null
 "reject": false boolean, null
 },
 "items": { object, null
 "fit": false, boolean, null
 "unfit": false, boolean, null
 "unrecognized": false, boolean, null
 "counterfeit": false, boolean, null
 "suspect": false, boolean, null
 "inked": false, boolean, null
 "coupon": false, boolean, null
 "document": false boolean, null
 },
 "hardwareSensors": false, boolean, null
 "retractAreas": 1, integer, null
 "retractThresholds": false, boolean, null
 "cashItems": ["type20USD1", "type50USD1"] array (string),

null

846

Payload (version 2.0) Type Requir
ed

 },
 "configuration": { object, null
 "types": See unit/unit1/cash/capabilities/types
properties

object, null

 "items": See unit/unit1/cash/capabilities/items
properties

object, null

 "currency": "USD", string, null
 "value": 20.00, number, null
 "highThreshold": 500, integer, null
 "lowThreshold": 10, integer, null
 "appLockIn": false, boolean, null
 "appLockOut": false, boolean, null
 "cashItems": See
unit/unit1/cash/capabilities/cashItems,

array (string),
null

 "name": "$10", string, null
 "maxRetracts": 5 integer, null
 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See
unit/unit1/cash/status/initial/type20USD1 properties

object, null

 },
 "out": { object, null
 "presented": See unit/unit1/cash/status/initial
properties

object, null

 "rejected": See unit/unit1/cash/status/initial
properties

object, null

 "distributed": See unit/unit1/cash/status/initial
properties

object, null

 "unknown": See unit/unit1/cash/status/initial
properties

object, null

 "stacked": See unit/unit1/cash/status/initial
properties

object, null

 "diverted": See unit/unit1/cash/status/initial
properties

object, null

847

Payload (version 2.0) Type Requir
ed

 "transport": See unit/unit1/cash/status/initial
properties

object, null

 },
 "in": { object, null
 "retractOperations": 15, integer, null
 "deposited": See unit/unit1/cash/status/initial
properties

object, null

 "retracted": See unit/unit1/cash/status/initial
properties

object, null

 "rejected": See unit/unit1/cash/status/initial
properties

object, null

 "distributed": See unit/unit1/cash/status/initial
properties

object, null

 "transport": See unit/unit1/cash/status/initial
properties

object, null

 },
 "accuracy": "accurate", string, null
 "replenishmentStatus": "ok", string, null
 "operationStatus": "dispenseInoperative" string, null
 }
 },
 "card": { object, null
 "capabilities": { object, null
 "type": "retain", string, null
 "hardwareSensors": true boolean, null
 },
 "configuration": { object, null
 "cardID": "LoyaltyCard", string, null
 "threshold": 10 integer, null
 },
 "status": { object, null
 "initialCount": 0, integer, null
 "count": 0, integer, null
 "retainCount": 0, integer, null
 "replenishmentStatus": "ok" string, null
 }
 },
 "check": { object, null
 "capabilities": { object, null
 "types": { object, null
 "mediaIn": true, boolean, null
 "retract": false boolean, null
 },

848

Payload (version 2.0) Type Requir
ed

 "sensors": { object, null
 "empty": false, boolean, null
 "high": false, boolean, null
 "full": false boolean, null
 }
 },
 "configuration": { object, null
 "types": See unit/unit1/check/capabilities/types
properties

object, null

 "binID": "My check bin", string, null
 "highThreshold": 500, integer, null
 "retractHighThreshold": 5 integer, null
 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "mediaInCount": 100, integer, null
 "count": 150, integer, null
 "retractOperations": 15 integer, null
 },
 "in": See unit/unit1/check/status/initial properties object, null
 "replenishmentStatus": "high" string, null
 }
 }
 }
 }
}

Properties

failure
Specifies the kind of failure that occurred in the storage unit. Following values are possible:

• empty - Specified storage unit is empty.
• error - Specified storage unit has malfunctioned.
• full - Specified storage unit is full.
• locked - Specified storage unit is locked.
• invalid - Specified storage unit is invalid.
• config - An attempt has been made to change the settings of a self-configuring storage unit.
• notConfigured - Specified storage unit is not configured.
• feedModuleProblem - A problem has been detected with the feeding module.
• physicalLocked - The storage unit could not be unlocked and remains physically locked.
• physicalUnlocked - The storage unit could not be locked and remains physically unlocked.

unit
The storage unit object that caused the problem.

849

Properties

unit/unit1 (example name)
The object contains a single storage unit.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$

unit/unit1/id
An identifier which can be used for cUnitID in CDM/CIM XFS 3.x migration. May be null if not applicable.
Property value constraints:
pattern: ^.{1,5}$
default: null

unit/unit1/positionName
Fixed physical name for the position. May be null if not applicable.
default: null

unit/unit1/capacity
The nominal capacity of the unit. This may be an estimate as the quality and thickness of the items stored in the
unit may affect how many items can be stored. 0 means the capacity is unknown, null means capacity is not
applicable.
Property value constraints:
minimum: 0
default: null

unit/unit1/status
The state of the unit. This property may be null in events if the state did not change, otherwise the following
values are possible:

• ok - The storage unit is in a good state.
• inoperative - The storage unit is inoperative.
• missing - The storage unit is missing.
• notConfigured - The storage unit has not been configured for use.
• manipulated - The storage unit has been inserted (including removal followed by a reinsertion) when

the device was not in the exchange state - see Storage.StartExchange. This storage unit cannot be used. Only
applies to services which support the exchange state.
default: null

unit/unit1/serialNumber
The storage unit's serial number if it can be read electronically. May be null if not applicable.
default: null

unit/unit1/cash
The cash related contents, status and configuration of the unit. May be null if not applicable.
default: null

unit/unit1/cash/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO, WFS_INF_CIM_CASH_UNIT_INFO and
WFS_INF_CIM_CASH_UNIT_CAPABILITIES in XFS 3.x. This may be null in events if capabilities have not
changed.
default: null

unit/unit1/cash/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data or events if
not changed or being changed.
default: null

850

Properties

unit/unit1/cash/capabilities/types/cashIn
The unit can accept cash items. If cashOut is also true then the unit can recycle. May be null in command data or
events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/types/cashOut
The unit can dispense cash items. If cashIn is also true then the unit can recycle. May be null in command data
or events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/types/replenishment
Replenishment container. A storage unit can be refilled from or emptied to a replenishment container. May be
null in command data or events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/types/cashInRetract
Retract unit. Items can be retracted into this unit during Cash In operations. May be null in command data or
events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/types/cashOutRetract
Retract unit. Items can be retracted into this unit during Cash Out operations. May be null in command data or
events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/types/reject
Reject unit. Items can be rejected into this unit. May be null in command data or events if not changed or being
changed.
default: null

unit/unit1/cash/capabilities/items
The types of cash media the unit is capable of storing or configured to store. This is a combination of one or
more item types. May only be modified in an exchange state if applicable. See Note Classification for more
information about cash classification levels. May be null in command data if not being changed. May be null in
command data or events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/items/fit
The storage unit can store cash items which are fit for recycling. May be null in command data or events if not
changed or being changed.
default: null

unit/unit1/cash/capabilities/items/unfit
The storage unit can store cash items which are unfit for recycling. May be null in command data or events if not
changed or being changed.
default: false

unit/unit1/cash/capabilities/items/unrecognized
The storage unit can store unrecognized cash items. May be null in command data or events if not changed or
being changed.
default: null

unit/unit1/cash/capabilities/items/counterfeit
The storage unit can store counterfeit cash items. May be null in command data or events if not changed or being
changed.
default: null

851

Properties

unit/unit1/cash/capabilities/items/suspect
The storage unit can store suspect counterfeit cash items. May be null in command data or events if not changed
or being changed.
default: null

unit/unit1/cash/capabilities/items/inked
The storage unit can store cash items which have been identified as ink stained. May be null in command data or
events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/items/coupon
Storage unit containing coupons or advertising material. May be null in command data or events if not changed
or being changed.
default: null

unit/unit1/cash/capabilities/items/document
Storage unit containing documents. May be null in command data or events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/hardwareSensors
Indicates whether the storage unit has sensors which report the status. If true, then hardware sensors will override
count-based replenishment status for empty and full. Other replenishment states can be overridden by counts.
May be null in command data or events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/retractAreas
If items can be retracted into this storage unit, this is the number of areas within the storage unit which allow
physical separation of different bunches. If there is no physical separation of retracted bunches within this
storage unit, this value is 1. May be null if items can not be retracted into this storage unit or in events if not
changed or being changed.
Property value constraints:
minimum: 1
default: null

unit/unit1/cash/capabilities/retractThresholds
If true, indicates that retract capacity is based on counts. If false, indicates that retract capacity is based on the
number of commands which resulted in items being retracted into the storage unit. May be null if items can not
be retracted into this storage unit or in events if not changed or being changed.
default: null

unit/unit1/cash/capabilities/cashItems
An array containing multiple cash items, listing what a storage unit is capable of or configured to handle. Each
member is the object name of a cash item reported by CashManagement.GetBankNoteTypes. May be null in
command data or events if not being modified.
Property value constraints:
minItems: 1
default: null

unit/unit1/cash/configuration
Indicates what this storage unit is configured as or is being configured to do - where applicable the supported
options can be derived from capabilities.
If the Service supports an exchange state, only a subset of these parameters may be modified unless in an
exchange. Parameters which may only be modified in an exchange state are listed.
May be null in command data or events if no configuration is to be or has been changed.
default: null

852

Properties

unit/unit1/cash/configuration/currency
ISO 4217 currency identifier [Ref. cashmanagement-1]. May only be modified in an exchange state if applicable.
May be null if the unit is configured to store mixed currencies or non-cash items.
Property value constraints:
pattern: ^[A-Z]{3}$
default: null

unit/unit1/cash/configuration/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
May be null in command data or events if not being modified.
Property value constraints:
minimum: 0
default: null

unit/unit1/cash/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. The total number is not reported directly, but derived from initial + in - out.
If null, high is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

unit/unit1/cash/configuration/lowThreshold
If specified, replenishmentStatus is set to low if total number of items in the storage unit is less than this number.
The total number is not reported directly, but derived from initial + in - out.
If null, low is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

unit/unit1/cash/configuration/appLockIn
If true, items cannot be accepted into the storage unit in Cash In operations. May be null in command data or
events if not being modified.
default: null

unit/unit1/cash/configuration/appLockOut
If true, items cannot be dispensed from the storage unit in Cash Out operations. May be null in command data or
events if not being modified.
default: null

unit/unit1/cash/configuration/name
Application configured name of the unit. May be null in command data or events if not being modified.
default: null

unit/unit1/cash/configuration/maxRetracts
If specified, this is the number of retract operations allowed into the unit. Only applies to retract units. If
retractOperations equals this number, then no further retracts are allowed into this storage unit.
If null in output, the maximum number is not limited by counts. May be null in command data or events if not
being modified.
Property value constraints:
minimum: 1
default: null

853

Properties

unit/unit1/cash/status
Indicates the storage unit status - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO and WFS_INF_CIM_CASH_UNIT_INFO in XFS 3.x. Note that the
count of items in the storage unit must be derived from the counts reported. May be null in events if not
changing.
default: null

unit/unit1/cash/status/index
Assigned by the Service. Will be a unique number which can be used to determine usNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

unit/unit1/cash/status/initial
The cash related items which were in the storage unit at the last replenishment.
default: null

unit/unit1/cash/status/initial/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit/unit1/cash/status/initial/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

unit/unit1/cash/status/initial/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

unit/unit1/cash/status/initial/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit/unit1/cash/status/initial/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

unit/unit1/cash/status/initial/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

854

Properties

unit/unit1/cash/status/initial/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit/unit1/cash/status/out
The items moved from this storage unit by cash commands to another destination since the last replenishment of
this unit. This includes intermediate positions such as a stacker, where an item has been moved before moving to
the final destination such as another storage unit or presentation to a customer.
Counts for non-intermediate positions are reset if initial is set for this unit by Storage.GetStorage. See
descriptions for the counts which will not be reset by this command.
Intermediate position counts are reset when the intermediate position is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved from the storage unit by cash commands.
default: null

unit/unit1/cash/status/out/presented
The items dispensed from this storage unit which are or were customer accessible. Will be null if no items were
presented.
default: null

unit/unit1/cash/status/out/rejected
The items dispensed from this storage unit which were invalid and were diverted to a reject storage unit and were
not customer accessible during the operation. Will be null if no items were rejected.
default: null

unit/unit1/cash/status/out/distributed
The items dispensed from this storage unit which were moved to a storage unit other than a reject storage unit
and were not customer accessible during the operation. Will be null if no items were distributed.
default: null

unit/unit1/cash/status/out/unknown
The items dispensed from this storage unit which moved to an unknown position. Will be null if no items were
unknown.
default: null

unit/unit1/cash/status/out/stacked
The items dispensed from this storage unit which are not customer accessible and are currently stacked awaiting
presentation to the customer. This item list can increase and decrease as items are moved around in the device.
This is not reset if initial is set for this unit by Storage.GetStorage. Will be null if no items were stacked.
default: null

unit/unit1/cash/status/out/diverted
The items dispensed from this storage unit which are not customer accessible and were diverted to a temporary
location due to being invalid and have not yet been deposited in a storage unit. This item list can increase and
decrease as items are moved around in the device. This is not reset if initial is set for this unit by
Storage.GetStorage. Will be null if no items were diverted.
default: null

unit/unit1/cash/status/out/transport
The items dispensed from this storage unit which are not customer accessible and which have jammed in the
transport. This item list can increase and decrease as items are moved around in the device. This is not reset if
initial is set for this unit by Storage.GetStorage. Will be null if no items apply.
default: null

855

Properties

unit/unit1/cash/status/in
List of items inserted in this storage unit by cash commands from another source since the last replenishment of
this unit. This also reports items in the transport, where an item has jammed before being deposited in the
storage unit.
Counts other than transport are reset if initial is set for this unit by Storage.GetStorage. See descriptions for the
counts which will not be reset by this command.
The transport count is reset when it is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved into the storage unit by cash commands.
default: null

unit/unit1/cash/status/in/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

unit/unit1/cash/status/in/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

unit/unit1/cash/status/in/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

unit/unit1/cash/status/in/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

unit/unit1/cash/status/in/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

unit/unit1/cash/status/in/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

856

Properties

unit/unit1/cash/status/accuracy
Describes the accuracy of the counts reported by out and in. If null in Storage.GetStorage, the hardware is not
capable of determining the accuracy, otherwise the following values are possible:

• accurate - The count is expected to be accurate. The notes were previously counted
and there have since been no events that might have introduced inaccuracy.

• accurateSet - The count is expected to be accurate. The counts were previously set and there have
since been no events that might have introduced inaccuracy.

• inaccurate - The count is likely to be inaccurate. A jam, picking fault, or some other event may
have resulted in a counting inaccuracy.

• unknown - The accuracy of count cannot be determined. This may be due to storage unit insertion or
some other hardware event.
default: null

unit/unit1/cash/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in events if not
changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on sensors or counts.
• high - The storage unit is almost full (either sensor based or exceeded the

highThreshold.
• low - The storage unit is almost empty (either sensor based or below the

lowThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has hardwareSensors, this state is not set by counts.
default: null

unit/unit1/cash/status/operationStatus
On some devices it may be possible to allow items to be dispensed in a recycling storage unit while deposit is
inoperable or vice-versa. This property allows the Service to report that one operation is possible while the other
is not, without taking the storage unit out of Service completely with status or replenishmentStatus.
Following values are possible:

• dispenseInoperative - Dispense operations are possible and deposit operations are not possible on
this recycling storage unit.

• depositInoperative - Deposit operations are possible and dispense operations are not possible on
this recycling storage unit.
If null in Storage.GetStorage, status and replenishmentStatus apply to both cash out and cash in operations.
default: null

unit/unit1/card
The card related contents, status and configuration of the unit. May be null if not applicable.
default: null

unit/unit1/card/capabilities
Indicates the card storage unit capabilities. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

857

Properties

unit/unit1/card/capabilities/type
The type of card storage. This property may be null in events if the type did not change, otherwise will be one of
the following values:

• retain - The storage unit can retain cards.
• dispense - The storage unit can dispense cards.
• park - The storage unit can be used to temporarily store a card allowing another card to enter the

transport.
default: null

unit/unit1/card/capabilities/hardwareSensors
Indicates whether the storage unit has hardware sensors that can detect threshold states. This property may be
null in events if it did not change.
default: null

unit/unit1/card/configuration
Indicates the card storage unit configuration. This property can be null if the storage unit is being set using
Storage.SetStorage, or a change is being reported using Storage.StorageChangedEvent or
Storage.StorageThresholdEvent.

unit/unit1/card/configuration/cardID
The identifier that may be used to identify the type of cards in the storage unit. This is only applicable to
dispense storage units and may be null in events if it did not change.
default: null

unit/unit1/card/configuration/threshold
If the threshold value is non zero, hardware sensors in the storage unit do not trigger
Storage.StorageThresholdEvent events. This property may be null in events if it did not change.
If non zero, when count reaches the threshold value:

• For retain type storage units, a high threshold will be sent.
• For dispense type storage units, a low threshold will be sent.

Property value constraints:
minimum: 0
default: null

unit/unit1/card/status
Indicates the card storage unit status. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

unit/unit1/card/status/initialCount
The initial number of cards in the storage unit. This is only applicable to dispense type storage units. This
property may be null in events if it did not change.
This value is persistent.
Property value constraints:
minimum: 0
default: null

858

Properties

unit/unit1/card/status/count
The number of cards in the storage unit.
If the storage unit type is dispense:

• This count also includes a card dispensed from the storage unit which has not been moved to either the
exit position or a dispense type storage unit.

• This count is decremented when a card from the card storage unit is moved to the exit position or
retained. If this value reaches zero it will not decrement further but will remain at zero.

If the storage unit type is retain:
• The count is incremented when a card is moved into the storage unit.

If the storage unit type is park:
• The count will increment when a card is moved into the storage module and decremented when a card

is moved out of the storage module.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

unit/unit1/card/status/retainCount
The number of cards from this storage unit which are in a retain storage unit.
This is only applicable to dispense type storage units.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

unit/unit1/card/status/replenishmentStatus
The state of the cards in the storage unit if it can be determined. Note that overall status of the storage unit must
be taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will be null. The property may also be null in events
if it did not change.
The following values are possible:

• ok - The storage unit is in a good state.
• full - The storage unit is full.
• high - The storage unit is almost full (either sensor based or above the

threshold).
• low - The storage unit is almost empty (either sensor based or below the

threshold).
• empty - The storage unit is empty.

default: null

unit/unit1/check
The check related contents, status and configuration of the unit. May be null if not applicable.
default: null

unit/unit1/check/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_IPM_MEDIA_BIN_INFO and WFS_INF_IPM_MEDIA_BIN_CAPABILITIES in XFS 3.x. May be
null in events if not changed.
default: null

unit/unit1/check/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data and events if
not changing.
default: null

859

Properties

unit/unit1/check/capabilities/types/mediaIn
The unit can accept items during Media In transactions. May be null in command data and events if not
changing.
default: null

unit/unit1/check/capabilities/types/retract
Retract unit. Items can be retracted into this unit using Check.RetractMedia. May be null in command data and
events if not changing.
default: null

unit/unit1/check/capabilities/sensors
The types of sensor the unit has. May be null in command data and events if not changing.
default: null

unit/unit1/check/capabilities/sensors/empty
The unit contains a hardware sensor which reports when the unit is empty. May be null in command data and
events if not changing.
default: null

unit/unit1/check/capabilities/sensors/high
The unit contains a hardware sensor which reports when the unit is nearly full. May be null in command data and
events if not changing.
default: null

unit/unit1/check/capabilities/sensors/full
The unit contains a hardware sensor which reports when the unit is full. May be null in command data and events
if not changing.
default: null

unit/unit1/check/configuration
Indicates what the storage unit is configured to do - where applicable the supported options can be derived from
capabilities. May be null in command data and events if not being modified.

unit/unit1/check/configuration/binID
An application defined Storage Unit Identifier. This may be null in events if not changing.
default: null

unit/unit1/check/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. May be null in command data and events if not being modified.
Property value constraints:
minimum: 1
default: null

unit/unit1/check/configuration/retractHighThreshold
If specified and the storage unit is configured as retract, replenishmentStatus is set to high if the total number of
retract operations in the storage unit is greater than this number. May be null in command data and events if not
being modified.
Property value constraints:
minimum: 0
default: null

unit/unit1/check/status
Indicates the storage unit status. May be null in events where status has not changed.
default: null

860

Properties

unit/unit1/check/status/index
Assigned by the Service. Will be a unique number which can be used to determine usBinNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

unit/unit1/check/status/initial
The check related counts as set at the last replenishment. May be null in events where status has not changed.
default: null

unit/unit1/check/status/initial/mediaInCount
Count of items added to the storage unit due to Check operations. If the number of items is not counted this is
not reported and retractOperations is incremented as items are added to the unit. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

unit/unit1/check/status/initial/count
Total number of items added to the storage unit due to any operations. If the number of items is not counted this
is not reported and retractOperations is incremented as items are added to the unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

unit/unit1/check/status/initial/retractOperations
Total number of operations which resulted in items being retracted to the storage unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

unit/unit1/check/status/in
The check items added to the unit since the last replenishment. May be null in events where status has not
changed.
default: null

unit/unit1/check/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in command data
and events if not changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on a

full sensor or counts.
• high - The storage unit is almost full (either

high sensor based or exceeded the highThreshold or retractHighThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has the empty sensor, this state is not set by counts.
default: null

861

22.4 Unsolicited Messages

22.4.1 Storage.StorageChangedEvent
This event is generated when a storage unit changes under the following circumstances:

• When the unit changes in any way due to a Storage.SetStorage command.
• When any change is made other than to counts by any other command or external intervention.

If a new storage unit is inserted the storage unit structure reported by the last Storage.GetStorage command is no
longer valid. In that case an application should issue a Storage.GetStorage command after receiving this event to
obtain updated storage unit information.

Unsolicited Message

Payload (version 2.0) Type Requir
ed

{
 "unit1": { object
 "id": "RC1", string, null
 "positionName": "Top Right", string, null
 "capacity": 100, integer, null
 "status": "ok", string, null
 "serialNumber": "ABCD1234", string, null
 "cash": { object, null
 "capabilities": { object, null
 "types": { object, null
 "cashIn": true, boolean, null
 "cashOut": false, boolean, null
 "replenishment": false, boolean, null
 "cashInRetract": false, boolean, null
 "cashOutRetract": false, boolean, null
 "reject": false boolean, null
 },
 "items": { object, null
 "fit": false, boolean, null
 "unfit": false, boolean, null
 "unrecognized": false, boolean, null
 "counterfeit": false, boolean, null
 "suspect": false, boolean, null
 "inked": false, boolean, null
 "coupon": false, boolean, null
 "document": false boolean, null
 },
 "hardwareSensors": false, boolean, null
 "retractAreas": 1, integer, null
 "retractThresholds": false, boolean, null

862

Payload (version 2.0) Type Requir
ed

 "cashItems": ["type20USD1", "type50USD1"] array (string),
null

 },
 "configuration": { object, null
 "types": See unit1/cash/capabilities/types properties object, null
 "items": See unit1/cash/capabilities/items properties object, null
 "currency": "USD", string, null
 "value": 20.00, number, null
 "highThreshold": 500, integer, null
 "lowThreshold": 10, integer, null
 "appLockIn": false, boolean, null
 "appLockOut": false, boolean, null
 "cashItems": See unit1/cash/capabilities/cashItems, array (string),

null

 "name": "$10", string, null
 "maxRetracts": 5 integer, null
 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See
unit1/cash/status/initial/type20USD1 properties

object, null

 },
 "out": { object, null
 "presented": See unit1/cash/status/initial
properties

object, null

 "rejected": See unit1/cash/status/initial properties object, null
 "distributed": See unit1/cash/status/initial
properties

object, null

 "unknown": See unit1/cash/status/initial properties object, null
 "stacked": See unit1/cash/status/initial properties object, null
 "diverted": See unit1/cash/status/initial properties object, null
 "transport": See unit1/cash/status/initial
properties

object, null

863

Payload (version 2.0) Type Requir
ed

 },
 "in": { object, null
 "retractOperations": 15, integer, null
 "deposited": See unit1/cash/status/initial
properties

object, null

 "retracted": See unit1/cash/status/initial
properties

object, null

 "rejected": See unit1/cash/status/initial properties object, null
 "distributed": See unit1/cash/status/initial
properties

object, null

 "transport": See unit1/cash/status/initial
properties

object, null

 },
 "accuracy": "accurate", string, null
 "replenishmentStatus": "ok", string, null
 "operationStatus": "dispenseInoperative" string, null
 }
 },
 "card": { object, null
 "capabilities": { object, null
 "type": "retain", string, null
 "hardwareSensors": true boolean, null
 },
 "configuration": { object, null
 "cardID": "LoyaltyCard", string, null
 "threshold": 10 integer, null
 },
 "status": { object, null
 "initialCount": 0, integer, null
 "count": 0, integer, null
 "retainCount": 0, integer, null
 "replenishmentStatus": "ok" string, null
 }
 },
 "check": { object, null
 "capabilities": { object, null
 "types": { object, null
 "mediaIn": true, boolean, null
 "retract": false boolean, null
 },
 "sensors": { object, null
 "empty": false, boolean, null

864

Payload (version 2.0) Type Requir
ed

 "high": false, boolean, null
 "full": false boolean, null
 }
 },
 "configuration": { object, null
 "types": See unit1/check/capabilities/types properties object, null
 "binID": "My check bin", string, null
 "highThreshold": 500, integer, null
 "retractHighThreshold": 5 integer, null
 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "mediaInCount": 100, integer, null
 "count": 150, integer, null
 "retractOperations": 15 integer, null
 },
 "in": See unit1/check/status/initial properties object, null
 "replenishmentStatus": "high" string, null
 }
 }
 }
}

Properties

unit1 (example name)
The object contains a single storage unit.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$

unit1/id
An identifier which can be used for cUnitID in CDM/CIM XFS 3.x migration. May be null if not applicable.
Property value constraints:
pattern: ^.{1,5}$
default: null

unit1/positionName
Fixed physical name for the position. May be null if not applicable.
default: null

unit1/capacity
The nominal capacity of the unit. This may be an estimate as the quality and thickness of the items stored in the
unit may affect how many items can be stored. 0 means the capacity is unknown, null means capacity is not
applicable.
Property value constraints:
minimum: 0
default: null

865

Properties

unit1/status
The state of the unit. This property may be null in events if the state did not change, otherwise the following
values are possible:

• ok - The storage unit is in a good state.
• inoperative - The storage unit is inoperative.
• missing - The storage unit is missing.
• notConfigured - The storage unit has not been configured for use.
• manipulated - The storage unit has been inserted (including removal followed by a reinsertion) when

the device was not in the exchange state - see Storage.StartExchange. This storage unit cannot be used. Only
applies to services which support the exchange state.
default: null

unit1/serialNumber
The storage unit's serial number if it can be read electronically. May be null if not applicable.
default: null

unit1/cash
The cash related contents, status and configuration of the unit. May be null if not applicable.
default: null

unit1/cash/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO, WFS_INF_CIM_CASH_UNIT_INFO and
WFS_INF_CIM_CASH_UNIT_CAPABILITIES in XFS 3.x. This may be null in events if capabilities have not
changed.
default: null

unit1/cash/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data or events if
not changed or being changed.
default: null

unit1/cash/capabilities/types/cashIn
The unit can accept cash items. If cashOut is also true then the unit can recycle. May be null in command data or
events if not changed or being changed.
default: null

unit1/cash/capabilities/types/cashOut
The unit can dispense cash items. If cashIn is also true then the unit can recycle. May be null in command data
or events if not changed or being changed.
default: null

unit1/cash/capabilities/types/replenishment
Replenishment container. A storage unit can be refilled from or emptied to a replenishment container. May be
null in command data or events if not changed or being changed.
default: null

unit1/cash/capabilities/types/cashInRetract
Retract unit. Items can be retracted into this unit during Cash In operations. May be null in command data or
events if not changed or being changed.
default: null

unit1/cash/capabilities/types/cashOutRetract
Retract unit. Items can be retracted into this unit during Cash Out operations. May be null in command data or
events if not changed or being changed.
default: null

866

Properties

unit1/cash/capabilities/types/reject
Reject unit. Items can be rejected into this unit. May be null in command data or events if not changed or being
changed.
default: null

unit1/cash/capabilities/items
The types of cash media the unit is capable of storing or configured to store. This is a combination of one or
more item types. May only be modified in an exchange state if applicable. See Note Classification for more
information about cash classification levels. May be null in command data if not being changed. May be null in
command data or events if not changed or being changed.
default: null

unit1/cash/capabilities/items/fit
The storage unit can store cash items which are fit for recycling. May be null in command data or events if not
changed or being changed.
default: null

unit1/cash/capabilities/items/unfit
The storage unit can store cash items which are unfit for recycling. May be null in command data or events if not
changed or being changed.
default: false

unit1/cash/capabilities/items/unrecognized
The storage unit can store unrecognized cash items. May be null in command data or events if not changed or
being changed.
default: null

unit1/cash/capabilities/items/counterfeit
The storage unit can store counterfeit cash items. May be null in command data or events if not changed or being
changed.
default: null

unit1/cash/capabilities/items/suspect
The storage unit can store suspect counterfeit cash items. May be null in command data or events if not changed
or being changed.
default: null

unit1/cash/capabilities/items/inked
The storage unit can store cash items which have been identified as ink stained. May be null in command data or
events if not changed or being changed.
default: null

unit1/cash/capabilities/items/coupon
Storage unit containing coupons or advertising material. May be null in command data or events if not changed
or being changed.
default: null

unit1/cash/capabilities/items/document
Storage unit containing documents. May be null in command data or events if not changed or being changed.
default: null

unit1/cash/capabilities/hardwareSensors
Indicates whether the storage unit has sensors which report the status. If true, then hardware sensors will override
count-based replenishment status for empty and full. Other replenishment states can be overridden by counts.
May be null in command data or events if not changed or being changed.
default: null

867

Properties

unit1/cash/capabilities/retractAreas
If items can be retracted into this storage unit, this is the number of areas within the storage unit which allow
physical separation of different bunches. If there is no physical separation of retracted bunches within this
storage unit, this value is 1. May be null if items can not be retracted into this storage unit or in events if not
changed or being changed.
Property value constraints:
minimum: 1
default: null

unit1/cash/capabilities/retractThresholds
If true, indicates that retract capacity is based on counts. If false, indicates that retract capacity is based on the
number of commands which resulted in items being retracted into the storage unit. May be null if items can not
be retracted into this storage unit or in events if not changed or being changed.
default: null

unit1/cash/capabilities/cashItems
An array containing multiple cash items, listing what a storage unit is capable of or configured to handle. Each
member is the object name of a cash item reported by CashManagement.GetBankNoteTypes. May be null in
command data or events if not being modified.
Property value constraints:
minItems: 1
default: null

unit1/cash/configuration
Indicates what this storage unit is configured as or is being configured to do - where applicable the supported
options can be derived from capabilities.
If the Service supports an exchange state, only a subset of these parameters may be modified unless in an
exchange. Parameters which may only be modified in an exchange state are listed.
May be null in command data or events if no configuration is to be or has been changed.
default: null

unit1/cash/configuration/currency
ISO 4217 currency identifier [Ref. cashmanagement-1]. May only be modified in an exchange state if applicable.
May be null if the unit is configured to store mixed currencies or non-cash items.
Property value constraints:
pattern: ^[A-Z]{3}$
default: null

unit1/cash/configuration/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
May be null in command data or events if not being modified.
Property value constraints:
minimum: 0
default: null

unit1/cash/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. The total number is not reported directly, but derived from initial + in - out.
If null, high is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

868

Properties

unit1/cash/configuration/lowThreshold
If specified, replenishmentStatus is set to low if total number of items in the storage unit is less than this number.
The total number is not reported directly, but derived from initial + in - out.
If null, low is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

unit1/cash/configuration/appLockIn
If true, items cannot be accepted into the storage unit in Cash In operations. May be null in command data or
events if not being modified.
default: null

unit1/cash/configuration/appLockOut
If true, items cannot be dispensed from the storage unit in Cash Out operations. May be null in command data or
events if not being modified.
default: null

unit1/cash/configuration/name
Application configured name of the unit. May be null in command data or events if not being modified.
default: null

unit1/cash/configuration/maxRetracts
If specified, this is the number of retract operations allowed into the unit. Only applies to retract units. If
retractOperations equals this number, then no further retracts are allowed into this storage unit.
If null in output, the maximum number is not limited by counts. May be null in command data or events if not
being modified.
Property value constraints:
minimum: 1
default: null

unit1/cash/status
Indicates the storage unit status - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO and WFS_INF_CIM_CASH_UNIT_INFO in XFS 3.x. Note that the
count of items in the storage unit must be derived from the counts reported. May be null in events if not
changing.
default: null

unit1/cash/status/index
Assigned by the Service. Will be a unique number which can be used to determine usNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

unit1/cash/status/initial
The cash related items which were in the storage unit at the last replenishment.
default: null

unit1/cash/status/initial/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

869

Properties

unit1/cash/status/initial/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

unit1/cash/status/initial/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/initial/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/initial/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/initial/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/initial/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/out
The items moved from this storage unit by cash commands to another destination since the last replenishment of
this unit. This includes intermediate positions such as a stacker, where an item has been moved before moving to
the final destination such as another storage unit or presentation to a customer.
Counts for non-intermediate positions are reset if initial is set for this unit by Storage.GetStorage. See
descriptions for the counts which will not be reset by this command.
Intermediate position counts are reset when the intermediate position is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved from the storage unit by cash commands.
default: null

unit1/cash/status/out/presented
The items dispensed from this storage unit which are or were customer accessible. Will be null if no items were
presented.
default: null

870

Properties

unit1/cash/status/out/rejected
The items dispensed from this storage unit which were invalid and were diverted to a reject storage unit and were
not customer accessible during the operation. Will be null if no items were rejected.
default: null

unit1/cash/status/out/distributed
The items dispensed from this storage unit which were moved to a storage unit other than a reject storage unit
and were not customer accessible during the operation. Will be null if no items were distributed.
default: null

unit1/cash/status/out/unknown
The items dispensed from this storage unit which moved to an unknown position. Will be null if no items were
unknown.
default: null

unit1/cash/status/out/stacked
The items dispensed from this storage unit which are not customer accessible and are currently stacked awaiting
presentation to the customer. This item list can increase and decrease as items are moved around in the device.
This is not reset if initial is set for this unit by Storage.GetStorage. Will be null if no items were stacked.
default: null

unit1/cash/status/out/diverted
The items dispensed from this storage unit which are not customer accessible and were diverted to a temporary
location due to being invalid and have not yet been deposited in a storage unit. This item list can increase and
decrease as items are moved around in the device. This is not reset if initial is set for this unit by
Storage.GetStorage. Will be null if no items were diverted.
default: null

unit1/cash/status/out/transport
The items dispensed from this storage unit which are not customer accessible and which have jammed in the
transport. This item list can increase and decrease as items are moved around in the device. This is not reset if
initial is set for this unit by Storage.GetStorage. Will be null if no items apply.
default: null

unit1/cash/status/in
List of items inserted in this storage unit by cash commands from another source since the last replenishment of
this unit. This also reports items in the transport, where an item has jammed before being deposited in the
storage unit.
Counts other than transport are reset if initial is set for this unit by Storage.GetStorage. See descriptions for the
counts which will not be reset by this command.
The transport count is reset when it is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved into the storage unit by cash commands.
default: null

unit1/cash/status/in/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/in/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

871

Properties

unit1/cash/status/in/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

unit1/cash/status/in/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

unit1/cash/status/in/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

unit1/cash/status/in/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

unit1/cash/status/accuracy
Describes the accuracy of the counts reported by out and in. If null in Storage.GetStorage, the hardware is not
capable of determining the accuracy, otherwise the following values are possible:

• accurate - The count is expected to be accurate. The notes were previously counted
and there have since been no events that might have introduced inaccuracy.

• accurateSet - The count is expected to be accurate. The counts were previously set and there have
since been no events that might have introduced inaccuracy.

• inaccurate - The count is likely to be inaccurate. A jam, picking fault, or some other event may
have resulted in a counting inaccuracy.

• unknown - The accuracy of count cannot be determined. This may be due to storage unit insertion or
some other hardware event.
default: null

unit1/cash/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in events if not
changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on sensors or counts.
• high - The storage unit is almost full (either sensor based or exceeded the

highThreshold.
• low - The storage unit is almost empty (either sensor based or below the

lowThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has hardwareSensors, this state is not set by counts.
default: null

872

Properties

unit1/cash/status/operationStatus
On some devices it may be possible to allow items to be dispensed in a recycling storage unit while deposit is
inoperable or vice-versa. This property allows the Service to report that one operation is possible while the other
is not, without taking the storage unit out of Service completely with status or replenishmentStatus.
Following values are possible:

• dispenseInoperative - Dispense operations are possible and deposit operations are not possible on
this recycling storage unit.

• depositInoperative - Deposit operations are possible and dispense operations are not possible on
this recycling storage unit.
If null in Storage.GetStorage, status and replenishmentStatus apply to both cash out and cash in operations.
default: null

unit1/card
The card related contents, status and configuration of the unit. May be null if not applicable.
default: null

unit1/card/capabilities
Indicates the card storage unit capabilities. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

unit1/card/capabilities/type
The type of card storage. This property may be null in events if the type did not change, otherwise will be one of
the following values:

• retain - The storage unit can retain cards.
• dispense - The storage unit can dispense cards.
• park - The storage unit can be used to temporarily store a card allowing another card to enter the

transport.
default: null

unit1/card/capabilities/hardwareSensors
Indicates whether the storage unit has hardware sensors that can detect threshold states. This property may be
null in events if it did not change.
default: null

unit1/card/configuration
Indicates the card storage unit configuration. This property can be null if the storage unit is being set using
Storage.SetStorage, or a change is being reported using Storage.StorageChangedEvent or
Storage.StorageThresholdEvent.

unit1/card/configuration/cardID
The identifier that may be used to identify the type of cards in the storage unit. This is only applicable to
dispense storage units and may be null in events if it did not change.
default: null

unit1/card/configuration/threshold
If the threshold value is non zero, hardware sensors in the storage unit do not trigger
Storage.StorageThresholdEvent events. This property may be null in events if it did not change.
If non zero, when count reaches the threshold value:

• For retain type storage units, a high threshold will be sent.
• For dispense type storage units, a low threshold will be sent.

Property value constraints:
minimum: 0
default: null

unit1/card/status
Indicates the card storage unit status. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

873

Properties

unit1/card/status/initialCount
The initial number of cards in the storage unit. This is only applicable to dispense type storage units. This
property may be null in events if it did not change.
This value is persistent.
Property value constraints:
minimum: 0
default: null

unit1/card/status/count
The number of cards in the storage unit.
If the storage unit type is dispense:

• This count also includes a card dispensed from the storage unit which has not been moved to either the
exit position or a dispense type storage unit.

• This count is decremented when a card from the card storage unit is moved to the exit position or
retained. If this value reaches zero it will not decrement further but will remain at zero.

If the storage unit type is retain:
• The count is incremented when a card is moved into the storage unit.

If the storage unit type is park:
• The count will increment when a card is moved into the storage module and decremented when a card

is moved out of the storage module.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

unit1/card/status/retainCount
The number of cards from this storage unit which are in a retain storage unit.
This is only applicable to dispense type storage units.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

unit1/card/status/replenishmentStatus
The state of the cards in the storage unit if it can be determined. Note that overall status of the storage unit must
be taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will be null. The property may also be null in events
if it did not change.
The following values are possible:

• ok - The storage unit is in a good state.
• full - The storage unit is full.
• high - The storage unit is almost full (either sensor based or above the

threshold).
• low - The storage unit is almost empty (either sensor based or below the

threshold).
• empty - The storage unit is empty.

default: null

unit1/check
The check related contents, status and configuration of the unit. May be null if not applicable.
default: null

874

Properties

unit1/check/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_IPM_MEDIA_BIN_INFO and WFS_INF_IPM_MEDIA_BIN_CAPABILITIES in XFS 3.x. May be
null in events if not changed.
default: null

unit1/check/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data and events if
not changing.
default: null

unit1/check/capabilities/types/mediaIn
The unit can accept items during Media In transactions. May be null in command data and events if not
changing.
default: null

unit1/check/capabilities/types/retract
Retract unit. Items can be retracted into this unit using Check.RetractMedia. May be null in command data and
events if not changing.
default: null

unit1/check/capabilities/sensors
The types of sensor the unit has. May be null in command data and events if not changing.
default: null

unit1/check/capabilities/sensors/empty
The unit contains a hardware sensor which reports when the unit is empty. May be null in command data and
events if not changing.
default: null

unit1/check/capabilities/sensors/high
The unit contains a hardware sensor which reports when the unit is nearly full. May be null in command data and
events if not changing.
default: null

unit1/check/capabilities/sensors/full
The unit contains a hardware sensor which reports when the unit is full. May be null in command data and events
if not changing.
default: null

unit1/check/configuration
Indicates what the storage unit is configured to do - where applicable the supported options can be derived from
capabilities. May be null in command data and events if not being modified.

unit1/check/configuration/binID
An application defined Storage Unit Identifier. This may be null in events if not changing.
default: null

unit1/check/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. May be null in command data and events if not being modified.
Property value constraints:
minimum: 1
default: null

875

Properties

unit1/check/configuration/retractHighThreshold
If specified and the storage unit is configured as retract, replenishmentStatus is set to high if the total number of
retract operations in the storage unit is greater than this number. May be null in command data and events if not
being modified.
Property value constraints:
minimum: 0
default: null

unit1/check/status
Indicates the storage unit status. May be null in events where status has not changed.
default: null

unit1/check/status/index
Assigned by the Service. Will be a unique number which can be used to determine usBinNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

unit1/check/status/initial
The check related counts as set at the last replenishment. May be null in events where status has not changed.
default: null

unit1/check/status/initial/mediaInCount
Count of items added to the storage unit due to Check operations. If the number of items is not counted this is
not reported and retractOperations is incremented as items are added to the unit. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

unit1/check/status/initial/count
Total number of items added to the storage unit due to any operations. If the number of items is not counted this
is not reported and retractOperations is incremented as items are added to the unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

unit1/check/status/initial/retractOperations
Total number of operations which resulted in items being retracted to the storage unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

unit1/check/status/in
The check items added to the unit since the last replenishment. May be null in events where status has not
changed.
default: null

876

Properties

unit1/check/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in command data
and events if not changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on a

full sensor or counts.
• high - The storage unit is almost full (either

high sensor based or exceeded the highThreshold or retractHighThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has the empty sensor, this state is not set by counts.
default: null

877

22.4.2 Storage.StorageThresholdEvent
This event is generated when a threshold condition has occurred in one of the storage units.

This event can be triggered either by hardware sensors in the device or by count thresholds being met.

Unsolicited Message

Payload (version 2.0) Type Requir
ed

{
 "unit1": { object
 "id": "RC1", string, null
 "positionName": "Top Right", string, null
 "capacity": 100, integer, null
 "status": "ok", string, null
 "serialNumber": "ABCD1234", string, null
 "cash": { object, null
 "capabilities": { object, null
 "types": { object, null
 "cashIn": true, boolean, null
 "cashOut": false, boolean, null
 "replenishment": false, boolean, null
 "cashInRetract": false, boolean, null
 "cashOutRetract": false, boolean, null
 "reject": false boolean, null
 },
 "items": { object, null
 "fit": false, boolean, null
 "unfit": false, boolean, null
 "unrecognized": false, boolean, null
 "counterfeit": false, boolean, null
 "suspect": false, boolean, null
 "inked": false, boolean, null
 "coupon": false, boolean, null
 "document": false boolean, null
 },
 "hardwareSensors": false, boolean, null
 "retractAreas": 1, integer, null
 "retractThresholds": false, boolean, null
 "cashItems": ["type20USD1", "type50USD1"] array (string),

null

 },
 "configuration": { object, null
 "types": See unit1/cash/capabilities/types properties object, null

878

Payload (version 2.0) Type Requir
ed

 "items": See unit1/cash/capabilities/items properties object, null
 "currency": "USD", string, null
 "value": 20.00, number, null
 "highThreshold": 500, integer, null
 "lowThreshold": 10, integer, null
 "appLockIn": false, boolean, null
 "appLockOut": false, boolean, null
 "cashItems": See unit1/cash/capabilities/cashItems, array (string),

null

 "name": "$10", string, null
 "maxRetracts": 5 integer, null
 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "unrecognized": 5, integer, null
 "type20USD1": { object, null
 "fit": 15, integer, null
 "unfit": 0, integer, null
 "suspect": 0, integer, null
 "counterfeit": 0, integer, null
 "inked": 0 integer, null
 },
 "type50USD1": See
unit1/cash/status/initial/type20USD1 properties

object, null

 },
 "out": { object, null
 "presented": See unit1/cash/status/initial
properties

object, null

 "rejected": See unit1/cash/status/initial properties object, null
 "distributed": See unit1/cash/status/initial
properties

object, null

 "unknown": See unit1/cash/status/initial properties object, null
 "stacked": See unit1/cash/status/initial properties object, null
 "diverted": See unit1/cash/status/initial properties object, null
 "transport": See unit1/cash/status/initial
properties

object, null

 },
 "in": { object, null
 "retractOperations": 15, integer, null
 "deposited": See unit1/cash/status/initial
properties

object, null

879

Payload (version 2.0) Type Requir
ed

 "retracted": See unit1/cash/status/initial
properties

object, null

 "rejected": See unit1/cash/status/initial properties object, null
 "distributed": See unit1/cash/status/initial
properties

object, null

 "transport": See unit1/cash/status/initial
properties

object, null

 },
 "accuracy": "accurate", string, null
 "replenishmentStatus": "ok", string, null
 "operationStatus": "dispenseInoperative" string, null
 }
 },
 "card": { object, null
 "capabilities": { object, null
 "type": "retain", string, null
 "hardwareSensors": true boolean, null
 },
 "configuration": { object, null
 "cardID": "LoyaltyCard", string, null
 "threshold": 10 integer, null
 },
 "status": { object, null
 "initialCount": 0, integer, null
 "count": 0, integer, null
 "retainCount": 0, integer, null
 "replenishmentStatus": "ok" string, null
 }
 },
 "check": { object, null
 "capabilities": { object, null
 "types": { object, null
 "mediaIn": true, boolean, null
 "retract": false boolean, null
 },
 "sensors": { object, null
 "empty": false, boolean, null
 "high": false, boolean, null
 "full": false boolean, null
 }
 },

880

Payload (version 2.0) Type Requir
ed

 "configuration": { object, null
 "types": See unit1/check/capabilities/types properties object, null
 "binID": "My check bin", string, null
 "highThreshold": 500, integer, null
 "retractHighThreshold": 5 integer, null
 },
 "status": { object, null
 "index": 4, integer 🗸🗸
 "initial": { object, null
 "mediaInCount": 100, integer, null
 "count": 150, integer, null
 "retractOperations": 15 integer, null
 },
 "in": See unit1/check/status/initial properties object, null
 "replenishmentStatus": "high" string, null
 }
 }
 }
}

Properties

unit1 (example name)
The object contains a single storage unit.
Property name constraints:
pattern: ^unit[0-9A-Za-z]+$

unit1/id
An identifier which can be used for cUnitID in CDM/CIM XFS 3.x migration. May be null if not applicable.
Property value constraints:
pattern: ^.{1,5}$
default: null

unit1/positionName
Fixed physical name for the position. May be null if not applicable.
default: null

unit1/capacity
The nominal capacity of the unit. This may be an estimate as the quality and thickness of the items stored in the
unit may affect how many items can be stored. 0 means the capacity is unknown, null means capacity is not
applicable.
Property value constraints:
minimum: 0
default: null

881

Properties

unit1/status
The state of the unit. This property may be null in events if the state did not change, otherwise the following
values are possible:

• ok - The storage unit is in a good state.
• inoperative - The storage unit is inoperative.
• missing - The storage unit is missing.
• notConfigured - The storage unit has not been configured for use.
• manipulated - The storage unit has been inserted (including removal followed by a reinsertion) when

the device was not in the exchange state - see Storage.StartExchange. This storage unit cannot be used. Only
applies to services which support the exchange state.
default: null

unit1/serialNumber
The storage unit's serial number if it can be read electronically. May be null if not applicable.
default: null

unit1/cash
The cash related contents, status and configuration of the unit. May be null if not applicable.
default: null

unit1/cash/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO, WFS_INF_CIM_CASH_UNIT_INFO and
WFS_INF_CIM_CASH_UNIT_CAPABILITIES in XFS 3.x. This may be null in events if capabilities have not
changed.
default: null

unit1/cash/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data or events if
not changed or being changed.
default: null

unit1/cash/capabilities/types/cashIn
The unit can accept cash items. If cashOut is also true then the unit can recycle. May be null in command data or
events if not changed or being changed.
default: null

unit1/cash/capabilities/types/cashOut
The unit can dispense cash items. If cashIn is also true then the unit can recycle. May be null in command data
or events if not changed or being changed.
default: null

unit1/cash/capabilities/types/replenishment
Replenishment container. A storage unit can be refilled from or emptied to a replenishment container. May be
null in command data or events if not changed or being changed.
default: null

unit1/cash/capabilities/types/cashInRetract
Retract unit. Items can be retracted into this unit during Cash In operations. May be null in command data or
events if not changed or being changed.
default: null

unit1/cash/capabilities/types/cashOutRetract
Retract unit. Items can be retracted into this unit during Cash Out operations. May be null in command data or
events if not changed or being changed.
default: null

882

Properties

unit1/cash/capabilities/types/reject
Reject unit. Items can be rejected into this unit. May be null in command data or events if not changed or being
changed.
default: null

unit1/cash/capabilities/items
The types of cash media the unit is capable of storing or configured to store. This is a combination of one or
more item types. May only be modified in an exchange state if applicable. See Note Classification for more
information about cash classification levels. May be null in command data if not being changed. May be null in
command data or events if not changed or being changed.
default: null

unit1/cash/capabilities/items/fit
The storage unit can store cash items which are fit for recycling. May be null in command data or events if not
changed or being changed.
default: null

unit1/cash/capabilities/items/unfit
The storage unit can store cash items which are unfit for recycling. May be null in command data or events if not
changed or being changed.
default: false

unit1/cash/capabilities/items/unrecognized
The storage unit can store unrecognized cash items. May be null in command data or events if not changed or
being changed.
default: null

unit1/cash/capabilities/items/counterfeit
The storage unit can store counterfeit cash items. May be null in command data or events if not changed or being
changed.
default: null

unit1/cash/capabilities/items/suspect
The storage unit can store suspect counterfeit cash items. May be null in command data or events if not changed
or being changed.
default: null

unit1/cash/capabilities/items/inked
The storage unit can store cash items which have been identified as ink stained. May be null in command data or
events if not changed or being changed.
default: null

unit1/cash/capabilities/items/coupon
Storage unit containing coupons or advertising material. May be null in command data or events if not changed
or being changed.
default: null

unit1/cash/capabilities/items/document
Storage unit containing documents. May be null in command data or events if not changed or being changed.
default: null

unit1/cash/capabilities/hardwareSensors
Indicates whether the storage unit has sensors which report the status. If true, then hardware sensors will override
count-based replenishment status for empty and full. Other replenishment states can be overridden by counts.
May be null in command data or events if not changed or being changed.
default: null

883

Properties

unit1/cash/capabilities/retractAreas
If items can be retracted into this storage unit, this is the number of areas within the storage unit which allow
physical separation of different bunches. If there is no physical separation of retracted bunches within this
storage unit, this value is 1. May be null if items can not be retracted into this storage unit or in events if not
changed or being changed.
Property value constraints:
minimum: 1
default: null

unit1/cash/capabilities/retractThresholds
If true, indicates that retract capacity is based on counts. If false, indicates that retract capacity is based on the
number of commands which resulted in items being retracted into the storage unit. May be null if items can not
be retracted into this storage unit or in events if not changed or being changed.
default: null

unit1/cash/capabilities/cashItems
An array containing multiple cash items, listing what a storage unit is capable of or configured to handle. Each
member is the object name of a cash item reported by CashManagement.GetBankNoteTypes. May be null in
command data or events if not being modified.
Property value constraints:
minItems: 1
default: null

unit1/cash/configuration
Indicates what this storage unit is configured as or is being configured to do - where applicable the supported
options can be derived from capabilities.
If the Service supports an exchange state, only a subset of these parameters may be modified unless in an
exchange. Parameters which may only be modified in an exchange state are listed.
May be null in command data or events if no configuration is to be or has been changed.
default: null

unit1/cash/configuration/currency
ISO 4217 currency identifier [Ref. cashmanagement-1]. May only be modified in an exchange state if applicable.
May be null if the unit is configured to store mixed currencies or non-cash items.
Property value constraints:
pattern: ^[A-Z]{3}$
default: null

unit1/cash/configuration/value
Absolute value of a cash item or items. May be a floating point value to allow for coins and notes which have a
value which is not a whole multiple of the currency unit.
If applied to a storage unit, this applies to all contents, may be 0 if mixed and may only be modified in an
exchange state if applicable.
May be null in command data or events if not being modified.
Property value constraints:
minimum: 0
default: null

unit1/cash/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. The total number is not reported directly, but derived from initial + in - out.
If null, high is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

884

Properties

unit1/cash/configuration/lowThreshold
If specified, replenishmentStatus is set to low if total number of items in the storage unit is less than this number.
The total number is not reported directly, but derived from initial + in - out.
If null, low is based on hardware sensors if supported - see hardwareSensors. May be null in command data or
events if not being modified.
Property value constraints:
minimum: 1
default: null

unit1/cash/configuration/appLockIn
If true, items cannot be accepted into the storage unit in Cash In operations. May be null in command data or
events if not being modified.
default: null

unit1/cash/configuration/appLockOut
If true, items cannot be dispensed from the storage unit in Cash Out operations. May be null in command data or
events if not being modified.
default: null

unit1/cash/configuration/name
Application configured name of the unit. May be null in command data or events if not being modified.
default: null

unit1/cash/configuration/maxRetracts
If specified, this is the number of retract operations allowed into the unit. Only applies to retract units. If
retractOperations equals this number, then no further retracts are allowed into this storage unit.
If null in output, the maximum number is not limited by counts. May be null in command data or events if not
being modified.
Property value constraints:
minimum: 1
default: null

unit1/cash/status
Indicates the storage unit status - this includes information which is a combination of that reported in
WFS_INF_CDM_CASH_UNIT_INFO and WFS_INF_CIM_CASH_UNIT_INFO in XFS 3.x. Note that the
count of items in the storage unit must be derived from the counts reported. May be null in events if not
changing.
default: null

unit1/cash/status/index
Assigned by the Service. Will be a unique number which can be used to determine usNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

unit1/cash/status/initial
The cash related items which were in the storage unit at the last replenishment.
default: null

unit1/cash/status/initial/unrecognized
Count of unrecognized items handled by the cash interface. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

885

Properties

unit1/cash/status/initial/type20USD1 (example name)
Counts of a given cash item (as reported by CashManagement.GetBankNoteTypes) broken down by
classification.
default: null

unit1/cash/status/initial/type20USD1/fit
Count of genuine cash items which are fit for recycling. May be null in command data and events if not changed
or not to be changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/initial/type20USD1/unfit
Count of genuine cash items which are unfit for recycling. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/initial/type20USD1/suspect
Count of suspected counterfeit cash items. May be null in command data and events if not changed or not to be
changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/initial/type20USD1/counterfeit
Count of counterfeit cash items. May be null in command data and events if not changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/initial/type20USD1/inked
Count of cash items which have been identified as ink stained. May be null in command data and events if not
changed or not to be changed.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/out
The items moved from this storage unit by cash commands to another destination since the last replenishment of
this unit. This includes intermediate positions such as a stacker, where an item has been moved before moving to
the final destination such as another storage unit or presentation to a customer.
Counts for non-intermediate positions are reset if initial is set for this unit by Storage.GetStorage. See
descriptions for the counts which will not be reset by this command.
Intermediate position counts are reset when the intermediate position is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved from the storage unit by cash commands.
default: null

unit1/cash/status/out/presented
The items dispensed from this storage unit which are or were customer accessible. Will be null if no items were
presented.
default: null

886

Properties

unit1/cash/status/out/rejected
The items dispensed from this storage unit which were invalid and were diverted to a reject storage unit and were
not customer accessible during the operation. Will be null if no items were rejected.
default: null

unit1/cash/status/out/distributed
The items dispensed from this storage unit which were moved to a storage unit other than a reject storage unit
and were not customer accessible during the operation. Will be null if no items were distributed.
default: null

unit1/cash/status/out/unknown
The items dispensed from this storage unit which moved to an unknown position. Will be null if no items were
unknown.
default: null

unit1/cash/status/out/stacked
The items dispensed from this storage unit which are not customer accessible and are currently stacked awaiting
presentation to the customer. This item list can increase and decrease as items are moved around in the device.
This is not reset if initial is set for this unit by Storage.GetStorage. Will be null if no items were stacked.
default: null

unit1/cash/status/out/diverted
The items dispensed from this storage unit which are not customer accessible and were diverted to a temporary
location due to being invalid and have not yet been deposited in a storage unit. This item list can increase and
decrease as items are moved around in the device. This is not reset if initial is set for this unit by
Storage.GetStorage. Will be null if no items were diverted.
default: null

unit1/cash/status/out/transport
The items dispensed from this storage unit which are not customer accessible and which have jammed in the
transport. This item list can increase and decrease as items are moved around in the device. This is not reset if
initial is set for this unit by Storage.GetStorage. Will be null if no items apply.
default: null

unit1/cash/status/in
List of items inserted in this storage unit by cash commands from another source since the last replenishment of
this unit. This also reports items in the transport, where an item has jammed before being deposited in the
storage unit.
Counts other than transport are reset if initial is set for this unit by Storage.GetStorage. See descriptions for the
counts which will not be reset by this command.
The transport count is reset when it is empty:

• If it is known where the items moved to then the appropriate count or counts are modified.
• If it is not known where the items moved, for example because they have been removed manually after

jam clearance, then unknown is modified.
May be null if items have not or can not be moved into the storage unit by cash commands.
default: null

unit1/cash/status/in/retractOperations
Number of cash retract operations which resulted in items entering this storage unit. This can be used where
devices do not have the capability to count or validate items after presentation. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

unit1/cash/status/in/deposited
The items deposited in the storage unit during a Cash In transaction. Can be null, if all values are 0.
default: null

887

Properties

unit1/cash/status/in/retracted
The items retracted into the storage unit after being accessible to a customer. This may be inaccurate or not
counted if items are not counted or re-validated after presentation, the number of retract operations is also
reported separately in retractOperations. Can be null, if all values are 0.
default: null

unit1/cash/status/in/rejected
The items deposited in this storage unit originating from another storage unit but rejected due to being invalid.
This count may be inaccurate due to the nature of rejected items. Can be null, if all values are 0.
default: null

unit1/cash/status/in/distributed
The items deposited in this storage unit originating from another storage unit but not rejected. Can be null, if all
values are 0.
default: null

unit1/cash/status/in/transport
The items which were intended to be deposited in this storage unit but are not yet deposited. Typical use case for
this property is tracking items after a jam during CashAcceptor.CashInEnd. This is not reset if initial is set for
this unit by Storage.GetStorage. Can be null, if all values are 0.
default: null

unit1/cash/status/accuracy
Describes the accuracy of the counts reported by out and in. If null in Storage.GetStorage, the hardware is not
capable of determining the accuracy, otherwise the following values are possible:

• accurate - The count is expected to be accurate. The notes were previously counted
and there have since been no events that might have introduced inaccuracy.

• accurateSet - The count is expected to be accurate. The counts were previously set and there have
since been no events that might have introduced inaccuracy.

• inaccurate - The count is likely to be inaccurate. A jam, picking fault, or some other event may
have resulted in a counting inaccuracy.

• unknown - The accuracy of count cannot be determined. This may be due to storage unit insertion or
some other hardware event.
default: null

unit1/cash/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in events if not
changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on sensors or counts.
• high - The storage unit is almost full (either sensor based or exceeded the

highThreshold.
• low - The storage unit is almost empty (either sensor based or below the

lowThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has hardwareSensors, this state is not set by counts.
default: null

888

Properties

unit1/cash/status/operationStatus
On some devices it may be possible to allow items to be dispensed in a recycling storage unit while deposit is
inoperable or vice-versa. This property allows the Service to report that one operation is possible while the other
is not, without taking the storage unit out of Service completely with status or replenishmentStatus.
Following values are possible:

• dispenseInoperative - Dispense operations are possible and deposit operations are not possible on
this recycling storage unit.

• depositInoperative - Deposit operations are possible and dispense operations are not possible on
this recycling storage unit.
If null in Storage.GetStorage, status and replenishmentStatus apply to both cash out and cash in operations.
default: null

unit1/card
The card related contents, status and configuration of the unit. May be null if not applicable.
default: null

unit1/card/capabilities
Indicates the card storage unit capabilities. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

unit1/card/capabilities/type
The type of card storage. This property may be null in events if the type did not change, otherwise will be one of
the following values:

• retain - The storage unit can retain cards.
• dispense - The storage unit can dispense cards.
• park - The storage unit can be used to temporarily store a card allowing another card to enter the

transport.
default: null

unit1/card/capabilities/hardwareSensors
Indicates whether the storage unit has hardware sensors that can detect threshold states. This property may be
null in events if it did not change.
default: null

unit1/card/configuration
Indicates the card storage unit configuration. This property can be null if the storage unit is being set using
Storage.SetStorage, or a change is being reported using Storage.StorageChangedEvent or
Storage.StorageThresholdEvent.

unit1/card/configuration/cardID
The identifier that may be used to identify the type of cards in the storage unit. This is only applicable to
dispense storage units and may be null in events if it did not change.
default: null

unit1/card/configuration/threshold
If the threshold value is non zero, hardware sensors in the storage unit do not trigger
Storage.StorageThresholdEvent events. This property may be null in events if it did not change.
If non zero, when count reaches the threshold value:

• For retain type storage units, a high threshold will be sent.
• For dispense type storage units, a low threshold will be sent.

Property value constraints:
minimum: 0
default: null

unit1/card/status
Indicates the card storage unit status. This property can be null if a change is being reported using
Storage.StorageChangedEvent or Storage.StorageThresholdEvent.

889

Properties

unit1/card/status/initialCount
The initial number of cards in the storage unit. This is only applicable to dispense type storage units. This
property may be null in events if it did not change.
This value is persistent.
Property value constraints:
minimum: 0
default: null

unit1/card/status/count
The number of cards in the storage unit.
If the storage unit type is dispense:

• This count also includes a card dispensed from the storage unit which has not been moved to either the
exit position or a dispense type storage unit.

• This count is decremented when a card from the card storage unit is moved to the exit position or
retained. If this value reaches zero it will not decrement further but will remain at zero.

If the storage unit type is retain:
• The count is incremented when a card is moved into the storage unit.

If the storage unit type is park:
• The count will increment when a card is moved into the storage module and decremented when a card

is moved out of the storage module.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

unit1/card/status/retainCount
The number of cards from this storage unit which are in a retain storage unit.
This is only applicable to dispense type storage units.
This value is persistent and may be null in events if it did not change.
Property value constraints:
minimum: 0
default: null

unit1/card/status/replenishmentStatus
The state of the cards in the storage unit if it can be determined. Note that overall status of the storage unit must
be taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will be null. The property may also be null in events
if it did not change.
The following values are possible:

• ok - The storage unit is in a good state.
• full - The storage unit is full.
• high - The storage unit is almost full (either sensor based or above the

threshold).
• low - The storage unit is almost empty (either sensor based or below the

threshold).
• empty - The storage unit is empty.

default: null

unit1/check
The check related contents, status and configuration of the unit. May be null if not applicable.
default: null

890

Properties

unit1/check/capabilities
Indicates what the storage unit is capable of - this includes information which is a combination of that reported in
WFS_INF_IPM_MEDIA_BIN_INFO and WFS_INF_IPM_MEDIA_BIN_CAPABILITIES in XFS 3.x. May be
null in events if not changed.
default: null

unit1/check/capabilities/types
The types of operation the unit is capable of or configured to perform. This is a combination of one or more
operations. May only be modified in an exchange state if applicable. May be null in command data and events if
not changing.
default: null

unit1/check/capabilities/types/mediaIn
The unit can accept items during Media In transactions. May be null in command data and events if not
changing.
default: null

unit1/check/capabilities/types/retract
Retract unit. Items can be retracted into this unit using Check.RetractMedia. May be null in command data and
events if not changing.
default: null

unit1/check/capabilities/sensors
The types of sensor the unit has. May be null in command data and events if not changing.
default: null

unit1/check/capabilities/sensors/empty
The unit contains a hardware sensor which reports when the unit is empty. May be null in command data and
events if not changing.
default: null

unit1/check/capabilities/sensors/high
The unit contains a hardware sensor which reports when the unit is nearly full. May be null in command data and
events if not changing.
default: null

unit1/check/capabilities/sensors/full
The unit contains a hardware sensor which reports when the unit is full. May be null in command data and events
if not changing.
default: null

unit1/check/configuration
Indicates what the storage unit is configured to do - where applicable the supported options can be derived from
capabilities. May be null in command data and events if not being modified.

unit1/check/configuration/binID
An application defined Storage Unit Identifier. This may be null in events if not changing.
default: null

unit1/check/configuration/highThreshold
If specified, replenishmentStatus is set to high if the total number of items in the storage unit is greater than this
number. May be null in command data and events if not being modified.
Property value constraints:
minimum: 1
default: null

891

Properties

unit1/check/configuration/retractHighThreshold
If specified and the storage unit is configured as retract, replenishmentStatus is set to high if the total number of
retract operations in the storage unit is greater than this number. May be null in command data and events if not
being modified.
Property value constraints:
minimum: 0
default: null

unit1/check/status
Indicates the storage unit status. May be null in events where status has not changed.
default: null

unit1/check/status/index
Assigned by the Service. Will be a unique number which can be used to determine usBinNumber in XFS 3.x
migration. This can change as storage units are added and removed from the storage collection.
Property value constraints:
minimum: 1

unit1/check/status/initial
The check related counts as set at the last replenishment. May be null in events where status has not changed.
default: null

unit1/check/status/initial/mediaInCount
Count of items added to the storage unit due to Check operations. If the number of items is not counted this is
not reported and retractOperations is incremented as items are added to the unit. May be null in command data
and events if not changing.
Property value constraints:
minimum: 0
default: null

unit1/check/status/initial/count
Total number of items added to the storage unit due to any operations. If the number of items is not counted this
is not reported and retractOperations is incremented as items are added to the unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

unit1/check/status/initial/retractOperations
Total number of operations which resulted in items being retracted to the storage unit. May be null in command
data and events if not changing.
Property value constraints:
minimum: 0
default: null

unit1/check/status/in
The check items added to the unit since the last replenishment. May be null in events where status has not
changed.
default: null

892

Properties

unit1/check/status/replenishmentStatus
The state of the media in the unit if it can be determined. Note that overall status of the storage unit must be
taken into account when deciding whether the storage unit is usable and whether replenishment status is
applicable. In particular, if the overall status is missing this will not be reported. May be null in command data
and events if not changing, otherwise the following values are possible:

• ok - The storage unit media is in a good state.
• full - The storage unit is full. This is based on hardware detection, either on a

full sensor or counts.
• high - The storage unit is almost full (either

high sensor based or exceeded the highThreshold or retractHighThreshold).
• empty - The storage unit is empty, or insufficient items in the storage unit are preventing further

dispense operations. If the storage unit has the empty sensor, this state is not set by counts.
default: null

893

23. Vendor Mode Interface
This chapter defines the Vendor Mode interface functionality and messages.

This interface allows for the coordination of access to resources, and should be read in conjunction with the Vendor
Application interface.

23.1 General Information

23.1.1 Vendor Mode
In all device classes there needs to be some method of going into a vendor specific mode to allow for capabilities
which go beyond the scope of the current XFS4IoT specifications. A typical usage of such a mode might be to
handle some configuration or diagnostic type of function or perhaps perform some 'off-line' testing of the device.
These functions are normally available on Self-Service devices in a mode traditionally referred to as Maintenance
Mode or Supervisor Mode and usually require operator intervention. It is those vendor-specific functions not
covered by (and not required to be covered by) XFS4IoT Services that will be available once the device is in
Vendor Mode. This Service provides the mechanism for switching to and from Vendor Mode. The Vendor Mode
service can be seen as the central point through which all requests to enter and exit Vendor Mode are synchronized.

Entry into, or exit from, Vendor Mode can be initiated either by an application or by the Vendor Mode Service
itself. If initiated by an application, then this application needs to issue the appropriate command to request entry or
exit. If initiated by the Vendor Mode Service i.e. some vendor dependent switch, then these request commands are
not required. Once the entry request has been made, all registered applications will be notified of the entry request
by an event message. These applications must attempt to close all open sessions with other Services (except for
specific Services which explicitly allow sessions to remain open) as soon as possible and then issue an
VendorApplication.EnterModeAcknowledge command to the Vendor Mode service when ready. Once all
applications have acknowledged, the Vendor Mode Service will issue event messages to these applications to
indicate that the System is in Vendor Mode. The application can then start the vendor dependent application.

Similarly, once the exit request has been made all registered applications will be notified of the exit request by an
event message. These applications must then issue an VendorApplication.ExitModeAcknowledge command to the
Vendor Mode service immediately. Once all applications have acknowledged, the Vendor Mode service will issue
event messages to these applications to indicate that the system has exited from Vendor Mode.

The Vendor Mode Service is used in conjunction with the Vendor Application service. The Vendor Mode Service is
responsible for coordinating the release of resources from other services, while the Vendor Application service is
responsible for starting the vendor dependent application. The VendorApplication.StartLocalApplication command
is used for the latter.

With regard to how the application relates to other services the following rules apply:

1. If the vendor dependent application is published on the same service as a device, then the application only
applies to that service/device.

2. If the vendor dependent application is on its own service without any other device classes, then the app
applies to all services/devices published by that publisher - i.e. from that vendor/hardware manufacturer.

The following diagrams show the various methods of entering and exiting Vendor Mode and should be read in
conjunction with the command and event descriptions.

894

Vendor Mode Entry triggered by an XFS Application

1. An XFS4IoT application calls VendorMode.EnterModeRequest to request entry into Vendor Mode.
2. The Vendor Mode service sends an VendorMode.EnterModeRequestEvent to all applications which have

registered to participate in Vendor Mode. The applications relinquish control of the services they are
connected to when and if they can.

3. Once the other applications have relinquished control of their device resources they send an
VendorMode.EnterModeAcknowledge to the Vendor Mode service.

4. When all registered applications have reported that they have relinquished control of their services, the
Vendor Mode service sends a VendorMode.ModeEnteredEvent to signify entry into Vendor Mode.

5. The Application calls the VendorApplication.StartLocalApplication command to start the vendor
dependent application.

The system is now in Vendor Mode and a vendor dependent application can exclusively use the system devices in a
vendor dependent manner.

Vendor Mode Entry triggered by an XFS Application

1. The vendor dependent application exits.
2. The XFS4IoT application calls VendorMode.ExitModeRequest to request exit from Vendor Mode.
3. The Vendor Mode Service sends a VendorMode.ExitModeRequestEvent to all applications which have

registered to participate in Vendor Mode.
4. The other applications call VendorMode.ExitModeAcknowledge.
5. When all registered applications have reported that they have exited Vendor Mode the Service sends a

VendorMode.ModeExitedEvent to report exit from Vendor Mode.

The system is no longer in Vendor Mode.

895

23.2 Command Messages

23.2.1 VendorMode.Register
This command is issued by an application to register that it wants to participate in Vendor Mode.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0) Type Required
{
 "appName": "ACME Monitoring app" string 🗸🗸
}

Properties

appName
Specifies a logical name for the application that is registering. It should give some indication of the identity and
function of the registering application.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

896

23.2.2 VendorMode.EnterModeRequest
This command is issued by an application to indicate a logical request to enter Vendor Mode. The Service will then
indicate the request to all registered applications by sending a VendorMode.EnterModeRequestEvent and then wait
for an acknowledgement back from each registered application before putting the system into Vendor Mode. The
service will change to enterPending on receipt of this command and will prevail until all applications have
acknowledged, at which time service will change to active and the command completes. If the command fails when
service is enterPending, service is changed to inactive and VendorMode.ModeExitedEvent is sent to all registered
applications.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

897

23.2.3 VendorMode.EnterModeAcknowledge
This command is issued by a registered application as an acknowledgement to the
VendorMode.EnterModeRequestEvent and it indicates that it is ready for the system to enter Vendor Mode. All
registered applications must respond before Vendor Mode can be entered. Completion of this command is
immediate. If this command is executed outwith a request for Vendor Mode entry, or if the acknowledge has
already been sent from this connection then the command completes with a sequenceError error code.

Note: Applications must be prepared to allow the vendor dependent application to display on the active interface.
This means that applications should no longer try to be the foreground or topmost window to ensure that the vendor
dependent application is visible.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

898

23.2.4 VendorMode.ExitModeRequest
This command is issued by an application to indicate a request to exit Vendor Mode. The Service will then indicate
the request to all registered applications by sending a VendorMode.ExitModeRequestEvent and then wait for an
acknowledgement back from each registered application before removing the system from Vendor Mode. The
status will change to exitPending on receipt of this command and will prevail until all applications have
acknowledged, at which time the status will change to inactive and the ExitModeRequest command completes. If
the command fails when the status is exitPending, the status is changed to active and a
VendorMode.ModeEnteredEvent is sent to all registered applications.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

899

23.2.5 VendorMode.ExitModeAcknowledge
This command is issued by a registered application as an acknowledgement to the VendorMode.ExitModeRequest
command and it indicates that the application is ready for the system to exit Vendor Mode. All registered
applications (including the application that issued the request to exit Vendor Mode) must respond before Vendor
Mode will be exited. Completion of this command is immediate.

This command can be used while in Vendor Mode.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

900

23.3 Unsolicited Messages

23.3.1 VendorMode.EnterModeRequestEvent
This service event is used to indicate the request to enter Vendor Mode.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

901

23.3.2 VendorMode.ExitModeRequestEvent
This service event is used to indicate the request to exit Vendor Mode.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

902

23.3.3 VendorMode.ModeEnteredEvent
This event is used to indicate that the system has entered Vendor Mode.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

903

23.3.4 VendorMode.ModeExitedEvent
This event is used to indicate that the system has exited Vendor Mode.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "connectedApplications": ["Application1", "Application2"] array (string) 🗸🗸
}

Properties

connectedApplications
List of applications that have not shut down.

904

24. Vendor Application Interface
This chapter defines and describes the functionality of the Vendor Application Service, which is used to start a local
application, and set the active interface.

24.1 General Information

24.1.1 Vendor Application
This specification describes the functionality of the commands and events provided by the Vendor Application
Service by defining the service-specific commands that can be used. This service is responsible for starting a local
vendor dependent application and should be used in conjunction with the Vendor Mode service, which is
responsible for managing arbitration of access to active services in the services environment. For the exact detail of
the interaction between the Vendor Mode service and the VendorApplication.StartLocalApplication command refer
to the Vendor Mode Service documentation, which describes this fully.

The Vendor Mode Service is solely responsible for allowing an application to inform devices to either relinquish or
reassert control of hardware, whereas the VendorApplication service is responsible for starting and managing the
vendor dependent application itself. The vendor dependent application could be a monitoring application, a
maintenance application or have another purpose. The exact purpose is not mandated by XFS4IoT.

Once the Vendor Mode Service has been called the VendorApplication.StartLocalApplication command can be
used to run the vendor dependent application. When the vendor dependent application exits it sends a
VendorApplication.VendorAppExitedEvent event to the main application to indicate that it has exited, the
application can then use the Vendor Mode Service to communicate to other services that it is safe to regain control
of the hardware.

The VendorApplication.SetActiveInterface command can be used to communicate to the Service which interface it
should start on, this could be a local front screen, back screen or a remote screen on a terminal or mobile device.
VendorApplication.GetActiveInterface reports the currently active interface. Note that the interface can also be
changed while the vendor dependent application is running.

905

24.2 Command Messages

24.2.1 VendorApplication.StartLocalApplication
This command is issued by an application to start a local application which provides vendor dependent services. It
can be used in conjunction with the Vendor Mode interface to manage vendor independent services and start vendor
specific services, e.g. maintenance oriented applications.

Command Message

Payload (version 2.0) Type Required
{
 "appName": "ACME vendor app", string 🗸🗸
 "accessLevel": "basic" string, null
}

Properties

appName
Defines the vendor dependent application to start.

accessLevel
If specified, this defines the access level for the vendor dependent application interface. If not specified (null)
then the service will determine the level of access available. If the level of access is to be changed then an
application exit should be performed, followed by a restart of the application specifying the new level of access.
Specified as one of the following:

• basic - The vendor dependent application is active for the basic access level. Once the
application is active it will show the user interface for the basic access level.

• intermediate - The vendor dependent application is active for the intermediate access level.
Once the application is active it will show the user interface for the intermediate access level.

• full - The vendor dependent application is active for the full access
level. Once the application is active it will show the user interface for the full access level.
default: null

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

906

24.2.2 VendorApplication.GetActiveInterface
This command is used to retrieve the interface that should be used by the vendor dependent application.

Command Message

Payload (version 2.0)
This message does not define any properties.

Completion Message

Payload (version 2.0) Type Required
{
 "activeInterface": "consumer" string 🗸🗸
}

Properties

activeInterface
Specifies the active interface as one of the following values:

• consumer - The consumer interface.
• operator - The operator interface.

Event Messages
None

907

24.2.3 VendorApplication.SetActiveInterface
This command is used to indicate which interface should be displayed by a vendor dependent application. An
application can issue this command to ensure that a vendor dependent application starts on the correct interface, or
to change the interface while running.

Command Message

Payload (version 2.0) Type Required
{
 "activeInterface": "consumer" string 🗸🗸
}

Properties

activeInterface
Specifies the active interface as one of the following values:

• consumer - The consumer interface.
• operator - The operator interface.

Completion Message

Payload (version 2.0)
This message does not define any properties.

Event Messages
None

908

24.3 Unsolicited Messages

24.3.1 VendorApplication.VendorAppExitedEvent
This event is used to indicate the vendor dependent application has exited, allowing an application the opportunity
to exit Vendor Mode.

Unsolicited Message

Payload (version 2.0)
This message does not define any properties.

909

24.3.2 VendorApplication.InterfaceChangedEvent
This event is used to indicate that the required interface has changed. This can be as a result of a
VendorApplication.SetActiveInterface command, or when the active interface is changed through vendor
dependent means while the vendor dependent application is active. The activeInterface property indicates which
interface has been selected.

Note: Applications must be prepared to allow the vendor dependent application to display on the active interface.
This means that applications should no longer try to be the foreground or topmost window to ensure that the vendor
dependent application is visible.

Unsolicited Message

Payload (version 2.0) Type Required
{
 "activeInterface": "consumer" string 🗸🗸
}

Properties

activeInterface
Specifies the active interface as one of the following values:

• consumer - The consumer interface.
• operator - The operator interface.

910

25. 3.x Migration
This chapter provides information on how to migrate to and from XFS 3.x.

Migration to and from 3.x is a key requirement of XFS4IoT. This chapter describes how functionality available in
XFS 3.x can be provided and/or derived to and from XFS4IoT.

25.1 CDM (Cash Dispense Module)
The CDM class provides access to cash dispensing functionality. In XFS4IoT, it has been restructured to use the
CashDispenser, Storage and CashManagement interfaces.

25.1.1 WFS_INF_CDM_CASH_UNIT_INFO
storage unit storage information is defined by the WFS_INF_CDM_CASH_UNIT_INFO category which is
replaced in XFS4IoT by Storage.GetStorage. The following table lists the output fields in
WFS_INF_CDM_CASH_UNIT_INFO and how they are mapped in XFS4IoT.

The concept of logical and physical storage units does not exist in XFS4IoT, only physical units are reported. The
3.x logical cash counts can be easily calculated from the given cash counts as described below.

Storage.SetStorage provides all the same functionality as the 3.x command but also provides additional
functionality:

1. Only fields which need to be changed need to be provided, including only modifying storage units which
are changing.

2. Storage.GetStorage provides a much more detailed breakdown of the capabilities and status of the storage
units than the 3.x equivalents, therefore it is possible to decide in advance what a storage unit can be
configured to do using Storage.SetStorage.

3. Storage.SetStorage only accepts as input the fields which can be modified.

3.x XFS4IoT

WFSCDMCUINFO::usTellerID Not supported, equivalent to 0 in XFS 3.x

WFSCDMCUINFO::usCount Number of storage items with a cash interface

WFSCDMCASHUNIT::usNumber index

WFSCDMCASHUNIT::usType types. XFS4IoT has the option to support multiple types which is
not available in 3.x, but an intelligent map can be performed, for
example if the unit supports cashIn and cashOut then it can be
mapped to WFS_CDM_TYPERECYCLING.

WFSCDMCASHUNIT::lpszCashUnitName name

WFSCDMCASHUNIT::cUnitID id

WFSCDMCASHUNIT::cCurrencyID currency

WFSCDMCASHUNIT::ulValues value. An additional conversion may be required due to the
different types of these two items. value is the absolute value of
the cash item, whereas ulValues is the value expressed in
minimum dispense units. If the value of any of the items
supported by the device can't be expressed as a C ULONG
(integer between 0 and 0xffffffff) then a currency exponent will
be required - see CashManagement.GetBankNoteTypes.

WFSCDMCASHUNIT::ulInitialCount Total number of items in initial

911

3.x XFS4IoT

WFSCDMCASHUNIT::ulCount If not a retract unit, The total count of the items in the unit
(ulCount in 3.x) is not reported directly but can be derived from
the initial, out and in counts. The number of items in the unit is
initial + in - out. However for units which dispense items, this
calculation should only decremented when the items are either
known to be in customer access or successfully rejected,
therefore the intermediate out fields are not included in this
calculation:stacked, transport, unknown and diverted. If counts
being incorrectly set at replenishment time means that this would
result in a negative number, this should report 0. A dispense
storage unit which is not empty but has a derived ulCount of 0
may be dispensed from if locally configured to do so - this can
cause problems for 3.x applications as ulCount can not be
negative therefore it can't be used to track dispensed items once
that point is reached. XFS4IoT deals with this issue by having
separate counts for items in and out.

If a retract unit, retractOperations

WFSCDMCASHUNIT::ulRejectCount Total number of items in rejected

WFSCDMCASHUNIT::ulMinimum lowThreshold

WFSCDMCASHUNIT::ulMaximum highThreshold

WFSCDMCASHUNIT::bAppLock appLockOut

WFSCDMCASHUNIT::usStatus If operationStatus reports dispenseInoperative, then map to
WFS_CDM_STATCUINOP, otherwise
status if not ok, otherwise
replenishmentStatus

WFSCDMCASHUNIT::usNumPhysicalCUs No support for logical units in XFS4IoT. This is equivalent to
XFS 3.x value 1.

WFSCDMCASHUNIT::ulDispensedCount Add the total number of items in all of the out properties.

WFSCDMCASHUNIT::ulPresentedCount Total number of items in presented

WFSCDMCASHUNIT::ulRetractedCount Total number of items in retracted

WFSCDMPHCU::lpPhysicalPositionName positionName

WFSCDMPHCU::cUnitID id

WFSCDMPHCU::ulInitialCount Total number of items in initial

WFSCDMPHCU::ulCount 0 if a retract unit which cannot count items during a retract.

In all other cases, start with WFSCDMCASHUNIT::ulCount and
subtract the total number of items in stacked, transport and
unknown. If this results in a negative number, this should be 0.

WFSCDMPHCU::ulRejectCount Total number of items in rejected

WFSCDMPHCU::ulMaximum capacity

WFSCDMPHCU::usPStatus If operationStatus reports dispenseInoperative, then map to
WFS_CDM_STATCUINOP, otherwise
status if not ok, otherwise
replenishmentStatus
Note this is a change from XFS 3.x where physical status is not
overridden by count thresholds (ulMaximum and ulMinimum).

WFSCDMPHCU::bHardwareSensor hardwareSensors

WFSCDMPHCU::ulDispensedCount Add the total number of items in all of the out properties.

WFSCDMPHCU::ulPresentedCount Total number of items in presented

912

3.x XFS4IoT

WFSCDMPHCU::ulRetractedCount Total number of items in retracted

25.2 CIM (Cash-In Module)
The CIM class provides access to cash accepting functionality. In XFS4IoT, it has been restructured to use the
CashAcceptor, Storage and CashManagement interfaces.

25.2.1 WFS_INF_CIM_CASH_UNIT_INFO
storage unit storage information is defined by the WFS_INF_CIM_CASH_UNIT_INFO category which is replaced
in XFS4IoT by Storage.GetStorage. The following table lists the output fields in
WFS_INF_CIM_CASH_UNIT_INFO and how they are mapped in XFS4IoT.

The concept of logical and physical storage units does not exist in XFS4IoT, only physical units are reported. The
3.x logical cash counts can be easily calculated from the given cash counts as described below.

Storage.SetStorage provides all the same functionality as the 3.x command but also provides additional
functionality:

1. Only fields which need to be changed need to be provided, including only modifying storage units which
are changing.

2. Storage.GetStorage provides a much more detailed breakdown of the capabilities and status of the storage
units than the 3.x equivalents, therefore it is possible to decide in advance what a storage unit can be
configured to do using Storage.SetStorage.

3. Storage.SetStorage only accepts as input the fields which can be modified.

3.x XFS4IoT

WFSCIMCASHINFO::usCount Number of storage items with a cash interface

WFSCIMCASHIN::usNumber index

WFSCIMCASHIN::fwType types. XFS4IoT has the option to support multiple types which is
not available in 3.x, but an intelligent map can be performed, for
example if the unit supports cashIn and cashOut then it can be
mapped to WFS_CIM_TYPERECYCLING.

WFSCIMCASHIN::fwItemType items

WFSCIMCASHIN::cUnitID id

WFSCIMCASHIN::cCurrencyID currency

WFSCIMCASHIN::ulValues value. An additional conversion may be required due to the
different types of these two items. value is the absolute value of the
cash item, whereas ulValues is the value expressed in minimum
dispense units. If the value of any of the items supported by the
device can't be expressed as a C ULONG (integer between 0 and
0xffffffff) then a currency exponent will be required - see
CashManagement.GetBankNoteTypes.

WFSCIMCASHIN::ulCashInCount Add the total number of items in all of the in properties.

WFSCIMCASHIN::ulCount If not a retract unit, The total count of the items in the unit (ulCount
in 3.x) is not reported directly but can be derived from the initial,
out and in counts. The number of items in the unit is initial + in -
out. However for units which dispense items, this calculation
should only decremented when the items are either known to be in
customer access or successfully rejected, therefore the intermediate
out fields are not included in this calculation:stacked, transport,
unknown and diverted. If counts being incorrectly set at
replenishment time means that this would result in a negative
number, this should report 0.

If a retract unit, retractOperations

913

3.x XFS4IoT

WFSCIMCASHIN::ulMaximum highThreshold

WFSCIMCASHIN::usStatus If operationStatus reports depositInoperative, then map to
WFS_CIM_STATCUINOP, otherwise
status if not ok, otherwise
 replenishmentStatus

WFSCIMCASHIN::bAppLock appLockIn

WFSCIMCASHIN::lpNoteNumberList Combination of:
1. Start with initial
2. Add in
3. Remove out

WFSCIMCASHIN::usNumPhysicalCUs No support for logical units in XFS4IoT. This is equivalent to XFS
3.x value 1.

WFSCIMCASHIN::lpszExtra Any additional vendor-specific properties included in this storage
unit not defined by the schema can be added to this field.

WFSCIMCASHIN::lpusNoteIDs cashItems lists the cash items which the unit is configured to
accept. This can be cross-referenced with
CashManagement.GetBankNoteTypes to obtain the noteID for the
given cash item.

WFSCIMCASHIN::usCDMType types. XFS4IoT has the option to support multiple types which is
not available in 3.x, but an intelligent map can be performed, for
example if the unit supports cashIn and cashOut then it can be
mapped to WFS_CIM_TYPERECYCLING.

WFSCIMCASHIN::lpszCashUnitName name

WFSCIMCASHIN::ulInitialCount Total number of items in initial

WFSCIMCASHIN::ulDispensedCount Add the total number of items in all of the out properties.

WFSCIMCASHIN::ulPresentedCount Total number of items in presented

WFSCIMCASHIN::ulRetractedCount Total number of items in retracted

WFSCIMCASHIN::ulRejectCount Total number of items in rejected

WFSCIMCASHIN::ulMinimum lowThreshold

WFSCIMPHCU::lpPhysicalPositionName positionName

WFSCIMPHCU::cUnitID id

WFSCIMPHCU::ulCashInCount Add the total number of items in all of the in properties.

WFSCIMPHCU::ulCount 0 if a retract unit which cannot count items during a retract.

In all other cases, start with WFSCIMCASHIN::ulCount and
subtract the total number of items in stacked, transport and
unknown. If this results in a negative number, this should be 0.

WFSCIMPHCU::ulMaximum capacity

WFSCIMPHCU::usPStatus If operationStatus reports depositInoperative, then map to
WFS_CIM_STATCUINOP, otherwise
status if not ok, otherwise
 replenishmentStatus
Note this is a change from XFS 3.x where physical status is not
overridden by count thresholds (ulMaximum and ulMinimum).

WFSCIMPHCU::bHardwareSensors hardwareSensors

WFSCIMPHCU::lpszExtra Any additional vendor-specific properties included in this storage
unit not defined by the schema can be added to this field.

WFSCIMPHCU::ulInitialCount Total number of items in initial

914

3.x XFS4IoT

WFSCIMPHCU::ulDispensedCount Add the total number of items in all of the out properties.

WFSCIMPHCU::ulPresentedCount Total number of items in presented

WFSCIMPHCU::ulRetractedCount Total number of items in retracted

WFSCIMPHCU::ulRejectCount Total number of items in rejected

25.2.2 WFS_SRVE_CIM_COUNTACCURACYCHANGED
The count accuracy is reported as part of the Storage for a storage unit, therefore when the count accuracy changes,
a Storage.StorageChangedEvent will be generated.

	1. Foreword
	2. API
	2.1 References
	2.2 WebSockets Connections
	2.2.1 Overview
	2.2.2 Uniform Resource Identifier (URI)
	URI Format
	Network Protocol
	Machine Identification
	Port Sequence

	2.2.3 Service Publishing
	Free Endpoint Port Discovery
	Handling Incoming Connections

	2.2.4 Service Discovery
	Publisher Endpoint Discovery
	Service Endpoint Discovery

	2.3 Messages
	2.3.1 Message Definition
	2.3.2 Header Definition
	type Property
	name Property
	version Property
	requestId Property
	timeout Property
	status Property
	completionCode Property
	errorDescription Property

	2.3.3 Payload Definition
	Additional Properties

	2.4 Message Types
	2.4.1 Command Messages
	2.4.2 Acknowledge Messages
	2.4.3 Event Messages
	2.4.4 Completion Messages
	2.4.5 Unsolicited Event Messages

	2.5 Command Processing
	2.5.1 Standard Sequence
	2.5.2 Command Queuing
	2.5.3 Cancelation
	2.5.4 Example Command Request Message Sequence

	2.6 Message Versions
	2.6.1 Version Numbers
	Major Version Numbers
	Minor Version Numbers

	2.6.2 Version Number Selection
	2.6.3 Version Evolution Example
	2.6.4 Extending Enumeration Values

	2.7 End to End Security

	3. Service Publisher Interface
	3.1 Command Messages
	3.1.1 ServicePublisher.GetServices
	Command Message
	Completion Message
	Event Messages

	3.2 Event Messages
	3.2.1 ServicePublisher.ServiceDetailEvent
	Event Message

	4. Common Interface
	4.1 Command Messages
	4.1.1 Common.Status
	Command Message
	Completion Message
	Event Messages

	4.1.2 Common.Capabilities
	Command Message
	Completion Message
	Event Messages

	4.1.3 Common.SetVersions
	Command Message
	Completion Message
	Event Messages

	4.1.4 Common.Cancel
	Command Message
	Completion Message
	Event Messages

	4.1.5 Common.PowerSaveControl
	Command Message
	Completion Message
	Event Messages

	4.1.6 Common.SetTransactionState
	Command Message
	Completion Message
	Event Messages

	4.1.7 Common.GetTransactionState
	Command Message
	Completion Message
	Event Messages

	4.1.8 Common.GetCommandNonce
	Command Message
	Completion Message
	Event Messages

	4.1.9 Common.ClearCommandNonce
	Command Message
	Completion Message
	Event Messages

	4.2 Unsolicited Messages
	4.2.1 Common.StatusChangedEvent
	Unsolicited Message

	4.2.2 Common.ErrorEvent
	Unsolicited Message

	4.2.3 Common.NonceClearedEvent
	Unsolicited Message

	5. Card Reader Interface
	5.1 General Information
	5.1.1 References
	5.1.2 Intelligent Contactless Card Reader
	5.1.3 Intelligent Contactless Card Reader Sequence Diagrams
	Single Tap Transaction Without Issuer Update Processing
	Double Tap Transaction With Issuer Update Processing
	Card Removed Before Completion

	5.2 Command Messages
	5.2.1 CardReader.QueryIFMIdentifier
	Command Message
	Completion Message
	Event Messages

	5.2.2 CardReader.EMVClessQueryApplications
	Command Message
	Completion Message
	Event Messages

	5.2.3 CardReader.ReadRawData
	Command Message
	Completion Message
	Event Messages

	5.2.4 CardReader.WriteRawData
	Command Message
	Completion Message
	Event Messages

	5.2.5 CardReader.Move
	Command Message
	Completion Message
	Event Messages

	5.2.6 CardReader.SetKey
	Command Message
	Completion Message
	Event Messages

	5.2.7 CardReader.ChipIO
	Command Message
	Completion Message
	Event Messages

	5.2.8 CardReader.Reset
	Command Message
	Completion Message
	Event Messages

	5.2.9 CardReader.ChipPower
	Command Message
	Completion Message
	Event Messages

	5.2.10 CardReader.EMVClessConfigure
	Command Message
	Completion Message
	Event Messages

	5.2.11 CardReader.EMVClessPerformTransaction
	Command Message
	Completion Message
	Event Messages

	5.2.12 CardReader.EMVClessIssuerUpdate
	Command Message
	Completion Message
	Event Messages

	5.3 Event Messages
	5.3.1 CardReader.InsertCardEvent
	Event Message

	5.3.2 CardReader.MediaInsertedEvent
	Event Message

	5.3.3 CardReader.InvalidMediaEvent
	Event Message

	5.3.4 CardReader.TrackDetectedEvent
	Event Message

	5.3.5 CardReader.EMVClessReadStatusEvent
	Event Message

	5.4 Unsolicited Messages
	5.4.1 CardReader.MediaRemovedEvent
	Unsolicited Message

	5.4.2 CardReader.CardActionEvent
	Unsolicited Message

	5.4.3 CardReader.MediaDetectedEvent
	Unsolicited Message

	6. Cash Management Interface
	6.1 General Information
	6.1.1 References
	6.1.2 Note Classification

	6.2 Command Messages
	6.2.1 CashManagement.GetBankNoteTypes
	Command Message
	Completion Message
	Event Messages

	6.2.2 CashManagement.GetTellerInfo
	Command Message
	Completion Message
	Event Messages

	6.2.3 CashManagement.SetTellerInfo
	Command Message
	Completion Message
	Event Messages

	6.2.4 CashManagement.GetItemInfo
	Command Message
	Completion Message
	Event Messages

	6.2.5 CashManagement.GetClassificationList
	Command Message
	Completion Message
	Event Messages

	6.2.6 CashManagement.SetClassificationList
	Command Message
	Completion Message
	Event Messages

	6.2.7 CashManagement.CloseShutter
	Command Message
	Completion Message
	Event Messages

	6.2.8 CashManagement.OpenShutter
	Command Message
	Completion Message
	Event Messages

	6.2.9 CashManagement.Retract
	Command Message
	Completion Message
	Event Messages

	6.2.10 CashManagement.Reset
	Command Message
	Completion Message
	Event Messages

	6.2.11 CashManagement.CalibrateCashUnit
	Command Message
	Completion Message
	Event Messages

	6.3 Event Messages
	6.3.1 CashManagement.NoteErrorEvent
	Event Message

	6.3.2 CashManagement.InfoAvailableEvent
	Event Message

	6.3.3 CashManagement.IncompleteRetractEvent
	Event Message

	6.4 Unsolicited Messages
	6.4.1 CashManagement.TellerInfoChangedEvent
	Unsolicited Message

	6.4.2 CashManagement.ItemsTakenEvent
	Unsolicited Message

	6.4.3 CashManagement.ItemsInsertedEvent
	Unsolicited Message

	6.4.4 CashManagement.ItemsPresentedEvent
	Unsolicited Message

	6.4.5 CashManagement.MediaDetectedEvent
	Unsolicited Message

	6.4.6 CashManagement.ShutterStatusChangedEvent
	Unsolicited Message

	7. Cash Dispenser Interface
	7.1 General Information
	7.1.1 References

	7.2 Command Messages
	7.2.1 CashDispenser.GetMixTypes
	Command Message
	Completion Message
	Event Messages

	7.2.2 CashDispenser.GetMixTable
	Command Message
	Completion Message
	Event Messages

	7.2.3 CashDispenser.GetPresentStatus
	Command Message
	Completion Message
	Event Messages

	7.2.4 CashDispenser.Denominate
	Command Message
	Completion Message
	Event Messages

	7.2.5 CashDispenser.Dispense
	Command Message
	Completion Message
	Event Messages

	7.2.6 CashDispenser.Present
	Command Message
	Completion Message
	Event Messages

	7.2.7 CashDispenser.Reject
	Command Message
	Completion Message
	Event Messages

	7.2.8 CashDispenser.SetMixTable
	Command Message
	Completion Message
	Event Messages

	7.2.9 CashDispenser.TestCashUnits
	Command Message
	Completion Message
	Event Messages

	7.2.10 CashDispenser.Count
	Command Message
	Completion Message
	Event Messages

	7.2.11 CashDispenser.PrepareDispense
	Command Message
	Completion Message
	Event Messages

	7.3 Event Messages
	7.3.1 CashDispenser.DelayedDispenseEvent
	Event Message

	7.3.2 CashDispenser.StartDispenseEvent
	Event Message

	7.3.3 CashDispenser.IncompleteDispenseEvent
	Event Message

	8. Cash Acceptor Interface
	8.1 Command Messages
	8.1.1 CashAcceptor.GetCashInStatus
	Command Message
	Completion Message
	Event Messages

	8.1.2 CashAcceptor.GetReplenishTarget
	Command Message
	Completion Message
	Event Messages

	8.1.3 CashAcceptor.GetDeviceLockStatus
	Command Message
	Completion Message
	Event Messages

	8.1.4 CashAcceptor.GetDepleteSource
	Command Message
	Completion Message
	Event Messages

	8.1.5 CashAcceptor.GetPresentStatus
	Command Message
	Completion Message
	Event Messages

	8.1.6 CashAcceptor.CashInStart
	Command Message
	Completion Message
	Event Messages

	8.1.7 CashAcceptor.CashIn
	Command Message
	Completion Message
	Event Messages

	8.1.8 CashAcceptor.CashInEnd
	Command Message
	Completion Message
	Event Messages

	8.1.9 CashAcceptor.CashInRollback
	Command Message
	Completion Message
	Event Messages

	8.1.10 CashAcceptor.ConfigureNoteTypes
	Command Message
	Completion Message
	Event Messages

	8.1.11 CashAcceptor.CreateSignature
	Command Message
	Completion Message
	Event Messages

	8.1.12 CashAcceptor.ConfigureNoteReader
	Command Message
	Completion Message
	Event Messages

	8.1.13 CashAcceptor.CompareSignature
	Command Message
	Completion Message
	Event Messages

	8.1.14 CashAcceptor.Replenish
	Command Message
	Completion Message
	Event Messages

	8.1.15 CashAcceptor.CashUnitCount
	Command Message
	Completion Message
	Event Messages

	8.1.16 CashAcceptor.DeviceLockControl
	Command Message
	Completion Message
	Event Messages

	8.1.17 CashAcceptor.PresentMedia
	Command Message
	Completion Message
	Event Messages

	8.1.18 CashAcceptor.Deplete
	Command Message
	Completion Message
	Event Messages

	8.1.19 CashAcceptor.PreparePresent
	Command Message
	Completion Message
	Event Messages

	8.2 Event Messages
	8.2.1 CashAcceptor.InputRefuseEvent
	Event Message

	8.2.2 CashAcceptor.SubCashInEvent
	Event Message

	8.2.3 CashAcceptor.InsertItemsEvent
	Event Message

	8.2.4 CashAcceptor.IncompleteReplenishEvent
	Event Message

	8.2.5 CashAcceptor.IncompleteDepleteEvent
	Event Message

	9. Check Interface
	9.1 General Information
	9.1.1 References
	9.1.2 Code Line Characters

	9.2 Command Messages
	9.2.1 Check.GetTransactionStatus
	Command Message
	Completion Message
	Event Messages

	9.2.2 Check.MediaIn
	Command Message
	Completion Message
	Event Messages

	9.2.3 Check.MediaInEnd
	Command Message
	Completion Message
	Event Messages

	9.2.4 Check.MediaInRollback
	Command Message
	Completion Message
	Event Messages

	9.2.5 Check.ReadImage
	Command Message
	Completion Message
	Event Messages

	9.2.6 Check.PresentMedia
	Command Message
	Completion Message
	Event Messages

	9.2.7 Check.RetractMedia
	Command Message
	Completion Message
	Event Messages

	9.2.8 Check.Reset
	Command Message
	Completion Message
	Event Messages

	9.2.9 Check.GetNextItem
	Command Message
	Completion Message
	Event Messages

	9.2.10 Check.ActionItem
	Command Message
	Completion Message
	Event Messages

	9.2.11 Check.ExpelMedia
	Command Message
	Completion Message
	Event Messages

	9.2.12 Check.AcceptItem
	Command Message
	Completion Message
	Event Messages

	9.2.13 Check.SupplyReplenish
	Command Message
	Completion Message
	Event Messages

	9.2.14 Check.SetMediaParameters
	Command Message
	Completion Message
	Event Messages

	9.3 Event Messages
	9.3.1 Check.NoMediaEvent
	Event Message

	9.3.2 Check.MediaInsertedEvent
	Event Message

	9.3.3 Check.MediaRefusedEvent
	Event Message

	9.3.4 Check.MediaDataEvent
	Event Message

	9.3.5 Check.MediaRejectedEvent
	Event Message

	9.3.6 Check.MediaPresentedEvent
	Event Message

	9.4 Unsolicited Messages
	9.4.1 Check.MediaTakenEvent
	Unsolicited Message

	9.4.2 Check.MediaDetectedEvent
	Unsolicited Message

	9.4.3 Check.ShutterStatusChangedEvent
	Unsolicited Message

	10. Mixed Media
	10.1 General Information
	10.1.1 Introduction
	10.1.2 Example Transaction flows
	Successful CashAcceptor Mixed Media Transaction
	Successful Check Mixed Media Transaction
	Canceled CashAcceptor Mixed Media Transaction
	Canceled Check Mixed Media Transaction
	Successful CashAcceptor Mixed Media Transaction with item(s) refused
	CashAcceptor Mixed Media Transaction with item(s) retracted
	CashAcceptor Mixed Media Transaction with items returned, some taken and others retracted
	Check Mixed Media Transaction where items jam during Rollback

	10.2 Command Messages
	10.2.1 MixedMedia.SetMode
	Command Message
	Completion Message
	Event Messages

	11. Key Management Interface
	11.1 General Information
	11.1.1 References
	11.1.2 RKL Terminology
	11.1.3 Remote Key Loading Using Signatures
	RSA Data Authentication and Digital Signatures
	RSA Secure Key Exchange using Digital Signatures
	Initialization Phase – Signature Issuer and ATM PIN
	Initialization Phase – Signature Issuer and Host
	Key Exchange – Host and ATM PIN
	Key Exchange (with random number) – Host and ATM PIN
	Enhanced RKL, Key Exchange (with random number) – Host and ATM PIN
	Default Keys and Security Item loaded during manufacture

	11.1.4 Remote Key Loading Using Certificates
	Certificate Exchange and Authentication
	Remote Key Exchange
	Replace Certificate
	Primary and Secondary Certificate

	11.1.5 Remote Key Loading Using TR34
	TR34 BIND To Host
	TR34 Key Transport
	One Pass
	Two Pass

	TR34 REBIND To New Host
	TR34 Force REBIND To New Host
	TR34 UNBIND From Host
	TR34 Force UNBIND From Host

	11.1.6 EMV Support
	Key Loading
	PIN Block Management
	SHA-1 Digest

	11.1.7 KeyManagement.ImportKey command Input-Output Parameters
	Importing a 3DES 16-byte Terminal Master Key using Signature-based Remote Key Loading
	Importing a 3DES 16-byte Pin Encryption Key with a Key Check Value in the Input
	Importing a 3DES 16-byte MAC (Algorithm 3) Key
	Importing a 2048-bit Host RSA public key
	Importing a 3DES 24-byte Data Encryption Key via an X9.143 Keyblock

	11.1.8 DUKPT
	11.1.9 Restricted Encryption Key Command Usage
	11.1.10 Secure Key Entry Command Usage

	11.2 Command Messages
	11.2.1 KeyManagement.GetKeyDetail
	Command Message
	Completion Message
	Event Messages

	11.2.2 KeyManagement.Initialization
	Command Message
	Completion Message
	Event Messages

	11.2.3 KeyManagement.DeriveKey
	Command Message
	Completion Message
	Event Messages

	11.2.4 KeyManagement.Reset
	Command Message
	Completion Message
	Event Messages

	11.2.5 KeyManagement.ImportKey
	Command Message
	Completion Message
	Event Messages

	11.2.6 KeyManagement.DeleteKey
	Command Message
	Completion Message
	Event Messages

	11.2.7 KeyManagement.ExportRSAIssuerSignedItem
	Command Message
	Completion Message
	Event Messages

	11.2.8 KeyManagement.GenerateRSAKeyPair
	Command Message
	Completion Message
	Event Messages

	11.2.9 KeyManagement.ExportRSADeviceSignedItem
	Command Message
	Completion Message
	Event Messages

	11.2.10 KeyManagement.GetCertificate
	Command Message
	Completion Message
	Event Messages

	11.2.11 KeyManagement.ReplaceCertificate
	Command Message
	Completion Message
	Event Messages

	11.2.12 KeyManagement.StartKeyExchange
	Command Message
	Completion Message
	Event Messages

	11.2.13 KeyManagement.GenerateKCV
	Command Message
	Completion Message
	Event Messages

	11.2.14 KeyManagement.LoadCertificate
	Command Message
	Completion Message
	Event Messages

	11.2.15 KeyManagement.StartAuthenticate
	Command Message
	Completion Message
	Event Messages

	11.2.16 KeyManagement.ImportKeyToken
	Command Message
	Completion Message
	Event Messages

	11.2.17 KeyManagement.ImportEmvPublicKey
	Command Message
	Completion Message
	Event Messages

	11.3 Event Messages
	11.3.1 KeyManagement.DUKPTKSNEvent
	Event Message

	11.4 Unsolicited Messages
	11.4.1 KeyManagement.InitializedEvent
	Unsolicited Message

	11.4.2 KeyManagement.IllegalKeyAccessEvent
	Unsolicited Message

	11.4.3 KeyManagement.CertificateChangeEvent
	Unsolicited Message

	12. Crypto Interface
	12.1 General Information
	12.1.1 References

	12.2 Command Messages
	12.2.1 Crypto.GenerateRandom
	Command Message
	Completion Message
	Event Messages

	12.2.2 Crypto.CryptoData
	Command Message
	Completion Message
	Event Messages

	12.2.3 Crypto.GenerateAuthentication
	Command Message
	Completion Message
	Event Messages

	12.2.4 Crypto.VerifyAuthentication
	Command Message
	Completion Message
	Event Messages

	12.2.5 Crypto.Digest
	Command Message
	Completion Message
	Event Messages

	13. Keyboard Interface
	13.1 General Information
	13.1.1 Encrypting Touch Screen (ETS)
	13.1.2 Layout

	13.2 Command Messages
	13.2.1 Keyboard.GetLayout
	Command Message
	Completion Message
	Event Messages

	13.2.2 Keyboard.PinEntry
	Command Message
	Completion Message
	Event Messages

	13.2.3 Keyboard.DataEntry
	Command Message
	Completion Message
	Event Messages

	13.2.4 Keyboard.Reset
	Command Message
	Completion Message
	Event Messages

	13.2.5 Keyboard.SecureKeyEntry
	Command Message
	Completion Message
	Event Messages

	13.2.6 Keyboard.KeypressBeep
	Command Message
	Completion Message
	Event Messages

	13.2.7 Keyboard.DefineLayout
	Command Message
	Completion Message
	Event Messages

	13.3 Event Messages
	13.3.1 Keyboard.KeyEvent
	Event Message

	13.3.2 Keyboard.EnterDataEvent
	Event Message

	13.3.3 Keyboard.LayoutEvent
	Event Message

	14. PinPad Interface
	14.1 General Information
	14.1.1 References

	14.2 Command Messages
	14.2.1 PinPad.GetQueryPCIPTSDeviceId
	Command Message
	Completion Message
	Event Messages

	14.2.2 PinPad.LocalDES
	Command Message
	Completion Message
	Event Messages

	14.2.3 PinPad.LocalVisa
	Command Message
	Completion Message
	Event Messages

	14.2.4 PinPad.PresentIDC
	Command Message
	Completion Message
	Event Messages

	14.2.5 PinPad.Reset
	Command Message
	Completion Message
	Event Messages

	14.2.6 PinPad.MaintainPin
	Command Message
	Completion Message
	Event Messages

	14.2.7 PinPad.SetPinBlockData
	Command Message
	Completion Message
	Event Messages

	14.2.8 PinPad.GetPinBlock
	Command Message
	Completion Message
	Event Messages

	15. Printer Interface
	15.1 General Information
	15.1.1 Banking Printer Types
	15.1.2 Forms Model
	15.1.3 Command Overview
	15.1.4 Form, Sub-Form, Field, Frame, Table and Media Definitions
	Definition Syntax
	Form and Media Measurements
	Form Definition
	SubForm Definition
	Field Definition
	Frame Definition
	Sample 1 - Simple Framing
	Sample 2 - Framing With Title
	Sample 3 - Framing With Filled Interior
	Sample 4 - Repeated Framing

	Media Definition
	Form and Media Definitions in Multi-Vendor Environments

	15.1.5 Command and Event Flows during Single and Multi-Page / Wad Printing
	Single Page / Single Wad Printing With Immediate Media Control
	Single Page / Single Wad Printing With Separate Media Control
	Multi Page / Multi Wad Printing With Immediate Media Control
	Multi Page / Multi Wad Printing With Separate Media Control

	15.2 Command Messages
	15.2.1 Printer.GetFormList
	Command Message
	Completion Message
	Event Messages

	15.2.2 Printer.GetMediaList
	Command Message
	Completion Message
	Event Messages

	15.2.3 Printer.GetQueryForm
	Command Message
	Completion Message
	Event Messages

	15.2.4 Printer.GetQueryMedia
	Command Message
	Completion Message
	Event Messages

	15.2.5 Printer.GetQueryField
	Command Message
	Completion Message
	Event Messages

	15.2.6 Printer.ControlMedia
	Command Message
	Completion Message
	Event Messages

	15.2.7 Printer.PrintForm
	Command Message
	Completion Message
	Event Messages

	15.2.8 Printer.PrintRaw
	Command Message
	Completion Message
	Event Messages

	15.2.9 Printer.PrintNative
	Command Message
	Completion Message
	Event Messages

	15.2.10 Printer.ReadForm
	Command Message
	Completion Message
	Event Messages

	15.2.11 Printer.ReadImage
	Command Message
	Completion Message
	Event Messages

	15.2.12 Printer.MediaExtents
	Command Message
	Completion Message
	Event Messages

	15.2.13 Printer.ResetCount
	Command Message
	Completion Message
	Event Messages

	15.2.14 Printer.Reset
	Command Message
	Completion Message
	Event Messages

	15.2.15 Printer.RetractMedia
	Command Message
	Completion Message
	Event Messages

	15.2.16 Printer.DispensePaper
	Command Message
	Completion Message
	Event Messages

	15.2.17 Printer.LoadDefinition
	Command Message
	Completion Message
	Event Messages

	15.2.18 Printer.SupplyReplenish
	Command Message
	Completion Message
	Event Messages

	15.2.19 Printer.ControlPassbook
	Command Message
	Completion Message
	Event Messages

	15.2.20 Printer.SetBlackMarkMode
	Command Message
	Completion Message
	Event Messages

	15.3 Event Messages
	15.3.1 Printer.MediaPresentedEvent
	Event Message

	15.3.2 Printer.NoMediaEvent
	Event Message

	15.3.3 Printer.MediaInsertedEvent
	Event Message

	15.3.4 Printer.FieldErrorEvent
	Event Message

	15.3.5 Printer.FieldWarningEvent
	Event Message

	15.3.6 Printer.MediaRejectedEvent
	Event Message

	15.4 Unsolicited Messages
	15.4.1 Printer.MediaTakenEvent
	Unsolicited Message

	15.4.2 Printer.MediaInsertedUnsolicitedEvent
	Unsolicited Message

	15.4.3 Printer.MediaPresentedUnsolicitedEvent
	Unsolicited Message

	15.4.4 Printer.MediaDetectedEvent
	Unsolicited Message

	15.4.5 Printer.RetractBinStatusEvent
	Unsolicited Message

	15.4.6 Printer.DefinitionLoadedEvent
	Unsolicited Message

	15.4.7 Printer.MediaAutoRetractedEvent
	Unsolicited Message

	15.4.8 Printer.RetractBinThresholdEvent
	Unsolicited Message

	15.4.9 Printer.PaperThresholdEvent
	Unsolicited Message

	15.4.10 Printer.TonerThresholdEvent
	Unsolicited Message

	15.4.11 Printer.LampThresholdEvent
	Unsolicited Message

	15.4.12 Printer.InkThresholdEvent
	Unsolicited Message

	16. Text Terminal Interface
	16.1 General Information
	16.1.1 References
	16.1.2 Form and Field Definitions
	Definition Syntax
	XFS form/media definition in multi-vendor environments
	Form Definition
	Field Definition

	16.2 Command Messages
	16.2.1 TextTerminal.GetFormList
	Command Message
	Completion Message
	Event Messages

	16.2.2 TextTerminal.GetQueryForm
	Command Message
	Completion Message
	Event Messages

	16.2.3 TextTerminal.GetQueryField
	Command Message
	Completion Message
	Event Messages

	16.2.4 TextTerminal.GetKeyDetail
	Command Message
	Completion Message
	Event Messages

	16.2.5 TextTerminal.Beep
	Command Message
	Completion Message
	Event Messages

	16.2.6 TextTerminal.ClearScreen
	Command Message
	Completion Message
	Event Messages

	16.2.7 TextTerminal.SetResolution
	Command Message
	Completion Message
	Event Messages

	16.2.8 TextTerminal.WriteForm
	Command Message
	Completion Message
	Event Messages

	16.2.9 TextTerminal.ReadForm
	Command Message
	Completion Message
	Event Messages

	16.2.10 TextTerminal.Write
	Command Message
	Completion Message
	Event Messages

	16.2.11 TextTerminal.Read
	Command Message
	Completion Message
	Event Messages

	16.2.12 TextTerminal.Reset
	Command Message
	Completion Message
	Event Messages

	16.2.13 TextTerminal.DefineKeys
	Command Message
	Completion Message
	Event Messages

	16.2.14 TextTerminal.LoadForm
	Command Message
	Completion Message
	Event Messages

	16.3 Event Messages
	16.3.1 TextTerminal.FieldErrorEvent
	Event Message

	16.3.2 TextTerminal.FieldWarningEvent
	Event Message

	16.3.3 TextTerminal.KeyEvent
	Event Message

	16.3.4 TextTerminal.FormLoadedEvent
	Event Message

	17. Barcode Reader Interface
	17.1 Command Messages
	17.1.1 BarcodeReader.Read
	Command Message
	Completion Message
	Event Messages

	17.1.2 BarcodeReader.Reset
	Command Message
	Completion Message
	Event Messages

	18. Biometric Interface
	18.1 General Information
	18.1.1 References
	18.1.2 Enrollment
	18.1.3 Biometric Matching
	18.1.4 Biometric Device Types
	18.1.5 Biometric Data Security
	18.1.6 Biometric Device Command Flows
	Biometric Enrollment Command Flow
	Biometric Match Command Flow – Separate Scan and Match
	Biometric Match Command Flow – Combined Scan and Match
	Biometric Scan-Only Command Flow

	18.2 Command Messages
	18.2.1 Biometric.GetStorageInfo
	Command Message
	Completion Message
	Event Messages

	18.2.2 Biometric.Read
	Command Message
	Completion Message
	Event Messages

	18.2.3 Biometric.Import
	Command Message
	Completion Message
	Event Messages

	18.2.4 Biometric.Match
	Command Message
	Completion Message
	Event Messages

	18.2.5 Biometric.SetMatch
	Command Message
	Completion Message
	Event Messages

	18.2.6 Biometric.Clear
	Command Message
	Completion Message
	Event Messages

	18.2.7 Biometric.Reset
	Command Message
	Completion Message
	Event Messages

	18.2.8 Biometric.SetDataPersistence
	Command Message
	Completion Message
	Event Messages

	18.3 Event Messages
	18.3.1 Biometric.PresentSubjectEvent
	Event Message

	18.3.2 Biometric.SubjectDetectedEvent
	Event Message

	18.3.3 Biometric.RemoveSubjectEvent
	Event Message

	18.4 Unsolicited Messages
	18.4.1 Biometric.SubjectRemovedEvent
	Unsolicited Message

	18.4.2 Biometric.DataClearedEvent
	Unsolicited Message

	18.4.3 Biometric.OrientationEvent
	Unsolicited Message

	19. Camera Interface
	19.1 Command Messages
	19.1.1 Camera.TakePicture
	Command Message
	Completion Message
	Event Messages

	19.1.2 Camera.Reset
	Command Message
	Completion Message
	Event Messages

	19.2 Event Messages
	19.2.1 Camera.InvalidDataEvent
	Event Message

	19.3 Unsolicited Messages
	19.3.1 Camera.MediaThresholdEvent
	Unsolicited Message

	20. Lights Interface
	20.1 Command Messages
	20.1.1 Lights.SetLight
	Command Message
	Completion Message
	Event Messages

	21. Auxiliaries Interface
	21.1 Command Messages
	21.1.1 Auxiliaries.GetAutoStartupTime
	Command Message
	Completion Message
	Event Messages

	21.1.2 Auxiliaries.ClearAutoStartupTime
	Command Message
	Completion Message
	Event Messages

	21.1.3 Auxiliaries.Register
	Command Message
	Completion Message
	Event Messages

	21.1.4 Auxiliaries.SetAuxiliaries
	Command Message
	Completion Message
	Event Messages

	21.1.5 Auxiliaries.SetAutoStartupTime
	Command Message
	Completion Message
	Event Messages

	22. Storage Interface
	22.1 General Information
	22.1.1 Transaction Flows
	Replenishment of a Cash Handling device
	Flow 1 - No Exchange
	Flow 2 - With Exchange

	22.2 Command Messages
	22.2.1 Storage.GetStorage
	Command Message
	Completion Message
	Event Messages

	22.2.2 Storage.SetStorage
	Command Message
	Completion Message
	Event Messages

	22.2.3 Storage.StartExchange
	Command Message
	Completion Message
	Event Messages

	22.2.4 Storage.EndExchange
	Command Message
	Completion Message
	Event Messages

	22.3 Event Messages
	22.3.1 Storage.StorageErrorEvent
	Event Message

	22.4 Unsolicited Messages
	22.4.1 Storage.StorageChangedEvent
	Unsolicited Message

	22.4.2 Storage.StorageThresholdEvent
	Unsolicited Message

	23. Vendor Mode Interface
	23.1 General Information
	23.1.1 Vendor Mode
	Vendor Mode Entry triggered by an XFS Application
	Vendor Mode Entry triggered by an XFS Application

	23.2 Command Messages
	23.2.1 VendorMode.Register
	Command Message
	Completion Message
	Event Messages

	23.2.2 VendorMode.EnterModeRequest
	Command Message
	Completion Message
	Event Messages

	23.2.3 VendorMode.EnterModeAcknowledge
	Command Message
	Completion Message
	Event Messages

	23.2.4 VendorMode.ExitModeRequest
	Command Message
	Completion Message
	Event Messages

	23.2.5 VendorMode.ExitModeAcknowledge
	Command Message
	Completion Message
	Event Messages

	23.3 Unsolicited Messages
	23.3.1 VendorMode.EnterModeRequestEvent
	Unsolicited Message

	23.3.2 VendorMode.ExitModeRequestEvent
	Unsolicited Message

	23.3.3 VendorMode.ModeEnteredEvent
	Unsolicited Message

	23.3.4 VendorMode.ModeExitedEvent
	Unsolicited Message

	24. Vendor Application Interface
	24.1 General Information
	24.1.1 Vendor Application

	24.2 Command Messages
	24.2.1 VendorApplication.StartLocalApplication
	Command Message
	Completion Message
	Event Messages

	24.2.2 VendorApplication.GetActiveInterface
	Command Message
	Completion Message
	Event Messages

	24.2.3 VendorApplication.SetActiveInterface
	Command Message
	Completion Message
	Event Messages

	24.3 Unsolicited Messages
	24.3.1 VendorApplication.VendorAppExitedEvent
	Unsolicited Message

	24.3.2 VendorApplication.InterfaceChangedEvent
	Unsolicited Message

	25. 3.x Migration
	25.1 CDM (Cash Dispense Module)
	25.1.1 WFS_INF_CDM_CASH_UNIT_INFO

	25.2 CIM (Cash-In Module)
	25.2.1 WFS_INF_CIM_CASH_UNIT_INFO
	25.2.2 WFS_SRVE_CIM_COUNTACCURACYCHANGED

